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Abstract

Simulation models of economic, financial and business risk factors

are widely used to assess risk exposures and support decisions. Ex-

tensive literature on scenario generation methods aims at describing

some underlying stochastic processes with the least number of scenar-

ios to overcome the “curse of dimensionality”. There is, however, an

important issue that is usually overlooked when one departs from the

application domain of security pricing: the no-arbitrage restriction.

We formulate a moment matching model to generate multi-factor sce-

nario trees satisfying no-arbitrage restrictions as a global optimization

problem. While general in its formulation the resultant model is non-

convex and can grow substantially even for a modest number of assets

and scenarios. Exploiting the special structure of the problem we de-

velop convex lower bounding techniques for its solution. Applications

to some standard problems from the literature illustrate that this is a

reliable approach to stochastic tree generation and is used to price a

European basket option in complete and incomplete markets.
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1 Introduction

Simulation models of economic, financial and business risk factors are widely

used to assess risk exposures and support financial decision making, and risk

management is often based on simulations of the risk factors of the balance

sheet (see, e.g., Jamshidian and Zhu, 1997; Rebonato et al., 2005). Scenario

trees are widely used in multistage stochastic programming, where the time

dimension and non-anticipativity of future events are key features of the

model (Carinõ and Ziemba, 1998; Consigli et al., 2010; Consiglio et al.,

2006; Mulvey and Vladimirou, 1992). The recent trend is to address these

issues at the enterprise-wide level, Dembo et al. (2000a), which broadens

the risk factors to include not only financial but also economic and business.

For a detailed review of literature on scenario methods for risk management

and portfolio optimizaiton see Dupačová et al. (2000); Kaut and Wallace

(2007) and (Zenios, 2007, chap. 9).

In synthesis, we identify three approaches:

1. The moment matching approach describes the joint distribution of sce-

narios in terms of moments including cross-moments to take into ac-

count inter-dependence of the factors. It solves a set of non-convex

equations to match the mathematical expressions of the factor mo-

ments to exogenously given values. The main idea is found in the

seminal paper by Høyland and Wallace (2001). Refinements suggested

by Date et al. (2008); Høyland et al. (2003) reduce the computational

complexity of the underlying optimization problem.

2. The copula approach postulates the distribution function of the marginals

and then, by imposing an associative structure, determines the mul-

tivariate joint distribution. This method became popular as “copula

approach” since the copula function is used to model dependencies

among the variables (see Cherubini et al., 2004).

3. The distance minimization approach approximates the true distribu-

tion (continuous or discrete) with few mass points that minimize the

(Kantorovich) distance between an original stochastic optimization

model and the approximated one. The algorithmic implementation

usually starts from set of points generated by a discrete reference pro-

cess or by a discretization of a continuous process and then, using spe-
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cific metrics, partitions the points in each stage into disjoint subsets

that reduce the total number of scenarios and shape the tree structure

(Dupačová et al., 2003; Hochreiter and Pflug, 2007).

(We leave out the extensive literature on simulations for security pricing,

see, e.g. Glasserman (2004), which focuses on a specific problem and hence

takes advantage of specific stochastic process structures; we take up this

issue in the application section.)

A common aim of these methods is to approximate the underlying stochas-

tic process or probability distribution with the least number of scenarios.

However, an important issue is usually overlooked when one departs from the

security pricing literature: the scenario approximation should not present

arbitrage opportunities. The generation of arbitrage-free scenarios is com-

plicated by the need to use two probability measures—the objective and the

martingale—and returns compatible with both, to match the approximated

process to the original.

The significance of no-arbitrage scenarios is of course well understood

in the pricing literature. The problem has resurfaced in more complex

forms in recent works where pricing options is done in the context of multi-

period stochastic optimization models for portfolio management (Consiglio

and De Giovanni, 2008; Topaloglou et al., 2008). But, even for portfolio

optimization with simpler asset classes the absence of arbitrage is a key

property. Geyer et al. (2010) has shown that scenario trees with arbitrage

opportunities can produce spurious results when used in conventional port-

folio models.

In a commentary to Høyland and Wallace (2001), Klaassen (2002) sug-

gests two alternatives to handle arbitrage opportunities. One is to re-apply

the scenario generation method from a different starting point, and/or in-

crease the number of scenarios, in the hope that the newly generated set

of scenarios is free of arbitrage. The other is to explicitly add no-arbitrage

constraints to the original set of equations.

Adding a set of equations to generate arbitrage-free scenarios is a viable

approach. However, it leads to a system of non-convex equations whose

solution is prohibitive and to solve real-world applications (Høyland et al.,

2003) proposed a heuristic that did not guarantee the arbitrage-free property

(although it worked well for their applications).

Accordingly, arbitrage opportunities are usually eliminated by re-sampling
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and/or increasing the number of scenarios. Such an approach is not free of

faults or limitations. As shown in Geyer et al. (2012), increasing the number

of scenarios does not surely yield arbitrage-free scenarios, as that depends

on the structure of the expected returns and variance-covariance matrix.

