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lio orthogonal to the stochastic discount factor. The zero-beta rate is high and

volatile. In contrast to safe rates, the zero-beta rate fits the aggregate consump-

tion Euler equation remarkably well, both unconditionally and conditional on

monetary shocks, and can explain the level and volatility of asset prices. We

claim that the zero-beta rate is the correct intertemporal price.

*We would like to thank Marianne Andries, Adrien Auclert, Jonathan Berk, John Cochrane, Dar-
rell Duffie, Lars Hansen, Benjamin Holcblat, Arvind Krishnamurthy, Eben Lazarus, Mortiz Lenel,
Martin Lettau, Hanno Lustig, Thomas Mertens, Monika Piazzesi, Mikkel Plagborg-Møller, Shri
Santosh, Martin Schneider, Ken Singleton, David Sraer, Chris Tonetti, and Motohiro Yogo for help-
ful comments, as well as seminar and conference participants. We would particularly like to thank
Rohan Kekre for an excellent discussion of our paper. We would also like to thank Paul Delatte for
his research assistance. An earlier version of this paper circulated as “The Zero-Beta Rate.”
Replication code (requires a WRDS account): https://github.com/bhebert/TheZeroBetaRate



The interest rate is one of the most important prices in a market economy. It
captures the intertemporal price of goods and plays a central role in business cycles
and monetary policy. In this paper we use equity returns to construct a measure of
the interest rate that we call the zero-beta rate: the expected return of a stock port-
folio orthogonal to the stochastic discount factor (SDF). Compared to safe rates,
the zero-beta rate is high and volatile, and fits a stable aggregate consumption Eu-
ler equation remarkably well, both unconditionally and conditionally on monetary
shocks. Furthermore, it is high, volatile, and persistent enough to explain the level
and volatility of asset prices. We claim that the zero-beta rate is the correct in-
tertemporal price.

Our motivation starts with the aggregate consumption Euler equation,

1 = Et

[
δ

(
ct+1

ct

)−σ Rt+1

Pt+1/Pt

]
, (1)

where ct is aggregate consumption, Pt is the price level, and Rt+1 is the gross
nominal return on any asset. Applying this equation to a risk-free nominal bond
(Rt+1 = Rb,t) yields the traditional consumption Euler equation, which lies at the
heart of macroeconomics, and is the structural relationship that central banks aim
to exploit through monetary policy.

But, as is well known, the traditional Euler equation does not fit the data (Hansen
and Singleton 1983; Dunn and Singleton, 1986; Hall, 1988; Yogo, 2004). The left
panel of Figure 1 makes this point graphically, showing the expected growth rate
of consumption and the expected real Treasury bill return, both predicted with the
same set of macroeconomic variables. The two series are not proportional, indicat-
ing that the linearized version of the traditional Euler equation fails to hold.

Moreover, there are many different safe assets, each with their own interest rate.
Some safe assets, such as cash or bank deposits, have rates lower than Treasury
bills, while others (such as highly-rated commercial paper) have higher rates. The
consumption Euler equation can hold for at most one of these rates. If, following
Krishnamurthy and Vissing-Jorgensen [2012], we interpret safe assets with par-
ticularly low rates as having some kind of non-pecuniary convenience, we should
expect the consumption Euler equation to hold only for assets without this conve-
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nience. In fact, if all assets that can be used to back deposits (such as bonds) and
other forms of money are to some degree convenient, then the consumption Euler
equation should hold only for assets that cannot be used to back deposits, such as
equities. Motivated by this logic, we propose an alternative measure of the interest
rate based on the expected return on an equity portfolio.

Equities, of course, have risk premia, and empirically these risk premia are not
well explained by the traditional consumption Euler equation (see e.g. Mehra and
Prescott [1985] on the market risk premium and Fama and French [1993] on the
cross-section of equity risk premia). That is, there are factors other than consump-
tion that enter the SDF that prices equities. But if one constructs a portfolio of risky
equities with excess returns that are orthogonal to the SDF that prices equities, the
portfolio will not carry a risk premium. In this case, the portfolio’s expected return
should be equal to the intertemporal price of consumption. We call the expected
return of such a portfolio the zero-beta interest rate.

The first contribution of the paper is to construct a time-series of the zero-beta
rate. We first postulate a model of the SDF that is linear in a set of factors that the
literature has found to explain the cross-section of equity returns. Next, we estimate
the betas of the excess returns of equities with respect to each of the factors, and
use these estimated betas to construct a unit-investment, minimum-variance, zero-
beta portfolio. Finally, we project the returns of this zero-beta portfolio on a set
of macroeconomic predictors to obtain an expected return. This is our measure of
the zero-beta rate. It is not feasible to follow this procedure sequentially because
constructing excess returns and estimating betas requires an estimate of the zero-
beta rate; for this reason, we estimate all of our parameters simultaneously via
GMM.

