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models. Using CDS spread return data from eurozone crisis countries we illustrate that
investment strategies using robust optimization models perform well even out-of-sample.
Finally, using a controlled experiment we show how the well-known sensitivity of CVaR
to mis-specifications of the first four moments of the distribution is alleviated with the
robust models.
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1 Introduction

Mean-variance portfolio optimization from the seminal thesis of Harry Markowitz pro-
vided the basis for a descriptive theory of portfolio choice: how investors make decisions.
This led to further research in financial economics, with the development of a theory on
price formation for financial assets (by William Sharpe) and on corporate finance taxation,
bankruptcy and dividend policies (by Merton Miller). These descriptive contributions of
the behavior of financial agents was recognized by a joint Nobel Prize in 1990. The pre-
scriptive part of the theory —how investors should make decisions— was also acclaimed
by practitioners and mean-variance models proliferated. Here, however, problems surfaced:
mean-variance portfolio optimization is sensitive to perturbations of input data (Best and
Grauer, 1991; Chopra and Ziemba, 1993). Since the estimation of market parameters is
error prone, the models are severely handicapped. In theory they produce well diversified
portfolios but in practice they generate portfolios biased towards estimation errors.

With advances in financial engineering, variance was replaced by more sophisticated risk
measures. We have seen value-at-risk (VaR) becoming an industry standard and written
into the Basel II and III accords to calculate capital adequacy or calculate insurance
premia or set margin requirements. However, value-at-risk is criticized for being non-
convex and it is also computationally intractable to optimize. In a seminal paper Artzner
et al. (1999) provided an axiomatic characterization of risk measures, which they call
coherent, and conditional value-at-risk (CVaR) emerged as one such risk measure. CVaR
rose to prominence with the work of Rockafellar and Uryasev (2000) who showed that it
can be minimized as a linear program. CVaR optimization emerged as a credible successor
to mean-variance models: it is coherent, computationally tractable and found numerous
applications (Zenios, 2007, ch. 5).

How come then, that VaR and not CVaR became the industry standard? Serendipity
played a role, of course. VaR was introduced first and promoted vigorously by J.P. Mor-
gan, an industry leader. Furthermore, optimization of the risk measure is not required
by the regulators and, hence, the computational challenge of VaR optimization passed
unnoticed. But there is another, more fundamental reason, for preferring VaR over CVaR.
VaR estimated from a set of sampled scenarios is a robust statistic, i.e., it is insensitive
to small deviations of the underlying distribution from the observed distribution, whereas
CVaR is not. Kou et al. (2013) argue that risk measures should be robust but coherent
risk measures are not, so that CVaR lacks a key property.

In this paper we eliminate the sensitivity of CVaR by incorporating data ambiguity in
the optimization model (Section 3). Kaut et al. (2007) exemplified that CVaR optimization
models are sensitive to mis-specifications in means, standard deviation, skewness and, to
a lesser extend, kurtosis. We show that these problems are alleviated (Section 4.2).
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1.1 Review of robust VaR and CVaR models

Early suggestions in dealing with the sensitivity of portfolio optimization models to data
estimation errors use Bayesian or James-Stein estimators, resampling, or restricting port-
folio choices with ad hoc constraints. We do not review this literature as it is outside the
scope of our work.

The 2008 global crisis revived the work of Chicago economist Frank H. Knight (1921)
that considers financial and economic data as ambiguous instead of uncertain, whereby
under uncertainty a probability model is known but the random variables are observed
with some measurement error, whereas under ambiguity the probability model is unknown.
Hence, data mis-specification is not only due to measurement error that can be reduced
with improved estimation techniques. Data ambiguity is an integral part of financial de-
cision making and deserves attention as an issue to be modeled, not a problem to be
eliminated. It is from this perspective that we develop this study.

We build on recent research that brings developments in robust optimization to bear on
portfolio selection under data ambiguity. Robust optimization models require constraints
to be satisfied even with ambiguous data, and the objective value to be insensitive to the
ambiguity. Concepts of robustness in optimization have been developed independently in
the fields of operations research and engineering design. Mulvey et al. (1995) proposed the
robust optimization of large scale systems when data take values from a discrete scenario
set, using a regularization of the objective function to control its sensitivity and penalty
functions to control constraint violation. This approach spurred numerous applications in
facility location, power capacity planning, disaster response, supply chain management,
production and process planning and so on. Robust convex optimization was developed in
Ben-Tal and Nemirovski (1998) for optimization problems with data ambiguity described
by an ellipsoid, and show that important convex optimization problems admit a tractable
robust counterpart. The foundational papers spurred extensive theoretical and applied
research (Ben-Tal et al., 2009; Bertsimas et al., 2011).

In a way robust portfolio optimization brings ideas from Taguchi robust engineering
design to the design of portfolios. Authors usually adopt the robust convex optimization
framework over an appropriate ambiguity set, and it is in this domain that our paper
makes a contribution. Fabozzi et al. (2010) review robust portfolio optimization using
mean, VaR and CVaR risk measures.

The first robust counterpart to mean-variance optimization was proposed by Goldfarb
and Iyengar (2003). Using a linear factor model for asset returns they introduce “uncer-
tainty structures” —the confidence regions associated with parameter estimation— and
formulate robust portfolio selection models corresponding to these uncertainty structures
as second order cone programs (SOCP). They also develop robust counterparts for VaR
and CVaR optimization under the normality assumption of mean-variance models. Schot-
tle and Werner (2009); Tütüncü and Koenig (2004) develop further robust mean-standard
deviation and mean-variance models.
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Our paper develops a robust counterpart of CVaR (RCVaR) optimization and finds it
identical to robust VaR (RVaR) optimization. Hence, we give a detailed review of previous
works on RVaR and RCVaR optimization so we can place our own contribution. But first,
note an important distinction in terminology. VaR and CVaR minimization models lack
a minimum return constraint, and ambiguity is restricted to the objective function. VaR
and CVaR optimization trade off the risk measure against a minimum return target. These
follow Markowitz’s mean-variance tradition but are more difficult to analyze as ambiguity
appears also in the constraints.

Current literature addresses the following problems relating to model parameters: (i)
Ambiguity in mean return estimates, (ii) ambiguity in covariance matrix estimates, and
(iii) ambiguity in the distribution of the data. Ambiguity can be independent for each
parameter or joint for multiple parameters. If ambiguity is independent for each param-
eter we have simple sets constraining the parameters (e.g., a (sub)vector of parameters
restricted to some intervals). For joint ambiguity we have sets such as ellipsoids or convex
polytopes constraining the parameters. Models based on discrete scenarios may have dis-
tribution ambiguity in the scenario values or the scenario probabilities or both. For models
with continuous distributions, ambiguity is in the moments.

Ghaoui et al. (2003) address RVaR minimization without the normality assumption.
They consider partially known distributions of returns, whereby means and covariance lie
within a known uncertainty set, such as an interval, a polytope (polytopic uncertainty), or a
convex subset (convex moment uncertainty). Given this information on return distributions
they cast RVaR minimization for interval uncertainty as semidefinite program (SDP), and
for polytopic uncertainty as SOCP. They also give a general, but potentially intractable,
model for convex moment uncertainty.

The first RCVaR optimization model is by Quaranta and Zaffaroni (2008) for interval
uncertainty of the means. Zhu and Fukushima (2009) consider RCVaR minimization for
box and ellipsoidal uncertainty in distribution, as well as distribution mixtures of convex
combination of predetermined distributions. By “distribution” the authors mean the prob-
abilities of the discretized data. By considering distribution ambiguity with known means,
their RCVaR minimization model extends to RCVaR optimization simply by adding a
non-ambiguous minimum return constrain.

Delage and Ye (2010) show (as a special case of their work) that RCVaR minimization
for ambiguity in the probabilities, mean and second moment, can be solved in polynomial
time. The authors provide bounds and generate confidence regions on the mean and co-
variance matrix in case of moment uncertainty but do not develop RCVaR models using
this information. Instead, their robust model is for expected utility maximization under
moment uncertainty.

Chen et al. (2011) point out that robust solutions come with a computational price:
robust optimization models can be infinite dimensional and, without proper choice of
uncertainty sets, the model may be intractable. They obtain bounds on worst case value
of lower partial moments and use them to develop RVaR and RCVaR minimization under
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distribution ambiguity with closed form solution under a normalization constraint. Paç
and Pinar (2014) extend further RVaR and RCVaR optimization under distribution and
mean returns ambiguity, but fixed covariance matrix.

A contribution that filled several gaps is Gotoh et al. (2013). Scenario based VaR and
CVaR minimization models use discrete data observations (i.e., scenarios) and their proba-
bilities to determine the empirical distribution. There are three possible ways to introduce
ambiguity and formulate RVaR and RCVaR counterparts. The first approach (Zhu and
Fukushima, 2009), keeps the scenarios fixed and considers ambiguous probabilities from a
box or an ellipsoid. Gotoh et al. (2013) consider a second approach with uncertainty in sce-
narios but fixed probabilities, and a third approach, where both scenarios and probabilities
are ambiguous.