Moreover, increasing the number of scenarios could not be viable when the

scenarios are used in multi-stage financial planning models, as the dimen-

sionality of the model grows exponentially with the size of the tree.

This paper resolves the limitations of existing literature and in the pro-

cess provides a very general methodology. We formulate the moment match-

ing scenario generation model with no-arbitrage constraints as an optimiza-

tion problem whose global minimal value is zero, if a solution exists (Maranas

and Floudas, 1995). The resulting optimization problem is non-convex and

local search algorithms can be trapped in local minima with non-zero value,

thus leading to the erroneous conclusion that no solution exists. To over-

come this difficulty we develop a global optimization approach based on

convex lower bounding techniques (see Floudas and Gounaris, 2009, for a

review) that takes advantage of the problem structure and is, therefore,

computationally tractable.

Our paper makes two innovations: First, it formulates a global optimiza-

tion model to generate moment-matching, arbitrage-free trees for an arbi-

trary number of risk factors (or, assets). Second, it develops an algorithm to

exploit the special structure of the model, thus showing global optimization

to be a robust tool for scenario generation. As a result of the model we

obtain both objective (P ) and risk neutral (Q) probability measures, and

the developed methodology provides an extension of pricing models to dis-

tributions with general moments. In particular, since the state price density

is obtained by the ratio Q/P for each node of the tree (Pliska (1997)) we can

apply this method for pricing securities in incomplete markets, see Section 4.

The paper is organized as follows. In Sections 2 and 3 we formulate

the model and develop the solution method. Section 4 reports on the im-

plementation of this method to some standard models from the literature

and to the pricing of a European basket option in complete and incomplete

markets. Section 5 concludes.
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2 Notation and model setup

We assume that asset returns follow stochastic processes in discrete space

and time. The set of asset returns is labeled by index set J = {1, 2, . . . , J}
and are observed on a finite number of time stages, t = 0, 1, 2, . . . , T :

R =
(
R1
t , . . . , R

J
t

)T
t=0

. (1)

(If some portfolio decision needs to be made at each stage t, such as in port-

folio replication or portfolio optimization, these are called decision stages.

Time stages for asset prices and decision stages for portfolios do not need

to coincide but for simplicity we assume they do.)

The return process is modeled on the probability space (Ω,F , P ), where

the sample space Ω is assumed to be finite. Such a formulation allows for a

market representation through scenario trees (see Pliska, 1997). We denote

by Nt the set of nodes at stage t. Each node n ∈ Nt corresponds, one–

to–one, with an atom of the filtration Ft. In the tree, every node n ∈ Nt,
t = 1, . . . , T , has a unique ancestor node a(n) ∈ Nt−1, and every node

n ∈ Nt, t = 0, . . . , T −1, has a non-empty set of child nodes C(n) ⊂ Nt. The

collection of all the nodes is denoted by N ≡ ⋃T
t=0Nt.

In the probabilistic context, if we assume that the sample space Ω is

finite, every algebra F corresponds to a partitioning of Ω into mutually

disjoint subsets (the F–atoms). In a scenario tree, there is a one-to-one

map between the nodes n ∈ Nt and the partition sets At, for each t =

1, . . . , T . A filtration simply corresponds to a sequence of algebras generated

by successively finer partitions of Ω (see Figure 1, left panel).

The tree displayed in the right panel of Figure 1 is general as the branch-

ing factor is allowed to vary in each stage. To simplify notation, we work

with trees having the same number of child nodes per ancestor, |C(n)| = L.

To form a tree for a given set of stages, we match the moments of the

sub-tree emanating from each node, and repeat the matching procedure

for each non-final node. Any temporal relationship between the moments,

such as autocorrelation or GARCH effects, can be accounted exogenously

by specifying the dynamics of the input data (Høyland and Wallace, 2001).

We describe now the equations and the variables for matching a generic

sub-tree. L is the number of child nodes with ancestor a(n) and L =

{1, 2, . . . , L} denotes the set of indices for the states of the economy (sce-
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Figure 1: A finite filtration (left panel) and its associated tree (right panel).

narios) in the next period. Since we focus on matching sub-trees we drop

the subscript t and let Rjl be the return of each asset j ∈ J and scenario

l ∈ L for the generic sub-tree, and let pl be the corresponding objective

probability.

In practical applications we are usually interested in matching up to

the first four central moments of the asset return distributions, and the

correlations of each pair of assets. Let µj , σj , γj and κj denote, respectively,

expected return, standard deviation, skewness and kurtosis, for each j ∈ J ,

and ρjh the correlation of each pair j, k ∈ J , and j 6= k.