Our work considers ambiguity in the distribution as well as mean returns, covariance
matrix, and joint ambiguity in combinations of the above. These are, to the best of our
knowledge, the most general ambiguity sets considered in the literature. Joint ambigu-
ity provides a modeling capability not available in previous RVaR and RCVaR models
(Schottle and Werner (2009) consider joint uncertainty in means and covariance matrix
for mean-standard deviation models). We use an ellipsoidal ambiguity set which is quite
general and obtain tractable optimization models as SOCP. We use the term ambiguity
sets in the Knightean sense, instead of uncertainty sets in discussing robust models. Ro-
bust optimization literature typically refers to uncertainty sets although usually ambiguity
is meant.

The paper is organized as follows. Section 2 defines VaR, CVaR, RVaR and RCVaR
models and illustrates the instability of VaR and CVaR optimal portfolios. Section 3 is
the main one. It formulates RVaR and RCVaR under distribution and ellipsoidal ambi-
guity in means and covariance, and establishes their equivalence (sec. 3.1), discusses the
construction of ambiguity sets (sec. 3.2), extends or unifies existing results (sec. 3.3) and
develops models for polytopic and interval ambiguity sets (sec. 3.4). We also identify some
implicit assumptions made in previous works that limit their applicability to special cases
and explain how we overcome the limitations. Section 4 reports on two distinct numerical
tests. First, using historical CDS spread returns from eurozone crisis countries we investi-
gate the robustness of alternative investment strategies. Second, using simulations we test
the robustness of optimal portfolios under mis-specification of mean, variance, skewness
and kurtosis. Proofs are gathered in Appendices.

2 Optimization of VaR and CVaR risk measures and their stability

The mean of α-tail1 distribution of portfolio loss X, CVaRα(X), and its minimization
formula were developed in Rockafellar and Uryasev (2000):

1 We use α = 0.95 whenever we do numerical experiments throughout the paper.
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Theorem 1 Fundamental minimization formula.
As a function of γ ∈ R, the auxiliary function

Fα(X, γ) = γ +
1

1− α
E{[X − γ]+},

where α ∈ (0, 1] is the confidence level and [t]+ = max{0, t}, is finite and convex, with

CVaRα(X) = min
γ∈R

Fα(X, γ).

Moreover, the set Mα of minimizers to Fα(X, γ) is a compact interval, Mα = [xα, x
α],

where xα = inf {x ∈ R : P [X ≤ x] ≥ α} and xα = inf {x ∈ R : P [X ≤ x] > α}.

Remark 1 Note that xα, the left end-point of the set Mα, and not every minimizer of
Fα(X, γ), is equal to VaRα(X). Hence, the statement VaRα(X) = argmin

γ∈R
Fα(X, γ) is true

only when the minimum is unique and the interval reduces to a point.

Consider an investor operating in a market with n risky assets, a riskless asset and no
short-selling. The riskless asset has rate of return rf and the n risky assets have rates of
return denoted by random vector ξ. The loss function associated with decision variable
x ∈ Rn of proportionate allocations to the risky assets is given by

f(x, ξ) = −(x>ξ + rf (1− x>e)),

where e is an n-vector of ones. (When dealing with portfolio optimization models, loss is
a function of the portfolio x and we write the auxiliary function, and CVaR, as functions
of x.) According to Theorem 1 the conditional value-at-risk of the loss function is the
solution of

CVaRα(x) = min
γ∈R

Fα(x, γ), (1)

where

Fα(x, γ) = γ +
1

1− α
E{[f(x, ξ)− γ]+}.

If γ̄ denotes argmin
γ
Fα(x, γ), then, by Theorem 1, VaRα(x) is obtained from

VaRα(x) = min
γ∈R

γ (2)

s.t. Fα(x, γ) ≤ Fα(x, γ̄).

Generally, this problem is non-convex. But if Fα(x, γ) has a unique minimum —e.g., for
normally distributed returns with strictly increasing cumulative distribution function— it
is convex.
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The definition of VaR in (2) uses the auxiliary function Fα(x, γ), whereas the original
formulation of VaR is

VaRα(x) = min
γ∈R

γ (3)

s.t. Prob {γ ≤ f(x, ξ)} ≤ 1− α.

Hence, models for selecting a portfolio with minimal VaR or CVaR and a minimum return
constraint can be posed as follows:

I. VaR optimization

min
γ∈R, x∈Rn

γ (4)

s.t. Fα(x, γ) ≤ Fα(x, γ̄),

(µ̄− rfe)>x ≥ d− rf ,

or

min
γ∈R, x∈Rn

γ (5)

s.t. Prob {γ ≤ f(x, ξ)} ≤ 1− α,
(µ̄− rfe)>x ≥ d− rf .

II. CVaR optimization

min
γ∈R,x∈Rn

Fα(x, γ) (6)

s.t. (µ̄− rfe)>x ≥ d− rf .

µ̄ is a vector of the means of risky assets and d ∈ R+ is the minimum return satisfying
d ≥ rf .

It is well-known that scenario based CVaR is not a robust estimator whereas VaR is,
but less is known about the stability of the portfolio weights obtained from minimizing
either measure. We illustrate with a simple example the instability of minimum VaR and
CVaR portfolios. We consider VaR and CVaR minimization without short-selling, a budget
constraint and no risk-free asset. We assume confidence level α ∈ (0, 1], denote by X the
set {x ∈ Rn | x ≥ 0,

∑n
i=1 xi = 1}, and use Monte Carlo simulation to generate an S × n

matrix R of return scenarios for n risky assets. VaR model (5) is solved as the mixed
integer linear program

min
x∈X, γ∈R, y∈{0,1}S

γ (7)

s.t.

−Rx−My − eγ ≤ 0,

e>y ≤ S(1− α),



Robust VaR and CVaR portfolio optimization 9

where M is a large positive number. CVaR model (6) is formulated as the linear program

min
x∈X, u∈RS , γ∈R

γ +
1

S(1− α)
e>u (8)

s.t.

−Rx− eγ ≤ u,
u ≥ 0.

We consider two risky assets with independently distributed returns, with mean 10%,
variance 21%, kurtosis 3, and skewness -0.06 and -0.26, respectively, and perform a rolling
horizon simulation. We generate a time series of 240 asset returns by sampling from the
respective distributions, see Figure 1(a)–(b), and use the first 120 returns to compute the
corresponding optimal portfolio weights as well as the optimal VaR and CVaR. Then we
repeat the procedure by rolling forward the estimation window by one period, and repeat
120 times until we reach the end of the time series. For benchmark comparison we run VaR
and CVaR models over the whole time series and plot the optimal weights and the risk
values. The benchmark experiment is “in-sample” and the 120 rolling horizon experiments
are “out-of-sample”. Figure 1(c)–(d) depicts the instability of optimal portfolio weights,
with both VaR and CVaR optimal weights fluctuating significantly, and Figure 1(e)–(f)
shows that the instability of optimal values. This instability is exemplified further later,
in Figure 7, when we use market data from the eurozone crisis.

3 Robust VaR and CVaR under distribution and moment ambiguity

We introduce now ambiguity in the VaR and CVaR optimization models. The robust
counterparts for both VaR and CVaR are formulated as SOCPs and we will observe
that they are the same. We consider a joint ellipsoidal structure for the ambiguity set
of mean returns and covariance matrix. Ellipsoidal sets can be viewed as generalizations
of polytopic sets (Ben-Tal et al., 2009), and therefore our model generalizes Ghaoui et al.
(2003) who developed RVaR minimization models under polytopic uncertainty. Extending
the models from sets with independence between means and covariance used in earlier
works (Ghaoui et al., 2003; Goldfarb and Iyengar, 2003; Tütüncü and Koenig, 2004) to
sets that capture these dependencies, we generate better diversified and less conservative
portfolios as argued by Lu (2011) for mean-variance models.

Definition 1 (Ambiguity in distribution) The random variable ξ assumes a distribu-
tion from

D = {π | Eπ[X] = µ̄, Covπ[X] = Γ̄ � 0},

where µ̄ and Γ̄ are given.
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Fig. 1: A simple example of asset returns, portfolio weights and corresponding risk values.
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Definition 2 (Ellipsoidal ambiguity for mean returns and covariance matrix)
Mean returns and covariance matrix belong to the joint ellipsoidal set:

Uδ(µ̂, Γ̂ ) = {(µ̄, Γ̄ ) ∈ Rn × Sn | S(µ̄− µ̂)>Γ̂−1(µ̄− µ̂) +
S − 1

2
‖Γ̂−

1
2 (Γ̄ − Γ̂ )Γ̂−

1
2 ‖2tr ≤ δ2},

where ‖A‖2tr = tr(AA>). (We use the definition of (Schottle and Werner, 2009, Proposition
3.3).)

Remark 2 The set Uδ(µ̂, Γ̂ ) is a generalization of ambiguity sets that have been used in
the literature. Setting Γ̄ = Γ̂ , i.e., certainty about the estimate of the covariance matrix,
we obtain the ellipsoidal set for mean returns used in Ceria and Stubbs (2006); Chen
et al. (2011); Schottle and Werner (2009); Zhu et al. (2008). Similarly, if we fix µ̄ = µ̂,
i.e., certainty about the estimate of the means, we obtain the ellipsoidal set for covariance
matrix. Goldfarb and Iyengar (2003) use this structure of uncertainty set for the factor
loading matrix of a factor model of returns.

Remark 3 Uδ(µ̂, Γ̂ ) can be decomposed to U√κδ(µ̂) and U√1−κδ(Γ̂ ) using a parameter

κ ∈ [0, 1], with U√κδ(µ̂) = {µ̄ ∈ Rn | S(µ̄− µ̂)>Γ̂−1(µ̄− µ̂) ≤ κδ2} and U√1−κδ(Γ̂ ) = {Γ̄ ∈
Sn | S−1

2 ‖Γ̂
− 1

2 (Γ̄ − Γ̂ )Γ̂−
1
2 ‖2tr ≤ (1− κ)δ2}. This representation is useful later.

To develop RVaR and RCVaR models we start from one of the following:

1. RVaRI (robust counterpart of model (4))

min
γ∈R, x∈Rn

γ (9)

s.t. max
(µ̄,Γ̄ )∈Uδ(µ̂,Γ̂ ), π∈D

[Fα(x, γ)− Fα(x, γ̄)] ≤ 0,

min
(µ̄,Γ̄ )∈Uδ(µ̂,Γ̂ ), π∈D

(µ̄− rfe)>x ≥ d− rf .

2. RVaRII (robust counterpart of model (5))

min
γ∈R, x∈Rn

γ (10)

s.t. max
(µ̄,Γ̄ )∈Uδ(µ̂,Γ̂ ), π∈D

Prob{γ ≤ f(x, ξ)} ≤ 1− α,

min
(µ̄,Γ̄ )∈Uδ(µ̂,Γ̂ ), π∈D

(µ̄− rfe)>x ≥ d− rf ,

where γ̄ = argminγFα(x, γ).

3. RCVaR (robust counterpart of model (6))

min
x∈Rn, γ∈R

max
(µ̄,Γ̄ )∈Uδ(µ̂,Γ̂ ), π∈D

Fα(x, γ) (11)

s.t. min
(µ̄,Γ̄ )∈Uδ(µ̂,Γ̂ ), π∈D

(µ̄− rfe)>x ≥ d− rf .
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Remark 4 The maximization problem in the first constraint of (9) can not, in general, be
solved explicitly. Existing papers for RVaR minimization (Chen et al., 2011) and RVaR
optimization (Paç and Pinar, 2014) solve a special case by assuming Fα(x, γ) has a unique
minimum2, thereby obtaining an explicit solution to the maximization problem in the
constraint and simplifying the RVaR formulation.

Remark 5 Unique minimum of Fα(x, γ) implies unique solution of Prob{f(x, ξ) ≤ γ} = α,
which is then VaRα(x). This occurs when the distribution function of portfolio loss is
strictly increasing. However, the loss distribution function is often a (non-decreasing) con-
tinuous step function, and Rockafellar and Uryasev (2002) extended their original contri-
bution to derive the fundamental properties of CVaR for general loss distributions. We
work with (10) to deal with the inner maximization for general loss distributions.

3.1 Explicit formulation of RVaR and RCVaR optimization models

We obtain now explicit formulations for models (10) and (11). First we prove an essential
proposition and then the main theorem.

Proposition 1 If random variable ξ has a distribution from the set D with fixed µ̄ and
Γ̄ , then

min
γ∈R

max
π∈D

Fα(x, γ) = min
γ∈R, x∈Rn

γ (12)

s.t. max
π∈D

Prob{γ ≤ f(x, ξ)} ≤ 1− α,

and both are equal to −rf − (µ̄− rfe)>x+
√
α√

1−α

√
x>Γ̄ x.

Proof. From equation (10) in Paç and Pinar (2014) we know that

min
γ∈R

max
π∈D

Fα(x, γ) = −rf − (µ̄− rfe)>x+

√
α√

1− α

√
x>Γ̄ x. (13)

For the constraint of the optimization problem in the right-hand side of (12), we use
Theorem 1 of Ghaoui et al. (2003) (set 1 − α and f(x, ξ) instead of ε and −r(w, x),
respectively), which means

max
π∈D

Prob{γ ≤ f(x, ξ)} ≤ 1− α

2 This implicit assumption is made in the proofs of Theorems 2.9 and 1, respectively, when the au-
thors invoke the equality VaRα(X) = argmin

γ∈R
Fα(X, γ) which holds true only when Fα(x, γ) has a unique

minimum, see Remark 1.
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is equivalent to

− rf − (µ̄− rfe)>x+

√
α√

1− α

√
x>Γ̄ x ≤ γ.

Hence, the optimization problem in the right-hand side is equivalent to

min
γ∈R

γ (14)

s.t. −rf − (µ̄− rfe)>x+

√
α√

1− α

√
x>Γ̄ x ≤ γ,

which has the minimum value −rf −(µ̄−rfe)>x+
√
α√

1−α

√
x>Γ̄ x. This completes the proof.

Remark 6 The left and right-hand sides of (12) are RCVaR and RVaR, respectively, asso-
ciated with the ambiguity set of Definition 1. Hence, the robust counterpart to VaR and
CVaR optimization under distribution ambiguity is the same optimization model.

We obtain now RVaR and RCVaR optimization models for ambiguity in distributions,
mean returns and covariance matrix.

Theorem 2 If random variable ξ has a distribution from the set D and (µ̄, Γ̄ ) ∈ Uδ(µ̂, Γ̂ ).
Then, the robust counterpart to VaR portfolio optimization model (5) and the robust coun-
terpart to CVaR model (6) are both represented by the following SOCP:

min
x∈Rn

− rf − (µ̂− rfe)>x+

(
max
κ∈[0,1]

f(κ)

)
‖Γ̂

1
2x‖ (15)

s.t.− δ√
S
‖Γ̂

1
2x‖+ (µ̂− rfe)>x ≥ d− rf ,

where f(k) =
√
α√

1−α

√
(1 + δ

√
2(1−κ)
S−1 + δ

√
κ
S .

Proof. See Appendix A.1.

Remark 7 f(κ) is a strictly concave function with limκ→0f
′
(κ) = ∞ and limκ→1f

′
(κ) =

−∞. Hence, f(κ) has a unique maximum in the interval (0, 1).

This result is new and generalizes the result of Čerbáková (2006) for symmetric distri-
butions identified by the first two moments. It was anticipated by Bertsimas et al. (2004)
who obtain identical bounds on VaR and CVaR under distribution ambiguity.

3.2 Constructing the ambiguity set

An appropriate ambiguity set is typically taken as input in the robust optimization liter-
ature. Some times this is the uncertainty set corresponding to the confidence regions of
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the statistical estimators of the model parameters (Goldfarb and Iyengar, 2003; Schottle
and Werner, 2009). Other times —such as in the examples we solve later— we may be
given multiple estimates of model parameters and then the question is raised as to what
is the appropriate ambiguity set. In finance it is not uncommon to be given estimates by
multiple securities analysts. In such cases we need a method to construct an ambiguity
set, including its center. We propose and solve analytically a nonlinear SDP for finding
the center of a joint ellipsoidal set.

Assume K experts provide estimates for mean returns and covariance matrices (µ̄k, Γ̄k),
k = 1, 2, . . . ,K. (For convenience we assume they were all estimated using the same number
of scenarios S.) To construct their joint ellipsoidal ambiguity set we need to fix the center
(µ̂, Γ̂ ). This is obtained as the solution of a nonlinear convex program for minimizing the
l2-norm of the parameters δk, for k = 1, 2, . . . ,K, where each parameter corresponds to
the ellipsoid with center (µ̂, Γ̂ ) containing observation (µ̄k, Γ̄k). Referring to Definition 2
the optimization problem is given by

min
µ̂∈Rn, Γ̂∈Sn++

√√√√ K∑
k=1

S(µ̄k − µ̂)>Γ̂−1(µ̄k − µ̂) +
S − 1

2
‖Γ̂−

1
2 (Γ̄k − Γ̂ )Γ̂−

1
2 ‖2tr, (16)

where Sn++ is the set of all n-dimensional, symmetric, positive definite matrices. This
problem is equivalent to

min
µ̂∈Rn, Γ̂∈Sn++

K∑
k=1

S(µ̄k − µ̂)>Γ̂−1(µ̄k − µ̂) +
S − 1

2
‖Γ̂−

1
2 (Γ̄k − Γ̂ )Γ̂−

1
2 ‖2tr. (17)

The next theorem give the solution of this problem, if a solution exists.

Theorem 3 If (17) is solvable, then it admits the following solution:

1. µ̂ = 1
K

∑K
k=1 µ̄.