The arbitrage-free moment matching problem is formulated as the sys-

tem of nonlinear equations:
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Problem 1. Arbitrage-free moment matching.∑
l

plRjl = µj , j ∈ J (2)∑
l

pl (Rjl − µj)2 = σ2j , j ∈ J (3)∑
l

pl (Rjl − µj)3 = γj σ
3
j , j ∈ J (4)∑

l

pl (Rjl − µj)4 = κj σ
4
j , j ∈ J (5)∑

l

pl (Rjl − µj) (Rki − µk) = ρjk σj σk, j, k ∈ J , k > j (6)∑
l

qlRjl = r, j ∈ J (7)∑
l

pl = 1 (8)∑
l

ql = 1 (9)

ql > 0, pl ≥ 0, l ∈ L. (10)

Problem 1 describes the matching of the moments and cross-moments

of the joint probability distribution to exogenously given values µj , σj , γj ,

κj and ρjk. Eqns. (7) are the no-arbitrage constraints (Pliska, 1997), where,

without loss of generality, we assume that r is the deterministic risk free

rate. For a stochastic risk free rate, eqns. (7) are modified according to

Pliska (1997) as ∑
l

ql
Rjl − rl
1 + rl

= 0. (11)

This model does not make any assumptions on the probability distribu-

tions of the returns of the asset classes. It simply matches observed moments

consistently with the no-arbitrage theory. In this sense the model is quite

general. This is an advantage for cases where no theoretical or empirical ba-

sis can justify any assumption on the underlying distributions, such as is the

case for models that include both financial and economic random variables,

or when business random variables are also included. When something more

is known, this could be incorporated in the model through additional con-

straints. For instance, Cochrane and Saa-Requejo (2000) argue for “good
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deal” bounds for incomplete markets and such considerations fit naturally in

our model setup (although we can not vouch for the computational tractabil-

ity of such extensions). If a distributional assumption can be made (e.g,

lognormality) then one would need to estimate error bounds in addition to

matching moments to assess if the calibrated tree is close to the assumed

distribution. An important outcome of our approach is that the model may

admit more than one arbitrage-free solutions and therefore it produces a

range of plausible prices instead of a point estimate. We illustrate this point

in the applications section.

3 A global optimization approach

We now develop a solution method for Problem 1 based on Maranas and

Floudas (1995). They employ a partitioning strategy of the interval of the

variables coupled with convex relaxations of the nonlinear terms of each

equation, and we specialize this approach to exploit the structure of Prob-

lem 1.

3.1 Variable bounds and scaling

First, we standardize the variable of the problem. In particular, denote by

zjl =
Rjl − µj

σj
(12)

the standardized returns Rjl to obtain Rjl = µj + σj zjl, and substitute in

equations (2)–(10).

Second, we define proper bounds for each variable. This is important

as the solution search proceeds through successively finer partitions of the

hyper-rectangle specified by the variable bounds, and the smaller this ini-

tial range the faster the convergence. Natural bounds are available for the

variables pl and ql: since they are probabilities pl, ql ∈ (0, 1] 1. Less obvious

are the bounds on zjl since zjl ∈ (−∞,∞). However, as zjl denotes stan-

dardized returns we set Rjl > −1 to rule out negative prices. Therefore the

lower bound for the standardized variable is

zj =
−1− µj
σj

. (13)

1According to theory, risk neutral probabilities have to be strictly greater than zero.
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Further restrictions of the range of zjl can be imposed by analysis of his-

torical price series. In general we bound the variable to stay within 3 to 5

standard deviations from the mean, with larger bounds being appropriate

for higher kurtosis, although the efficiency of the algorithm deteriorates.

With this transformations we can now develop our solution approach us-

ing convex relaxation of posynomial functions (see Appendix A for a formal

definition). Such functions are characterized by strictly positive variables.

The positivity of pl and ql is rooted in their meaning as probabilities but for

zjl a suitable transformation is needed. Furthermore, to enhance numerical

stability of the algorithm we scale all variables to have the same range, and

in particular the range of pl and ql.

The transformation of zjl is given by:

zjl = zj + tjl(zj − zj)
= zj + tjl∆j , (14)

where 0 < tj ≤ tjl ≤ tj = 1 and ∆j = zj − zj . Substituting eqn. (14) in the

standardized eqns. (2)–(7), and after some algebra, we obtain:
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Problem 2. Arbitrage-free moment matching with scaled vari-

ables. ∑
l

pl tjl = Aj , j ∈ J (15)∑
l

pl t
2
jl = Bj , j ∈ J (16)∑

l

pl t
3
jl = Cj , j ∈ J (17)∑

l

pl t
4
jl = Dj , j ∈ J (18)∑

l

pl tjl tkl = Fjk, j, k ∈ J , k > j (19)∑
l

ql tjl = Hj , j ∈ J (20)∑
l

pl = 1, (21)∑
l

ql = 1, (22)

0 < p
l
≤pl ≤ pl = 1, l ∈ L (23)

0 < q
l
≤ql ≤ ql = 1, l ∈ L (24)

0 < tj ≤tjl ≤ tj = 1, j ∈ J , l ∈ L. (25)

The derivations of the transformed equations with scaled variables are re-

ported in Appendix B.

3.2 The branch & bound algorithm

Finding all the solutions of Problem 2 is now re-formulated as a global

optimization problem. Following Maranas and Floudas (1995), we index by

m ∈M the equations of the model, i.e.,M = {1, 2, . . . ,M} is the index set

of eqns. (15)–(20). We denote by β a vector stacking the variables pl, ql, tjl,

and by β, β, respectively, their lower and upper bounds. We also denote

by em(β) the difference between the value of the equation at β and its

right-hand-side term, for each m ∈M.