2. Γ−, the inverse of optimal Γ̂ , is obtained from the linear system of equations[
K∑
k=1

Γ̄k ⊗ Γ̄k

]
vec(Γ−) =

K∑
k=1

vec(Γ̄k)−
S

(S − 1)

K∑
k=1

vec
(

(µ̂− µ̄k)(µ̂− µ̄k)>
)
, (18)

where ⊗ is the Kronecker product and
∑K

k=1 Γ̄k ⊗ Γ̄k is positive semidefinite.

If at least one of Γ̄k, k = 1, . . . ,K, is positive definite, then (18) has a unique solution.
Proof. See Appendix A.2.

We now state a simple algorithm for constructing ellipsoidal ambiguity sets.



Robust VaR and CVaR portfolio optimization 15

3.2.1 Algorithm for constructing a joint ellipsoidal ambiguity set

1. Compute µ̂ = 1
K

∑K
k=1 µ̄, solve the system of linear equations (18) for vec(Γ−), form

matrix Γ−, and calculate its inverse Γ̂ to obtain the center (µ̂, Γ̂ ).

2. Choose δ such that the resulting ellipsoidal set inscribes (µ̄k, Γ̄k), k = 1, . . . ,K, i.e.,
compute the distance of each estimate from the center, δ1, . . . , δK , and let δ be the
maximum value.

System (18) is of dimension n2 × n2 which depends only on the number of assets n.
Methods for solving systems of equations based on LU or Cholesky (when applicable)
factorizations are polynomial of cubic order. Hence, the computational complexity of the
algorithm is O(n6), and for medium portfolio sizes this is tractable.

3.2.2 Heuristic for constructing a joint ellipsoidal ambiguity set

It is also possible to construct the ambiguity set with a simple heuristic. In some cases the
heuristic gives tighter ellipsoids than the algorithm and this results to less conservative
robust solutions. The heuristic needs K inversions of a matrix of dimension n × n and
elementary matrix operations, and its computational complexity is O(Kn3).

1. For each estimate (µ̄k, Γ̄k) we compute the sum of its distances from all others

distk =

√√√√ K∑
k′=1

S(µ̄k′ − µ̄k)>Γ̄−1
k (µ̄k′ − µ̄k) +

S − 1

2
‖Γ̄−

1
2

k (Γ̄k′ − Γ̄k)Γ̄
− 1

2
k ‖2tr.

2. The estimate with the minimum value of distk is the center, and we choose δ such
that the constructed ellipsoidal set inscribes all (µ̄k, Γ̄k), k = 1, . . . ,K. Specifically, we
compute δ1, . . . , δK as the distance of each point in the ellipsoid from the center and
let δ be the maximum value.

3.2.3 Comments on the choice of method

It remains an open question how to construct an ellipsoidal ambiguity set that is big enough
to guarantee robustness but tight enough to avoid conservative solutions. One may wish to
try both the algorithm and the heuristic and pick the ellipsoid with the smaller δ, knowing
that both ellipsoidal sets ensure robust solutions and the one with the smallest δ is the less
conservative. Furthermore, both methods provide an intuitive way to choose smaller values
of δ by choosing a suitable quantile of δk, k = 1, . . . ,K. It is not clear on the outset which
method generates the tighter ellipsoid. Figure 2 illustrates two situations when one method
dominates the other. When observations are evolving slowly, or differ slightly from each
other, the heuristic performs better since one of the observations provides a good center.
When observations change significantly then the algorithm is better in finding a center of
the diverse observations.
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Fig. 2: Illustrating algorithm- and heuristic-constructed ellipsoids. For the observations
(solid bullets) on the left, with small changes from each other, the heuristic estimates the
tighter ellipsoid. For the observations on the right, with larger differences, the algorithm
ellipsoid is tighter.

3.3 Unifying and extending some results on RVaR and RCVaR optimization

From our model we obtain, as special cases, known results from the literature.

1. For distribution ambiguity with known mean returns and covariance matrix, set µ̄ = µ̂,
Γ̄ = Γ̂ in Proposition 1, to get the results of Chen et al. (2011); Paç and Pinar (2014)
for RCVaR, and of Ghaoui et al. (2003) for RVaR.

2. For ambiguity in distribution and means, and known covariance, set κ = 1 in Theorem 2
to get

min
x∈Rn

− rf − (µ̂− rfe)>x+

(
δ√
S

+

√
α

1− α

)
‖Γ̂

1
2x‖ (19)

s.t.− δ√
S
‖Γ̂

1
2x‖+ (µ̂− rfe)>x ≥ d− rf .

This is Paç and Pinar (2014) RCVaR model, with their constant ε = δ√
S

.

3. For ambiguity in distribution and covariance, and known means, set κ = 0 in Theorem
2 to get

min
x∈Rn

−rf − (µ̂− rfe)>x+

 √
α√

1− α

√
(1 + δ

√
2

S − 1

 ‖Γ̂ 1
2x‖ (20)

s.t. (µ̂− rfe)>x ≥ d− rf .

We are not aware of any studies of this case, which is of interest in risk minimization
models or when there is special knowledge on the mean return. For instance, in index
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tracking (Zenios, 2007, ch. 7) the mean excess return of a portfolio over the index is
zero in efficient markets.

Using Theorem 2 we can relax the assumption of Chen et al. (2011); Paç and Pinar
(2014), see Remark 4. Their RVaR model is

−rf − (µ̄− rfe)>x+
2α− 1

2
√
α
√

1− α

√
x>Γ̄ x,

while we and Ghaoui et al. (2003) have

−rf − (µ̄− rfe)>x+

√
α√

1− α

√
x>Γ̄ x.

From Remark 5 we know that their RVaR model is computed over a subset of the original
ambiguity set, i.e., the set of all strictly increasing distribution functions with fixed means

and covariance, and their parameter differs from ours. Obviously 2α−1
2
√
α
√

1−α <
√
α√

1−α and

their robust counterpart is less conservative but is valid only under the assumption.

3.4 Extensions to polytopic and interval ambiguity sets

It is possible to extend our work to models under distribution ambiguity and polytopic and
interval ambiguity sets in the mean returns and covariance matrix. Polytopic and interval
uncertainty was studied by Ghaoui et al. (2003) for RVaR minimization. The extensions
contribute models for RVaR optimization, and, by Proposition 1, new RCVaR optimization
models for these two ambiguity sets. The extensions are given in Appendices B and C.

4 Numerical tests

We illustrate the performance of the robust models and compare the robust models vis-
a-vis the non-robust (inominal) models. First, we use historical CDS spread returns from
eurozone crisis countries to test the robustness of buy-and-hold and active management
investment strategies obtained using the models. Second, we use simulations to test the
robustness of solutions under mis-specification of mean, variance, skewness and kurtosis
of the return distributions. All computations were performed using MATLAB 7.14.0 on a
Core i7 CPU 2.5GHz laptop with 8GB of RAM. SOCPs are solved using CVX and (mixed
integer) linear programs with CPLEX.

4.1 Robustness of different investment strategies

We consider portfolios trading in CDS of Portugal, Slovenia, Italy, Spain, Ireland, Ger-
many, Cyprus and Greece using daily spread returns from 2 Feb. 2009 to 16 Sept. 2011.
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This period covers the eurozone crisis. Analyzing Greece CDS spreads using Bai-Perron
tests we note regime switching at 20 April 2010 and 15 April 2011 (see Appendix D).
Up to April 2010 there is a tranquil period (days 1–317), until April 2011 a turbulent
period (days 318–575), and post April 2011 the crisis (days 576–685). This classification
is convenient to stress-test the robustness of the model as the market changes from tran-
quil to turbulent and into a crisis. We consider RVaR and RCVaR minimization without
a risk free asset, no short-selling and a budget constraint, following different investment
management strategies.

4.1.1 Buy-and-hold

Buy-and-hold investors use the available information to set up the model and obtain an
asset allocation which is held throughout the investment horizon. Consider an investor
who develops robust models based on the scenarios observed during the tranquil period.
Subsequently, as the markets move into turbulence and new information is observed, it is
used to compute out-of-sample portfolio performance, but the portfolio is not re-optimized.
For each new observation we drop the oldest observation, so that VaR and CVaR are
computed on a constant size window of recent data.

The ellipsoidal ambiguity set is constructed as follows. First we estimate (µ̄, Γ̄ ) using
the first 150 (out of 316) return observations in the tranquil period. Then we discard the
first observation, add the 151st, and compute a new estimate of (µ̄, Γ̄ ). This procedure is
repeated by “rolling” the estimation window forward one period at a time until the end
of the tranquil period. At the end of this procedure, we have 166 estimates of (µ̄, Γ̄ ), and
compute the center and δ of the ambiguity set using the algorithm of subsection 3.2.1. Ref-
erence (non robust) models use observed data over the tranquil period to obtain minimum
VaR and CVaR portfolios, which are held throughout the turbulent period. We repeat the
process using scenarios in the turbulent period and evaluate out-of-sample performance
into the crisis period.

Results are shown in Figures 3–4. We observe that out-of-sample risk measure for the
reference portfolios may be larger than the in-sample value, but not so for the the robust
portfolios. Also, as a result of incorporating distribution ambiguity in the model, robust
portfolios remain robust even when there is a regime switch in market data. A shortcoming
of robust portfolios is that they are too conservative, as observed in the big gap between
the in-sample and out-of-sample values.

4.1.2 Active management

Active portfolio managers use the available information to set up the model and optimize
asset allocation for one time period, but as new information arrives the data estimates are
updated and the portfolio is re-optimized. We consider an investor who starts calibrating
reference (non-robust) and robust models starting with the scenarios from the first 150
observations of the tranquil period, with δ = 0 for the starting robust model. Subsequently,
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Fig. 3: Out-of-sample performance of buy-and-hold for tranquil-to-turbulent. (δ = 20.24)
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Fig. 4: Out-of-sample performance of buy-and-hold for turbulent-to-crisis. (δ = 21.63)

a new data point is observed, the oldest observation is dropped and we compute the risk
measures with the shifted window and the portfolio ex post return for the new data
point. After the time window is shifted we re-optimize the asset allocation with the new
information. For the robust model we use the new information to update δ and construct
an ellipsoid using the algorithm of subsection 3.2.1. This procedure is repeated until the
end of the turbulent period. The same experiment is carried out starting with the first 150
observations of the turbulent period and finishing at the end of the crisis.

Results are reported in Figures 5–6. Panels (a) and (b) show the difference between
in- and out-of-sample risk measures. The investor is on the safe side when the difference
is positive, but suffers losses beyond expectation for negative differences. Figure 5(a)-(b)
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shows out-of-sample performance occasionally deviating from the in-sample estimate. As
the time window rolls forward the robust model registers few and minor downside viola-
tions, as a result of enlarged ambiguity sets with increasing δ (Figure 8). This improvement
is less pronounced in Figure 6(a)-(b), since spreads change substantially during the cri-
sis and learning is insufficient to build an ellipsoid containing crisis movements. Robust
models can not be better than the data defining the ambiguity sets.

Figures 5(c) and 6(c) plot the ex-post cumulative growth of a 100 unit investment
using both the robust and non-robust models. We calculate the Sharpe ratios for the
returns of portfolios developed using VaR, CVaR and their robust counterpart. We take
the German 3-month treasury bill rate as the risk free in Sharpe ratio calculations, and
the results are reported in the figure. We tested the hypothesis that the Sharpe ratios
are identical between the robust and non robust strategies using the test of Wright et al.
(2014), and could not reject it at the 0.95 level, for both the tranquil-to-turbulent and
turbulent-to-crisis periods. Robust solutions do not pay a price in portfolio performance.

We also revisit the instability issue demonstrated in Section 2. Figure 7 illustrates the
portfolio composition for the tranquil-to-turbulent period. The robust portfolios change
gradually but not so the non-robust counterparts. Portfolio turnover of the robust model
is 0.004, an order of magnitude smaller than that of VaR models (0.09) and CVaR (0.03).

Figure 8 shows the values of δ obtained with the algorithm and the heuristic. The
algorithm generates tighter ellipsoids for tranquil-to-turbulent period, while there is no
clear advantage of one method over the other in turbulent-to-crisis period. In all experi-
ments reported above we use ellipsoids constructed by the algorithm. We also performed
experiments using heuristic-constructed ellipsoids, without any significant differences.

4.2 Robustness under distribution ambiguity: moment mis-specification

We demonstrate the robustness of RCVaR optimal portfolios to mis-specification in the
first four marginal moments. Mis-specification of higher moments is a form of distribution
ambiguity and these tests illustrate robustness with respect to distribution ambiguity.
A more interesting interpretation of our results is in conjunction with the work of Kaut
et al. (2007), where it was established that CVaR optimization models are sensitive to mis-
specification of means, covariance and skewness, and less so to kurtosis. Our results show
that these sensitivities are eliminated from RCVaR and, by Proposition 1, from RVaR too.

We consider CVaR and RCVaR optimization with a minimum return constraint, no
short-selling and a budget constraint. We perturb one moment at a time while keeping all
other moments fixed to their original (assumed “true”) value, and repeat the perturbation
100 times. Data are from Kaut et al. (2007), see Appendix D, Table 1, for an international
investment portfolio. These data are assumed to be the true values of the moments.

We test as follows the impact of moment mis-specification on the models:
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Fig. 5: Out-of-sample performance with active management for tranquil-to-turbulent.

Step 0: Fix parameter θ and define θ% error on a moment as3

true value (1 + ε
θ

100
), ε ∈ U [−1, 1].

Generate 100 perturbations for one moment by randomly generating ε, while all other
moments are fixed to their true values.

Step 1: Generate 2000 scenarios using Pearson random numbers with the specified mean,
standard deviation, skewness or kurtosis for each one of the 100 perturbations from
Step 0. Record the scenario sets {R̄k}100

k=1 and their means and covariance {(µ̄k, Γ̄m)}100
k=1.

3 We follow Chopra and Ziemba (1993), except that they use normally distributed ε ∈ N [0, 1], while we
use uniformly distributed ε ∈ U [−1, 1].
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Fig. 6: Out-of-sample performance with active management for turbulent-to-crisis.
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Fig. 7: Portfolio composition with different models for tranquil-to-turbulent. Portfolio
turnover for VaR=0.09, CVaR=0.03 and RVaR=RCVaR=0.004.



Robust VaR and CVaR portfolio optimization 23

50 100 150 200 250 300 350 400
0

5

10

15

20

25

30

35

40

Plot of δ

Time window

δ

 

 

Heuristic

Algorithm

(a) Tranquil-to-turbulent

20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

30

35

Plot of δ

Time window

δ

 

 

Heuristic

Algorithm

(b) Turbulent-to-crisis

Fig. 8: Values of δ estimated with the algorithm and the heuristic.

Step 2: Apply the algorithm of subsection 3.2.1 to {(µ̄k, Γ̄k)}100
k=1, to find the center (µ̂, Γ̂ )

and the parameter δ. Chose the point with the smallest distance δk from the center,
with its scenario set R̂, as the reference scenario set.

Step 3: Solve the model on the reference scenario set and the robust counterpart, and
record the optimal portfolios.

Step 4: Compute return and risk measure of the optimal portfolios over {R̄k}100
k=1.

The model on the reference set is a proxy for the nominal model since we do not have a
scenario set corresponding to the center of the ellipsoid generated by the algorithm. When
using the heuristic to compute the ellipsoid we have the scenario set for the center and
hence we have exactly the nominal model. The performances of the proxy and the nominal
models do not differ significantly and in the experiments we compare the robust model
with the proxy.

4.2.1 Mean and variance mis-specification

We have already illustrated using CDS data the robustness of the model with respect
to ambiguity in distribution, means and covariance. Applying the simulation procedure
outlined above for the first two moments we affirm the findings from the previous testing.
However, the reason we perform simulations on the first two moments is to illustrate
another feature of the model. Robust models are conservative and we illustrate how to
control conservatism by adjusting δ. We pick δ so that the ambiguity set is large enough
to contain all 100 perturbations, or only 90 or 80 and so on, by choosing in Step 2 of the
algorithm the appropriate quantile of δk, k = 1, . . . ,K.
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The results of simulating perturbations in the mean and variance by θ = 10% and 20%,
respectively, and different values of δ, are illustrated in Figures 9–10. We observe from
panel (a) that the robust portfolio never violates the minimum return constraint when
simulated using out-of-sample data, while the nominal portfolio violates the minimum
return for about half of the perturbations. On the other hand, the robust optimal portfolio
is conservative and mean return is significantly higher than the target for all perturbations.
We can remedy this situation by reducing δ using a suitable quantile of δk, k = 1, . . . ,K.
Panel (b) illustrates the effect of this modification in obtaining less conservative portfolios
that still satisfy the minimum return constraint for all perturbations. Running the models
on the heuristic generated ellipsoids we find them more conservative but we do not report
the results as they do not provide any additional insights.

4.2.2 Skewness and kurtosis mis-specification

Kaut et al. (2007) established that CVaR portfolios are sensitive to mis-specification in the
first four moments and correlations. In particular, they solve CVaR optimization models
for each of 100 generated scenario sets and then evaluate all these optimal portfolios
on the benchmark scenario set. Our experiment studies the same issue for CVaR and
RCVaR optimization. We solve the CVaR optimization with reference scenario R̂ and its
robust counterpart, and evaluate the optimal portfolio on 100 scenario sets of skewness
and kurtosis perturbations.