Let s be a scalar slack variable. Then the following inequality constrained

problem amounts to solving the system of equations (15)–(25):
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Problem 3. Inequality-constrained minimization

min
β,s

s (26)

s.t. (27)

em(β)− s ≤ 0, m ∈M (28)

−em(β)− s ≤ 0, m ∈M (29)

β ≤ β ≤β. (30)

An optimal solution (β∗, s∗) of Problem 3 with s∗ = 0 is a solution of

the system (15)–(25). In turn, a global optimum with a non-zero s∗ denotes

an infeasible system of equations. Note that, since the equations involved

are, in general, non-convex, a local optimization algorithm could lead to

solutions which are locally optimal thus missing the global optima. Even

worse, if a local minimum has a non-zero objective value we (erroneously)

conclude that no feasible solutions exist to the original system. Hence we

need a solution method that can identify all solutions. In practice we may

terminate once a zero solution is found.

Global optimization algorithms to solve non-convex problems have been

widely studied. They are mainly subdivided in three classes: deterministic,

stochastic and meta-heuristic. Deterministic global optimization algorithms

are usually based on a branch & bound search strategy, where the bound

phase is implemented by minimizing a convex relaxation of Problem 3. On

each sub-rectangle [β
′
,β′ ] ⊂ [β,β], obtained in the branching phase, the

constrained global minimum of the convex relaxed problem can be routinely

found with any local optimization algorithm. Note that, since the convex

relaxation is obtained by a convex underestimation of each non-convex term

of the model equations, the minimum of the relaxed problem will be an

underestimation of the global minimum. This implies that if the relaxed

global minimum is positive, then the relative partition can be fathomed,

as the slack variable s cannot be driven to zero, and therefore the moment

matching model has no solution in that specific partition. On the other

hand, if the relaxed global minimum is negative, then no conclusion can

be drawn and the interval is further partitioned. The algorithm terminates

when all the hyper-rectangles with a negative lower bound cannot be further
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partitioned, or, in practice, when their norm is within a given tolerance:

‖β′ − β
′‖ ≤ εd.

In Appendix A we give a convex reformulation of the model that exploits

its special structure and allows for efficient solutions.

4 Applications

In this section we apply the method to generate scenarios for some problems

from the literature and to price a basket option in complete and incomplete

markets. We carry out experiments to assess the performance of our ap-

proach, compare to available software for scenario generation and assess the

quality of the scenarios obtained when used for security pricing.

The data sets are taken from real problem instances and they contain

asset classes ranging from cash to stock. In particular, we perform the

experiments on data sets from Høyland et al. (2003) and the FINLIB library

of Consiglio et al. (2009), and label them, respectively, HKW-X and FINLIB-Y,

where X=8,12,20 and Y=15,20 denote the number of assets in each data set.

All the experiments are carried out on a Linux machine with 2.00 GHz

Xeon Quad-Core. The convexified problems are solved with GAMS/CONOPT

or GAMS/SNOPT.

4.1 Checking for arbitrage

As noted earlier, neither re-sampling nor increasing the number of scenar-

ios are foolproof approaches to generate arbitrage-free scenarios. Table 1

summarizes results with the generation of no-arbitrage scenarios using the

heuristic of Høyland et al. (2003). For a given number of scenarios, we

re-sample 100 different instances and assess the presence of arbitrage by

solving the stochastic programming model of King (2002). An unbounded

solution signals arbitrage. The table summarizes the success rate of pro-

ducing arbitrage-free scenarios by simple re-sampling and we note that the

percentage of no-arbitrage scenarios depends on the test set, i.e., on the

structure of the variance-covariance matrix (see Geyer et al. (2012)).

Increasing the number of scenarios, as suggested by Klaassen, improves

the success rate (although, for problem HKW 20 it was not possible to generate

arbitrage-free scenarios). The success rate is lower for problems with more

assets and the number of scenarios needed are on average more than double
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the number of assets. This is crucial for practical applications. As we will

see in the next section, to price an option in complete or incomplete markets,

we need to build scenario trees, that grow exponentially with the number of

time steps and scenarios. Therefore, a desirable property of arbitrage-free

scenarios is to match the moments of the distribution with the minimum

number of scenarios. According to theory (see Pliska, 1997), the number of

scenarios should be equal to the number of assets plus one, |L| = |J | + 1.

Note that if it is possible to generate trees such that each sub-tree has a

number of scenarios equal to |J |+1, then the option price can be determined

by simply discounting the final payoff under the risk neutral measure, given

in our model by the probabilities ql, for l ∈ L.

Number of Scenarios
Problem 10 15 20 30 50 100

HKW-8 0% 6% 25% 63% 93% 100%
HKW-12 NA 0% 0% 11% 56% 100%
HKW-20 NA NA NA 0% 0% 0%
FINLIB-15 NA NA 0% 0% 0% 12%
FINLIB-20 NA NA NA 0% 0% 6%

Table 1: Percentage of no-arbitrage scenarios for each test set and for dif-
ferent number of scenarios. NA indicates that absence of arbitrage cannot
hold because the number of scenarios does not exceed the number of assets.