The results are illustrated in Figures 11–12. We examine the performance of optimal
portfolios with increasing perturbation parameter θ, and δ chosen by the algorithm of
subsection 3.2.1. Our observations are consistent with Kaut et al. (2007) on the sensitivity
of CVaR strategy with respect to higher moments mis-specification in the sense that
the optimal CVaR portfolio violates the minimum return constraint for the perturbed
scenario sets. The sensitivities of CVaR portfolios to errors in skewness and kurtosis are in
agreement with the findings of Kaut et al. (2007). The optimal RCVaR portfolios, however,
satisfy the minimum return constraint even with perturbations in the higher moments.
Higher moment perturbation is a form of distribution ambiguity and, hence, the results
are expected since the models are robust with respect to distribution ambiguity.



Robust VaR and CVaR portfolio optimization 25

−1.4% −1.2%   −1% −0.8% −0.6% −0.4%

0.55%

 0.6%

0.65%

 0.7%

0.75%

 0.8%

0.85%

 0.9%

CVaR

re
tu

rn

100 simulations

 

 

r
min

CVaR portfolio

RCVaR portfolio

(a) δ = 12.24, solution from subsection 3.2.1 algo-
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(b) δ = 10.61, 80th quantile of δk, k = 1, . . . ,K

Fig. 9: Out-of-sample performance of RCVaR optimization for perturbations in means and
variances with θ = 10%. Portfolios are less conservative for smaller delta but satisfy the
minimum return.
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(a) δ = 21.13, solution from subsection 3.2.1 algo-
rithm
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Fig. 10: Out-of-sample performance of RCVaR optimization for perturbations in means
and variances with θ = 20%. Portfolios are less conservative for smaller delta but satisfy
the minimum return.



26 Somayyeh Lotfi, Stavros A. Zenios

  −1% −0.9% −0.8% −0.7% −0.6% −0.5% −0.4% −0.3%

 0.6%

0.65%

 0.7%

0.75%

CVaR

re
tu

rn

100 simulations

 

 

r
min

CVaR portfolio

RCVaR portfolio

(a) δ = 8.49, θ = 10%

 −0.8% −0.75%  −0.7% −0.65%  −0.6% −0.55%

0.58%

 0.6%

0.62%

0.64%

0.66%

0.68%

 0.7%

0.72%

0.74%

CVaR

re
tu

rn

100 simulations

 

 

r
min

CVaR portfolio

RCVaR portfolio

(b) δ = 8.33, θ = 20%
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(c) δ = 8.45, θ = 30%
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Fig. 11: Out-of-sample performance for perturbations in skewness for increasing θ. RCVaR
portfolios meet the minimum return whereas CVaR portfolios do not.
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(c) δ = 8.15, θ = 30%
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Fig. 12: Out-of-sample performance for perturbations in kurtosis for increasing θ. RCVaR
portfolios meet the minimum return whereas CVaR portfolios do not.
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5 Conclusions

This paper develops models for robust optimization of VaR and CVaR under the most
general ambiguity sets known so far, namely joint ambiguity in the distribution, mean
returns and covariance matrix. RVaR and RCVaR optimization under distribution am-
biguity reduce to the same second order cone program. This result allows us to develop
several tractable models using ellipsoidal, polytopic and interval ambiguity sets for mean
returns and covariance matrix. These models expand the arsenal of robust optimization
tools for risk management

The paper also suggests an algorithm and a heuristic to construct ellipsoidal ambiguity
sets from a set of point estimates. We also show how to control the size of the ellipsoid,
thus limiting the well known conservatism of robust optimization models.

Numerical results support the following conclusions:

1. Buy-and-hold investment strategies based on robust optimization models perform well
even out-of-sample and under extreme market movements of a financial crisis. Active
investment strategies based on robust models perform better out-of-sample than the
non-robust counterparts, but they are still sensitive to extreme market movements. This
finding is tentative since it is based on limited experimentation. The claim supported
from this experiment is that strategies based on robust models perform better than
strategies based on non-robust models when applied out-of-sample. However, there is
no assurance that they remain robust out-of-sample.

2. RVaR and RCVaR models produce conservative solutions. However, both the algorithm
and the heuristic for constructing an ellipsoidal ambiguity set provide a way to select
the ellipsoidal parameter in order to control conservatism.

3. RCVaR optimal portfolios are robust with respect to mis-specifications in the first four
moments.

Significant progress has been made to establish RCVaR optimization as a viable —i.e.,
computationally tractable and theoretically sound— successor to the classical Markowitz
mean-variance model. However, a problem now emerges. In particular while CVaR is a typ-
ical example of coherent risk measures, neither RVaR nor RCVaR are coherent. RVaR and
RCVaR satisfy the sub-additivity axiom (an important improvement of RVaR over VaR),
however, both RVaR and RCVaR violate the monotonicity axiom. Zhu and Fukushima
(2009) argued that RCVaR is coherent, but their robust counterparts is for the risk mea-
sure associated with random variables X and Y over the same uncertainty set. We envision
a more general scheme whereby the robust counterpart of a risk measure associated with
X is to be taken over an ambiguity set associated with this random variable, which might
differ from the ambiguity set of Y . It would be an unusual financial application that has the
ambiguity set of a vector of random variables be the same for all elements of the vector and
it is easy to construct an example showing that monotonicity is violated. Non-coherence
of RCVaR poses a challenge for further research.
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A. B. Paç and M. Ç. Pinar. Robust portfolio choice with CVaR and VaR under distribution
and mean return ambiguity. Top, 22(3):875–891, 2014.

A. G. Quaranta and A. Zaffaroni. Robust optimization of conditional value at risk and
portfolio selection. Journal of Banking and Finance, 32(10):2046–2056, 2008.

R. T. Rockafellar and S. Uryasev. Optimization of conditional value-at-risk. Journal of
Risk, 2:21–41, 2000.

R. T. Rockafellar and S. Uryasev. Conditional value-at-risk for general loss distributions.
Journal of Banking and Finance, 26(7):1443–1471, 2002.

K. Schottle and R. Werner. Robustness properties of mean-variance portfolios. Optimiza-
tion, 58(6):641–663, 2009.
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A Appendix: Proofs

A.1 Proof of Theorem 2

To formulate the robust counterpart of (5) and (6) we need an explicit formulation of (10) and
(11), respectively. Using Proposition 1 we write both RVaR and RCVaR models (10) and (11) as

min
x∈Rn

max
(µ̄,Γ̄ )∈Uδ(µ̂,Γ̂ )

−rf − (µ̄− rfe)>x+

√
α√

1− α

√
x>Γ̄ x (21)

s.t. min
(µ̄,Γ̄ )∈Uδ(µ̂,Γ̂ ),π∈D

(µ̄− rfe)>x ≥ d− rf .

To find an explicit formulation we need the optimal value of the inner problem

max
(µ̄,Γ̄ )∈Uδ(µ̂,Γ̂ )

− rf − (µ̄− rfe)>x+

√
α√

1− α

√
x>Γ̄ x. (22)

We decompose the robustification first in µ̄ and then in Γ̄ via an additional parameter κ ∈ (0, 1),
where U√κδ(µ̂), U√1−κδ(Γ̂ ) are defined as in Remark 3. It is easy to see that (22) is equivalent to:

max
κ∈[0,1]

max
Γ̄∈U√1−κδ(Γ̂ )

max
µ̄∈U√κδ(µ̂)

−rf − (µ̄− rfe)>x+

√
α√

1− α

√
x>Γ̄ x. (23)

We start with the innermost maximization problem

max
µ̄∈U√κδ(µ̂)

−rf − (µ̄− rfe)>x+

√
α√

1− α

√
x>Γ̄ x,

or, equivalently,

maxµ̄∈Rn −rf − (µ̄− rfe)>x+

√
α√

1− α

√
x>Γ̄ x (24)

s.t. S(µ̄− µ̂)>Γ̂−1(µ̄− µ̂) ≤ κδ2.

This is maximized for µ̄∗ = µ̂ − δ
√

κ
S

Γ̂
1
2 x

‖Γ̂
1
2 x‖

. Plugging in this solution we obtain the middle

maximization problem as

max
Γ̄∈Sn

−rf − (µ̂− rfe)>x+ δ

√
κ

S
‖Γ̂ 1

2x‖+

√
α√

1− α

√
x>Γ̄ x

s.t.
S − 1

2
‖Γ̂− 1

2 (Γ̄ − Γ̂ )Γ̂−
1
2 ‖2tr ≤ (1− κ)δ2.

Using the variable transformation ¯̄Γ = Γ̂−
1
2 (Γ̄ − Γ̂ )Γ̂−

1
2 , this becomes

max
¯̄Γ∈Sn

−rf − (µ̂− rfe)>x+ δ

√
κ

S
‖Γ̂ 1

2x‖+

√
α√

1− α

√
x>Γ̂ x+ x>Γ̂

1
2

¯̄Γ Γ̂
1
2x (25)

s.t. ‖ ¯̄Γ‖2tr ≤
2

S − 1
(1− κ)δ2.
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Since the square root function is monotonically increasing, the objective function of (25) is maxi-

mized if and only if x>Γ̂
1
2

¯̄Γ Γ̂
1
2x is maximized. Thus, we let y := Γ̂

1
2x and solve

max ¯̄Γ∈Sn y
> ¯̄Γy (26)

s.t. ‖ ¯̄Γ‖2tr ≤
2

S − 1
(1− κ)δ2. (27)

The optimal solution ¯̄Γ ∗ is given by

¯̄Γ ∗ = δ

√
2

S − 1
(1− κ)

y

‖y‖
.
y>

‖y‖
.