4.2 Accuracy of the solution

In this section we show that the global optimization approach is a feasible

alternative to re-sampling procedures, that, as seen above, perform poorly

in terms of success rate and in terms of number of scenarios needed to

guarantee absence of arbitrage.

Our objective is to generate sets of scenarios with the minimum num-

ber of branches, possibly satisfying the completeness hypothesis whereby the

number of scenarios equals the number of assets plus one. We point out

that the global optimization approach is able to locate all the global min-

ima (scenario trees) of the problem. If the system of equations is consistent,

the moment matching problem could have infinite solutions and in our ex-

periments we terminate after ten solutions.

In Table 2 we display the average maximum error for each set of equa-

tions of the moment matching problem. That is, for each set of equations
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corresponding to the moment to be matched, we record the maximum er-

ror obtained over the set of assets, where error is the difference between

the value of the expression on the left-hand-side of the equation and the

parameter on the right-hand-side2. This value is then averaged over the

ten generated trees. For example, the column denoted by ρ displays the

maximum mismatch over all the equations describing the cross-correlations,

averaged over the ten solutions (scenario trees) . Observe that the average

maximum error is quite negligible, meaning that the solutions found match

very closely the empirical moments for all test problems. Moreover, the

trees generated have the minimum number of scenarios required to exclude

arbitrage opportunities.

Problem µ σ γ κ ρ r

HKW-8 1.08E-06 4.20E-06 2.84E-05 1.40E-04 4.88E-06 3.87E-07

HKW-12 1.38E-06 9.14E-06 6.45E-05 2.51E-04 5.71E-06 2.70E-07

HKW-20 7.22E-06 8.91E-06 7.86E-05 3.34E-04 1.50E-05 2.60E-07

FINLIB-15 1.41E-06 3.83E-06 5.26E-05 2.49E-04 5.56E-06 1.12E-07

FINLIB-20 2.13E-06 7.38E-06 6.00E-05 1.58E-04 8.03E-06 3.66E-07

Table 2: Average maximum error for each moment matched.

To confirm robustness of the solution algorithm, we display in Table 3

the standard deviations of the maximum error over the ten different trees.

Problem µ σ γ κ ρ r

HKW-8 8.67E-07 3.67E-06 2.34E-05 1.30E-04 7.83E-06 5.89E-07

HKW-12 1.52E-06 8.11E-06 3.06E-05 1.70E-04 9.43E-06 3.94E-07

HKW-20 9.69E-06 6.62E-06 1.71E-05 1.07E-04 1.40E-05 2.43E-07

FINLIB-15 2.49E-06 5.38E-06 3.38E-05 2.06E-04 7.04E-06 1.34E-07

FINLIB-20 2.46E-06 5.40E-06 3.37E-05 1.13E-04 6.76E-06 7.64E-07

Table 3: Standard deviation of the maximum error of ten different trees for
each moment matched.

Finally, we report in Table 4 the computational times to find one and

ten solutions. Solution times increase with the number of assets, primarily

due to the exponential nature of the branch & bound algorithm.

2The symbols of the columns are those used to describe the equations of Problem 1.
For readability, we omit the errors for the normalization constraints for pl and ql, which
are in the range 3.26E-6 to 9.33E-7.
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T1 T10
HKW-8 0:00:09 0:01:41
HKW-12 0:02:00 0:15:02
HKW-20 0:43:41 4:50:14
FINLIB-15 0:00:53 1:08:57
FINLIB-20 0:04:58 2:51:31

Table 4: Solution times for one (T1) and ten (T10) solutions in hrs:min:sec.

4.3 Options pricing applications

We showed that it is possible to built trees to match with high accuracy

a given set of moments and obtain the corresponding objective and risk

neutral measures. As we pointed out this problem has extensive applications

in risk management, especially when using multiperiod optimization models.

Here we illustrate two applications of this method with options pricing in

complete and incomplete markets. We will see that high-quality solutions

are obtained even with the very low levels of granularity we consider.

4.3.1 Complete markets

We start by assessing the quality of our trees with respect to a financial

problem whose solution, under some assumptions, can be obtained with

other methods. We consider the pricing of a European basket option, written

on |J | = 4 equally weighted assets, maturity T = 5 years and correlation

among the underlying assets 0.5. The objective of such an experiment is to

assess the quality of our scenario trees. For real-world evaluations of basket

options under normality assumptions more efficient methods are available;

things become more complex if we need to take into account stylized facts,

such as fat-tails or skewness of the distributions of the underlying assets.

We compute the price of such an option assuming normality using standard

Montecarlo simulation with 1,000,000 scenarios drawn from the gaussian

risk-neutral distribution.

For our method, the Black-Scholes (BS) hypotheses is satisfied by gen-

erating scenarios with drift µ = r, (without loss of generality we set the

risk free r = 0), standard deviations σ = 10%, 20%, 30% per year, skewness

γ = 0, kurtosis κ = 3, and correlation among the four assets ρ = 0.5. Note

that γ = 0 and κ = 3 is a requirement to satisfy the gaussian hypothesis

of the BS model. Matching only these two moments does not ensure that

15



the distributions of the asset returns is normal (in theory, infinite moments

of the gaussian should be matched). For market completeness we set the

number of scenarios |L| = |J |+ 1.

The 5-year tree is constructed sequentially, that is, at each branching

node a 1-year subtree is generated by means of the optimization procedure

described in the previous sections. For consistency with BS we assume that

the input moments of the conditional distributions are time independent.

Therefore, the 5-year tree is obtained by generating a single 1-year subtree

and replicating it to each branching node.

Following the notation in Section 2, we denote by NT the set of nodes at

the final period that coincides with the maturity of the option. There is a

unique path from the root node to the final nodes, and we denote by H(n)

the index set of nodes which belongs to the path leading from the root of

the tree to the final nodes n ∈ NT .

For each final node n, we compute the price of each asset j ∈ J as

follows:

P jn = P j0
∏

m∈H(n)

(
1 +Rjm

)
, (31)

where, Rjm is the return of the asset j at node m (with Rj0 = 0), and P j0 is

the price of the asset j at the root node m = 0 (we set P j0 = 100, for each

j ∈ J ). We compute in a similar way the risk neutral probabilities attached

to each final node n, i.e.,

q∗n =
∏

m∈H(n)

qm, (32)

where, qm is the risk neutral probability of each node m ∈ H(n), and q0 = 1.

The price of the option is now obtained as the present value of the

expected value of the final payoff under risk-neutral probabilities q∗n, n ∈ NT :

C = e−r
∑
n∈NT

q∗n max(PBn −K, 0), (33)

where PBn =
∑

j∈J wjP
j
n. We remark that due to the imposed market com-

pleteness it is possible to price the option by simple discounting of expected

value under q∗.

We fit scenario trees for different volatilities σ = 10%, 20%, 30% and

price the basket option for strike prices ranging from 80 to 120 (the ini-
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tial price of each asset P j0 = 100). We generate twenty solutions of the

non-convex optimization problem, and also use Montecarlo simulation with

1,000,000 scenarios to estimate the “true” price under the normality as-

sumption. The results are illustrated in Figure 2 where we show the range

of prices obtained by the calibrated trees and the Montecarlo estimate. In

all cases –except for deep in-the-money and deep out-of-the-money options

under the extreme volatility scenarios– the range of prices obtained from

the scenario tree brackets the Montecarlo estimate and the range is small.

In Table 5 we compute the average price over the twenty trees obtained

by eqn. (33), and report the mean absolute percentage difference between

the average price from the trees and the Montecarlo price estimate.

σ = 10% σ = 20% σ = 30%

MC Opt. Error MC Opt. Error MC Opt. Error

80 20.80 20.81 0.49% 25.10 25.17 1.69% 30.59 30.36 0.76%

85 16.60 16.74 1.04% 21.89 21.84 0.97% 27.90 27.77 0.79%

90 12.87 12.98 1.38% 18.99 18.89 0.89% 25.43 25.51 1.74%

95 9.68 9.72 0.91% 16.40 16.43 1.93% 23.17 23.45 2.79%

100 7.06 7.21 2.16% 14.10 14.20 3.06% 21.10 21.45 3.17%

105 5.00 5.12 2.83% 12.08 12.15 3.62% 19.21 19.49 2.75%

110 3.45 3.37 3.40% 10.32 10.29 2.81% 17.49 17.55 1.46%

115 2.32 2.15 7.99% 8.79 8.59 2.24% 15.92 15.62 1.84%

120 1.52 1.43 7.50% 7.46 7.07 5.61% 14.49 13.73 5.29%

Table 5: Montecarlo price MC of the basket option obtained by drawing
1,000,000 scenarios from the risk neutral distribution, average price “Opt.”
using twenty 5-year trees and mean absolute error between the two values.

Note that, for in-the-money and at-the-money options (strike prices

≤ 105) the option price error is fairly small. The quality of the solution

deteriorates somewhat for out-of-the-money and low volatility. In reality,

on average the option price is fairly close to the Montecarlo price. How-

ever, the coarse granularity of the tree (only 55 = 3125 scenarios versus

1,000,000 of the Montecarlo) yields option prices very close to zero in some

tree instances.

We point out that the aim of this experiment is to establish the quality

of the generated trees and point out that there are more accurate meth-

ods to price basket options under the BS hypotheses. The value of this

method is not so much the accuracy of the average price it computes vis-a-

vis the Montecarlo price, but the fact that it generates a range of prices that
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Figure 2: The range of prices obtained from twenty calibrated trees for dif-
ferent strike prices and volatilities; the Montecarlo estimate under normality
assumptions is indicated by the bullet point.
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bracket the Montecarlo price. That is, if normality holds then our method

approximates accurately the Montecarlo estimate even with very few (3125)

scenarios. But in the absence of any distributional information and with

only the empirically observed moments to go by, the range of prices is a bet-

ter indicator. Furthermore, the methodology can be applied to pricing more

complex instruments, path-dependent options and in incomplete markets,

which we consider next.