Plugging everything back we get the optimal value of (25) as

−rf − (µ̂− rfe)>x+ δ

√
κ

S
‖Γ̂ 1

2x‖+

√
α√

1− α

√
(1 + δ

√
2(1− κ)

S − 1
‖Γ̂ 1

2x‖,

which is substituted back in problem (23) to get

max
κ∈[0,1]

−rf − (µ̂− rfe)>x+ δ

√
κ

S
‖Γ̂ 1

2x‖+

√
α√

1− α

√
(1 + δ

√
2(1− κ)

S − 1
‖Γ̂ 1

2x‖

= −rf − (µ̂− rfe)>x+ max
κ∈[0,1]

δ√κ

S
+

√
α√

1− α

√
(1 + δ

√
2(1− κ)

S − 1

 ‖Γ̂ 1
2x‖

= −rf − (µ̂− rfe)>x+

(
max
κ∈[0,1]

f(κ)

)
‖Γ̂ 1

2x‖,

which is the objective function of (15).

Now, the robust counterpart of minimum return constraint is equivalent to:

min
κ∈[0,1]

min
µ̄∈U√κδ(µ̂)

(µ̄− rfe)>x ≥ d− rf .

Following the same course as in solving the inner problem (22), we get:

min
κ∈[0,1]

(µ̂− rfe)>x− δ
√
κ

S
‖Γ̂ 1

2x‖ ≥ d− rf .

The solution is κ = 1 and the robust counterpart of minimum return constraint is:

(µ̂− rfe)>x−
δ√
S
‖Γ̂ 1

2x‖ ≥ d− rf ,

which is the constraint in (15). This completes the proof.
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A.2 Proof of Theorem 3

First we state some well-known properties of Kronecker product ⊗.

Proposition 2 Assume A, B, C, D and X are given matrices of conformable sizes.

(i) tr(AB) = tr(BA)

(ii) tr(A>B) = vec(A)>vec(B)

(iii) vec(AXB) = (B> ⊗A)vec(X)

(iv) (B ⊗A)(C ⊗D) = BC ⊗AD

(v) (B ⊗A)(C ⊗D) = BC ⊗AD

where vec(A) denotes the vector obtained by stacking the columns of A ∈ Rm×n successively un-
derneath each other.

We transform the problem using new variables (µ̂, Γ−) where Γ− = Γ̂−1 is also positive definite,
and develop the analysis on the transformed equivalent problem. We show that the transformed
problem is convex and Slater condition hold. Therefore, we use the KKT optimality conditions to
derive the optimal solution of the transformed problem and compute the inverse of Γ− to obtain
Γ̂ .

Let H = H(µ̂, Γ̂ ) denote the objective function in (17). Then

H =

K∑
k=1

S(µ̄k − µ̂)>Γ̂−1(µ̄k − µ̂) +
S − 1

2
tr(Γ̂−

1
2 (Γ̄k − Γ̂ )Γ̂−1(Γ̄k − Γ̂ )Γ̂−

1
2 ). (28)

Using property (i) we get

H =

K∑
k=1

S tr(Γ̂−1(µ̂− µ̄k)(µ̂− µ̄k)>) +
S − 1

2
tr(Γ̂−1(Γ̄k − Γ̂ )Γ̂−1(Γ̄k − Γ̂ ))

=

K∑
k=1

S tr(Γ̂−1(µ̂− µ̄k)(µ̂− µ̄k)>) +
S − 1

2
tr((Γ̂−1Γ̄k − I)2).

Applying properties (ii)–(iii) we get

H =

K∑
k=1

S vec((µ̂− µ̄k)(µ̂− µ̄k)>)>vec(Γ̂−1) +
S − 1

2
vec(Γ̄kΓ̂

−1 − I)>vec(Γ̂−1Γ̄k − I)

=

K∑
k=1

S vec((µ̂− µ̄k)(µ̂− µ̄k)>)>vec(Γ̂−1) +

K∑
k=1

S − 1

2
((I ⊗ Γ̄k)vec(Γ̂−1)− vec(I))>((Γ̄k ⊗ I)vec(Γ̂−1)− vec(I)).



Robust VaR and CVaR portfolio optimization 33

Finally, by replacing Γ̂−1 by Γ−, doing some straightforward calculations, and using properties
(iv)–(v) we get the new formulation of H(µ̂, Γ̂ ) in terms of (µ̂, Γ−), which we call G(µ̂, Γ−),

G(µ̂, Γ−) = vec(Γ−)>

[
S − 1

2

K∑
k=1

Γ̄k ⊗ Γ̄k

]
vec(Γ−) +

nK(S − 1)

2
+

[
S

K∑
k=1

vec((µ̂− µ̄k)(µ̂− µ̄k)>)− (S − 1)

K∑
k=1

vec(Γ̄k)

]>
vec(Γ−). (29)

Now that we have H as a function of (µ̂, Γ−), we write the transformed problem as

min
µ̂∈Rn, Γ−∈Sn++

G(µ̂, Γ−).

One can easily check that the Hessian matrix of function G is positive semidefinite and Slater
condition holds, hence KKT conditions give us the optimal solution. There are no constraints on
mean returns, and Γ−, being the inverse of a positive definite matrix, is positive definite and in
the interior of the positive semidefinite cone. Hence, the KKT optimality conditions reduce to:

∇Gµ̂ = 0,

∇Gvec(Γ−) = 0. (30)

To obtain ∇Gµ̂ we take the differential with respect to µ̂:

dG = d

K∑
k=1

S vec((µ̂− µ̄k)(µ̂− µ̄k)>)>vec(Γ−)

=

K∑
k=1

S vec(d((µ̂− µ̄k)(µ̂− µ̄k)>))>vec(Γ−)

=

K∑
k=1

S
(
vec(dµ̂(µ̂− µ̄k)>)>vec(Γ−) + vec((µ̂− µ̄k)(dµ̂)>)>vec(Γ−)

)
.

Using properties (ii)–(iii) we get:

dG =

K∑
k=1

S
(
tr((µ̂− µ̄k)(dµ̂)>Γ−) + tr(dµ̂(µ̂− µ̄k)>Γ−)

)
=

K∑
k=1

S
(
tr((µ̂− µ̄k)(dµ̂)>Γ−) + tr(dµ̂(µ̂− µ̄k)>Γ−)

)
=

K∑
k=1

2S (µ̂− µ̄k)>Γ−dµ̂.

Hence,

∇Gµ̂ = (
dG

dµ̂
)> =

K∑
k=1

2S Γ−(µ̂− µ̄k).
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Therefore the solution of ∇Gµ̂ = 0 is µ̂ = 1
K

∑K
k=1 µ̄.

Calculating ∇Gvec(Γ−) we obtain the second equation in (30) as:[
(S − 1)

K∑
k=1

Γ̄k ⊗ Γ̄k

]
vec(Γ−) +

[
S

K∑
k=1

vec((µ̂− µ̄k)(µ̂− µ̄k)>)− (S − 1)

K∑
k=1

vec(Γ̄k)

]
= 0,

which suggests the following system of linear equations in terms of vec(Γ−):[
K∑
k=1

Γ̄k ⊗ Γ̄k

]
vec(Γ−) =

[
K∑
k=1

vec(Γ̄k)− S

(S − 1)

K∑
k=1

vec((µ̂− µ̄k)(µ̂− µ̄k)>)

]
= 0.

All Γ̄k, k ∈ {1, . . . ,K} are positive semidefinite matrices. The sum and Kronecker product

of two positive semidefinite matrices are positive semidefinite matrices, thus
∑K
k=1 Γ̄k ⊗ Γ̄k is

positive semidefinite. To prove uniqueness of solution, assume Γ̄l, for some l ∈ {1, . . . ,K} is a
positive definite matrix, then so is Γ̄l ⊗ Γ̄l. Also, Γ̄k ⊗ Γ̄k, for all k ∈ {1, . . . ,K}/{l} are positive

semidefinite matrices. These all together imply that
∑K

k=1

Γ̄k ⊗ Γ̄k is a positive definite matrix, that

is the coefficient matrix is a full rank matrix and thus (18) has a unique solution.

B Appendix: Extension to polytopic ambiguity sets

We give now the formal definition, the relevant theorem, and its proof, to specify RVaR and RCVaR
optimization models for polytopic ambiguity sets on the mean returns and covariance matrix.