4.3.2 Incomplete markets

The representation through trees of the underlying stochastic process is

particularly suitable to price option in incomplete markets, see, e.g., Dembo

et al. (2000b). Market incompleteness arises when the number of risky fac-

tors is greater than the available securities to hedge them. This is simulated

in our experiments by assuming a non-traded underlying asset.

In case of incompleteness, the martingale measures are infinite, and,

therefore, there are infinite prices of the option under scrutiny, lying be-

tween a lower (bid price) and an upper (ask price) bound. Such bounds can

be determined by appropriately modeling the hedging process. In our ex-

periment we adopt a super-replication strategy, where at each node n ∈ Nt,
t = 0, 1, . . . , T − 1, the portfolio of assets is self-financing, and at each final

node, n ∈ NT , the hedging portfolio super-replicates the option payoff. Such

a strategy is equivalent to solving a linear stochastic programming model

(one for the buyer and one for the writer), where the value of the portfolio

at the root node is the option price (King, 2002). In this context a reference

value to serve as the “true” value of the option is not available, and we assess

the quality of the scenario trees through sensitivity analysis of the option

price.

In Figure 3 we display the ask and bid prices of the basket option, with

volatility σ = 20%, and strike prices ranging from 80 to 120. The incomplete

market prices, over the twenty trees, is obtained by assuming that one of the

assets cannot be traded. More detailed statistics are reported in Table 6.

We observe that also in incomplete markets the trees are close to each

other in the sense that they yield very similar option prices, as evidenced

by the low standard deviation over the sample of twenty trees.
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Figure 3: Bid/ask prices of the basket option in an incomplete market for
different strike prices and trees, and volatility of assets σ = 20%

20



Buyer Side

Strike Price 80 90 100 110 120
Mean 16.44 9.60 4.87 2.25 0.80
St. dev. 1.085 0.815 0.698 0.447 0.218
Min 14.78 8.27 3.95 1.39 0.50
Max 19.16 11.45 6.53 3.13 1.30

Writer Side

Strike Price 80 90 100 110 120
Mean 24.48 15.97 9.29 4.96 2.03
St. dev. 0.800 0.746 0.528 0.461 0.189
Min 22.82 14.43 8.15 4.04 1.67
Max 24.93 16.46 9.75 5.38 2.34

Table 6: Descriptive statistics of the price of a basket option in incomplete
markets over a sample of twenty trees.

5 Conclusions

The generation of arbitrage-free scenario trees that match the moments of

a set of risk factors is a prevalent problem in risk management and pric-

ing financial instruments, and especially so in incomplete markets and for

enterprise-wide risk management. We proposed a model formulation that

casts this problem as a global optimization model whose solution is zero if

a solution to the original problem exists. Exploiting the special structure of

the model with linear relaxations of a convex reformulation, we have shown

that the method is robust and computationally tractable. Experiments high-

lighted the efficacy of the methodology in pricing synthetic options in com-

plete and incomplete markets. The result is a general purpose methodology

that can generate theoretically correct and accurate scenarios with no more

input requirements than the available moments.
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A A convex reformulation of the model

Once Problem 2 is transformed into the equivalent constrained minimization

Problem 3, we are faced with a set non-linear inequalities of the general form∑
k

∏
i

xαkiki −M − s ≤ 0 (34)

−
∑
k

∏
i

xαkiki +M − s ≤ 0, (35)

where, each term of the summation is a posynomial. In particular, a posyn-

omial function is defined as

f(x1, x2, . . . , xn) =
n∏
i=1

xαii , (36)

where αi ∈ IR, c > 0, and xi > 0 ≤ xi ≤ xi, for each i = 1, 2, . . . ,m.

Observe that the nonlinear terms in eqns. (15)–(25) are of posynomial

functional form, and this is exploited in the convex relaxation phase of the

solution algorithm. Convexification of posynomial functions is carried out

through the variable transformation x → f(y), where f(y) : IR → IR is a

suitable mapping carrying the one-to-one relation between the original vari-

able x and the transformed variable y. For example, Maranas and Floudas

(1997) use an exponential transformation, x → ey; Tsai and Lin (2007)

adopt a reciprocal transformation, x → y−1, which is a special case of the

power transformation x→ yβ. Note that, in general, not all variables need

to be transformed. For example, eqns. (21) and (22) are linear in p and q.

The inverse nonlinear transformation y → f−1(x) has to be included into

the transformed problem, thus moving the non-convexities from the original

constraints to the inverse equality constraints. (For example, by using the

power transformation, the non-convex definitional equality y = x1/β has to

be associated with each transformed variable). In this respect, Lundell et al.