Definition 3 (Polytopic ambiguity for mean returns and covariance matrix) Mean re-
turns and covariance matrix belong to the following polytopic set:

UP = {(µ̄, Γ̄ ) ∈ Rn × Sn | µ̄ =

J∑
j=1

ρj µ̄j , Γ̄ =

J∑
j=1

ρjΓ̄j ,

J∑
j=1

ρj = 1, ρj ≥ 0, j = 1, . . . , J},

where (µ̄j , Γ̄j) ∈ Rn × Sn+, j = 1, . . . , J, are the polytope vertices.

Remark 8 The polytopic ambiguity set can be written as UP1
× UP2

, where

UP1
= {µ̄ ∈ Rn | µ̄ =

J∑
j=1

ρj µ̄j ,

J∑
j=1

ρj = 1, ρj ≥ 0, j = 1, . . . , J}

UP2
= {Γ̄ ∈ Sn | Γ̄ =

J∑
j=1

ρjΓ̄j ,

J∑
j=1

ρj = 1, ρj ≥ 0, j = 1, . . . , J}

are polytopic ambiguity sets for means and covariance matrix, respectively.
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Theorem 4 If random variable ξ has a distribution from the set D and (µ̄, Γ̄ ) ∈ UP . Then, the
robust counterpart to VaR portfolio optimization model (5) and the robust counterpart to CVaR
model (6) under polytopic ambiguity are represented by the following SOCP:

min
x∈Rn, ω∈R, β∈R

√
α√

1− α
ω − β (31)

s.t.

rf + (µ̄j − rfe)>x ≥ d, j = 1, . . . , J,

rf + (µ̄j − rfe)>x ≥ β, j = 1, . . . , J,√
x>Γ̄jx ≤ ω, j = 1, . . . , J.

Proof.
By Proposition (1), RVaR and RCVaR optimization models can be written as:

min
x∈Rn

max
(µ̄,Γ̄ )∈UP

−rf − (µ̄− rfe)>x+

√
α√

1− α

√
x>Γ̄ x (32)

s.t. min
(µ̄,Γ̄ )∈UP

rf + (µ̄− rfe)>x ≥ d.

Using the representation UP1 ×UP2 of UP , one can easily see that the inner optimization problems
appeared in objective function and constraint can be decomposed into easier subproblems and thus
we get:

min
x∈Rn

− rf − min
µ̄∈UP1

(µ̄− rfe)>x+

√
α√

1− α
max
Γ̄∈UP2

√
x>Γ̄ x (33)

s.t. rf + min
µ̄∈UP1

(µ̄− rfe)>x ≥ d.

Obviously, min
µ̄∈UP1

(µ̄− rfe)>x = min
1≤j≤J

(µ̄j − rfe)>x and

max
Γ̄∈UP2

√
x>Γ̄ x = max

1≤j≤J

√
x>Γ̄jx.

Letting β = rf + min
1≤j≤J

(µ̄j − rfe)>x and ω = max
1≤j≤J

√
x>Γ̄jx, we get the result.

C Appendix: Extension to interval ambiguity sets

We give now the formal definition, the relevant theorem, and its proof, to specify RVaR and RCVaR
optimization models for interval ambiguity sets on the mean returns and covariance matrix.

Definition 4 (Interval ambiguity for mean returns and covariance matrix) Mean returns
and covariance matrix belong to the following interval set:

UI = {(µ̄, Γ̄ ) ∈ Rn × Sn | µ̄− ≤ µ̄ ≤ µ̄+, Γ̄− ≤ Γ̄ ≤ Γ̄+},

where µ̄−, µ̄+, Γ̄−, Γ̄+ are given vectors and matrices and the inequalities are component-wise. We
assume there is at least one (µ̄, Γ̄ ) ∈ UI for which Γ̄ � 0.
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Remark 9 The interval ambiguity set can be written as UI1 × UI2 , where

UI1 = {µ̄ ∈ Rn | µ̄− ≤ µ̄ ≤ µ̄+}

UI2 = {Γ̄ ∈ Sn | Γ̄− ≤ Γ̄ ≤ Γ̄+}

are interval ambiguity sets for means and covariance matrix, respectively.

Theorem 5 If random variable ξ has a distribution from the set D and (µ̄, Γ̄ ) ∈ UI . Then, the
robust counterpart to VaR portfolio optimization model (5) and the robust counterpart to CVaR
model (6) under interval ambiguity are represented by the following SDP:

min
υ∈R, x+, x−∈Rn, Λ, Λ+, Λ−∈Sn

tr(Λ+Γ̄+)− tr(Λ−Γ̄−) + (34)

α

1− α
υ + (µ̄+ − rfe)>x+ − (µ̄− − rfe)>x−

s.t. [
Λ x−−x+

2
(x−−x+)

2

>
υ

]
� 0,

Λ � Λ+ − Λ−,
(µ̄− − rfe)>x− − (µ̄+ − rfe)>x+ ≥ d− rf ,
x+, x− ≥ 0, Λ, Λ+, Λ− � 0.

Proof.

By Proposition (1), RVaR and RCVaR optimization models can be written as:

min
x∈Rn

max
(µ̄,Γ̄ )∈UI

−rf − (µ̄− rfe)>x+

√
α√

1− α

√
x>Γ̄ x (35)

s.t. min
(µ̄,Γ̄ )∈UI

rf + (µ̄− rfe)>x ≥ d.

We start with the objective function. Using Theorem 1 of Ghaoui et al. (2003) we replace the inner
maximization objective function by the following:

min
υ∈R, Λ∈Sn+

tr(ΛΓ̄ ) +
α

1− α
υ − (rf + (µ̄− rfe)>x) (36)

s.t.

[
Λ x

2
x
2
> υ

]
� 0,

Hence, the inner maximization in the objective function of model (35) is equivalent to:

max
(µ̄,Γ̄ )∈UI

min
υ∈R, Λ∈Sn+

tr(ΛΓ̄ ) +
α

1− α
υ − (rf + (µ̄− rfe)>x) (37)

s.t. [
Λ x

2
x
2
> υ

]
� 0.
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Convexity and compactness of feasible region and linearity of objective function with respect to µ̄
and Γ̄ for fixed Λ and υ (and conversely) imply that we can exchange “min” and “max” to obtain

min
υ∈R, Λ∈Sn+

max
(µ̄,Γ̄ )∈UI

tr(ΛΓ̄ ) +
α

1− α
υ − (rf + (µ̄− rfe)>x) (38)

s.t. [
Λ x

2
x
2
> υ

]
� 0.

Decompose now the inner maximizations into easier subproblems by applying the UI1 × UI2 repre-
sentation of UI to derive the following formulation of (38):

min
υ∈R, Λ∈Sn+

−rf +
α

1− α
υ + max

Γ̄∈UI2
tr(ΛΓ̄ ) + max

µ̄∈UI1
− (µ̄− rfe)>x (39)

s.t. [
Λ x

2
x
2
> υ

]
� 0.

The dual formulations of the maximization problems in (39) are

max
Γ̄∈UI2

tr(ΛΓ̄ ) = min
Λ+, Λ−�0, Λ�Λ+−Λ−

tr(Λ+Γ̄+)− tr(Λ−Γ̄−),

and
max
µ̄∈UI1

− (µ̄− rfe)>x = min
x+, x−≥0, x=x−−x+

(µ̄+ − rfe)>x+ − (µ̄− − rfe)>x−.

Under suitable conditions —primal and dual strict feasibility— the duality gap in the first opti-
mization problem above is zero, and we obtain the objective function of (35) as

min
υ∈R, x+,x−∈Rn,Λ, Λ+, Λ−∈Sn

α

1− α
υ + tr(Λ+Γ̄+)− tr(Λ−Γ̄−) + (40)

(µ̄+ − rfe)>x+ − (µ̄− − rfe)>x−
s.t. [

Λ x−−x+

2
(x−−x+)

2

>
υ

]
� 0,

Λ � Λ+ − Λ−,
x+, x− ≥ 0, Λ, Λ+, Λ− � 0.

To complete the robust counterpart (35), we need an explicit formulation of the robust counterpart
of minimum return constraint:

min
(µ̄,Γ̄ )∈UI

rf + (µ̄− rfe)>x ≥ d.

To do this, we write the minimization problem as −rf + max
µ̄∈UI1

− (µ̄− rfe)>x and use the result on

dual form discussed above. Hence, the robust counterpart of minimum return constraint is:

rf − (µ̄+ − rfe)>x+ + (µ̄− − rfe)>x− ≥ d.

This completes the proof.
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D Appendix: Data
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Fig. 13: CDS spreads of the Greek sovereign with identified regimes: Leftmost is the
tranquil period, center is the turbulent, and the rightmost is the crisis.

Table 1: Moments of monthly differentials of the historical market data.

Stock.USA Stock.UK Stock.DE Stock.JP Bnd1.USA Bnd2.USA

Mean 0.01296 0.01047 0.01057 -0.00189 0.00553 0.00702
SD 0.04101 0.04150 0.05796 0.06184 0.00467 0.01620
Skewness -0.47903 -0.19051 -0.47281 0.04768 -0.18341 -0.07482
Kurtosis 3.76519 3.11399 4.11970 3.62119 2.77801 3.23974
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