(2009) approximate the inverse linear transformation constraint through a

piecewise linear function, thus turning the model to a mixed-integer non-

linear program, while Lu et al. (2010) adopt an ad-hoc linear relaxation of

the bilinear equation associated to each transformed variable. Since tree

generation problems are characterized by a medium to high level of dimen-

sionality, we adopt the approach of Lu et al. that does not require integer
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variables that complicate the model. (For example, with number of assets

|J | = 4, and number of scenarios |L| = 5, we obtain a nonlinear program

with 30 variables and 37 constraints. In general, the number of variables are

2 · |L|+ |J |·|L|, and the number of equations (excluding the box constraints)

2 + 5 · |J |+ (|J |2 − |J |)/2.)

The starting point of the analysis in Lu et al. is based on the following

proposition:

Proposition 1. A twice differentiable function

f(x1, x2, . . . , xn) =
n∏
i=1

xαii (37)

is convex if αi < 0 and xi > 0, for each i = 1, 2, . . . , n.

Let K = {i|αi < 0, i = 1, 2, . . . , n} and K = {i|αi > 0, i = 1, 2, . . . , n}.
A convex reformulation of the posynomial function (36) is given by

f
(
{xi}i∈K, {yi}i∈K

)
=
∏
i∈K

xαii
∏
i∈K

y
−αi
δi

i , (38)

where, yi = x−δii and 0 < δi ≤ 1, for each i ∈ K.

For those variables xi, i ∈ K, that appears in non-convex terms, it is

necessary to relax the definitional equation yi = x−δii . Lu et al. show that

such relaxation is given by the following linear inequality, for each i ∈ K:

yi ≤ x−δii +
x−δii − x−δii

xi − xi
(xi − xi) . (39)

The parameters δi play an important role in the relaxation. In particular,

the smaller the δi the tighter the convex relaxation. However, δi cannot be

chosen arbitrarily close to zero and it has to be determined as a function of

the computer accuracy and bounds xi, xi; see Lu et al. (2010), section 3.

To convexify Problem 2, we need to transform each variable pl, ql and

tjl since their exponents are all positive. Accordingly, we set:

πl = p−ξll and 0 < ξl ≤ 1, (40)

χl = q−υll and 0 < υl ≤ 1, (41)

τjl = t
−δjl
jl and 0 < δjl ≤ 1. (42)
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Remark 1. The variables pl and ql are the only ones to be relaxed, and

this is because such variables appear in the linear eqns. (21)–(22). So we

have to add to the convexified problem the following inequalities, for each

l ∈ L:

πl ≤ p−ξll
+
p−ξll − p−ξll

pl − pl

(
pl − pl

)
, (43)

χl ≤ q−υll
+
q−υll − q−υl

l

ql − ql

(
ql − ql

)
, (44)

Remark 2. The inequality constraints of Problem 3 are of two types: (28)

is the sum of positive terms, also known as posynomial ; (29) is the sum of

negative terms, also know as signomial. As we have seen, the transformation

yi = x−δii turns the posynomials to a convex function. Similarly, a signomial

will be turned to a concave function. We can relax each concave term by

underestimating it through an affine function T (y1, y2, . . . , yn). For example,

the concave inequalities correspondent to the transformation of eqn. (15) are

given by,

−
∑
l

π
−1/ξl
l τ

1/δjl
jl +Aj − s ≤ 0, for each j ∈ J . (45)

Each concave term Gjl(πl, τjl) = −π−1/ξll τ
1/δjl
jl is underestimated by means

of the affine function Tjl(πl, τjl) = ajl πl + bjl τjl + cjl. The coefficients ajl,

bjl, and cjl are chosen in such a way that the affine function, Tjl(πl, τjl), is

equal to the concave function, Gjl(πl, τjl), at the vertex of the rectangular

domain identified by the upper and lower bounds of the variables πl and

τjl.

B The model with scaled variables

The derivation of eqns. (15)–(20) needs some tedious algebra especially for

higher moments. We derive here only eqns. (15)–(16) and for the remaining

parameters we provide the relations without the derivation, which follows

along the lines described here. By substituting the scaling relation for zjl in
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the standardized eqn. (2), we obtain:∑
l

pl(zj + tjl∆j) = zj + ∆j

∑
l

pltjl = 0.

By isolating the summation of the last relation, we obtain:∑
l

pltjl = −
zj
∆j

= Aj .

We proceed similarly for the standardized eqn. (3) to obtain:∑
l

pl(zj + tjl∆j)
2 =∑

l

pl
[
z2j + t2jl∆

2
j + 2zjtjl∆j

]
=

z2j + ∆2
j

∑
l

plt
2
jl + 2zj ∆j

∑
l

pltjl =

z2j + ∆2
j

∑
l

plt
2
jl + 2zj ∆j

(
−
zj
∆j

)
=

z2j + ∆2
j

∑
l

plt
2
jl − 2z2j =

∆2
z

∑
l

plt
2
jl − z2j = 1.

Isolating the summation of the last relation, we obtain:

∑
l

plt
2
jl =

1 + z2j
∆2
j

= Bj .

It is possible to verify that:

Cj =
γj − zj

[
z2j + 3

]
∆3
j

, Dj =
κj − zj

[
4γj − z3j − 6zj

]
∆4
j

,

Fjh =
ρjh + zj zh

∆j ∆h
, Hj =

r − µj − zj σj
σj ∆j

.
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