The right panel of Figure 1 shows the real zero-beta rate. It is high on aver-
age (8.3% annually) and volatile (standard deviation 9.3%). It therefore has a large
(around 7.6% per year on average) and volatile spread relative to the expected real
return of Treasury bills. The spread is so large that it renders inconsequential the
much smaller spread between the returns on different types of safe assets; for sim-
plicity, in what follows, we will use the Treasury bill yield as our measure of the
safe interest rate. We treat the spread between the zero-beta rate and safe rates as a
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Figure 1: Expected consumption growth vs. Expected Real 1m Treasury Bill Return
(left) and Real Zero-Beta Rate (right)

Notes: Both panels of this figure plot expected real returns against expected consumption growth,
over time. Expected real returns are constructed using nominal rates (1m bill yields on the left, our
zero-beta rate on the right) less expected inflation. Expected inflation and expected consumption
growth are generated from predictive regressions using the instruments described in Section 3, which
are the same instruments used to construct the zero-beta rate. In both panels, the right vertical axis
is consumption growth, centered at its mean, with limits equal to +/- four standard deviations. The
left vertical axis is the same for the relevant expected real return. All series are annualized.

residual and do not provide an explanation for it.
The average level of the zero-beta rate may seem surprising. But it reflects a

well-known fact, going back to Black et al. [1972], who pointed out, in the context
of CAPM, that the expected return of an equity portfolio with zero covariance to
the market was well in excess of Treasury bill yields.1 One common interpretation
of the Black et al. [1972] finding has been that the CAPM is wrong—there are
priced factors beyond the market—and that once these are incorporated, the zero-
beta rate should coincide with safe interest rates. We, however, estimate a zero-beta
rate that is high on average despite our use of a rich set of cross-sectional factors.
This is consistent with the existing literature. Lopez-Lira and Roussanov [2020],
for example, find that even if one removes almost all of common factors in stock
returns, the remainder still has a high average return.2 We propose that the zero-
beta rate captures the correct intertemporal price, not an omitted risk premium, and

1See also Shanken [1986] and more recently Hong and Sraer [2016] and Bali et al. [2017]. The
average level of our zero-beta rate is consistent with the findings of Hong and Sraer [2016] and Bali
et al. [2017].

2See also Kim et al. [2021].
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test this view using the consumption Euler equation.
The second contribution of the paper is to show that the zero-beta rate fits the

aggregate consumption Euler equation strikingly well. The right panel of Figure
1 shows the result graphically. It shows the real zero-beta rate plotted against ex-
pected consumption growth, predicted with the same set of macroeconomic vari-
ables. The two series strongly co-move once they are rescaled. This is essentially
a graphical test of the linearized Euler equation, and our results suggest that the
zero-beta rate is indeed a measure of the intertemporal price of consumption.

Our more formal analysis constructs the zero-beta rate using GMM and then
tests the non-linear Euler equation moments (which are not used in the construction
of the zero-beta rate) using weak-identification-robust methods. We cannot reject
an intertemporal elasticity of substitution (IES) below 0.5 (if CRRA, risk aversion
above 2), but are able to reject higher values of the IES. This contrasts with the
results of the same test applied to Treasury bill yields and to the aggregate market
return. The Euler equation is rejected for all values of the IES we consider when
applied to the Treasury bill yield, and is not rejected for essentially any values when
applied to the market return, reflecting weak identification.

There is a substantial difference between the safe rates that central banks control
as policy instruments and the zero-beta rate that goes in the Euler equation. If the
two rates move in parallel in response to monetary policy, the central bank could
still exploit the traditional Euler equation as a structural relationship. If instead
monetary policy affects them differentially, then the behavior of the zero-beta rate
and of consumption growth might differ substantially from the behavior implied by
the traditional Euler equation.

Our third contribution is to compute the response of the zero-beta rate to mon-
etary policy shocks (identified using the Romer and Romer [2004] and Nakamura
and Steinsson [2018] approaches). Our point estimates suggest that an unexpected
monetary tightening that raises the Treasury bill yield will lower the zero-beta rate.
While, other things being equal, a higher Treasury bill yield is associated with
a higher zero-beta rate, an unexpected monetary tightening also flattens the yield
curve and increases credit spreads, and these are associated with a lower zero-beta
rate. Empirically, these effects dominate.
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This result may seem strange at first because it implies that the intertemporal
substitution effect of a monetary tightening is the opposite of what conventional
wisdom says. It makes current consumption cheaper relative to future consump-
tion, not more expensive. But it is actually in line with empirical facts and theory.
Empirically, a contractionary monetary policy shock reduces consumption growth,
as opposed to generating a lower level of consumption but higher growth. The Euler
equation implies that the zero-beta rate should fall as households correctly antici-
pate lower future income and try to save. It is rather the short-run rise of safe rates
that is puzzling in light of the fall of consumption growth (or the fall of consump-
tion growth that is puzzling in light of the rise of safe rates). The literature has
traditionally explained this with adjustment costs such as habits or informational
frictions.3 Instead, we find that the aggregate consumption Euler equation holds
with the zero-beta rate conditionally on monetary shocks, and attribute the rise in
safe rates to an endogenous fall in the spread between the zero-beta rate and the
safe rate.

It is important to clarify that our result does not imply that a simple Euler equa-
tion describes consumption at the household level. Households may face uninsur-
able idiosyncratic risk, borrowing constraints, and trading frictions. But a central
result in the heterogenous-agent model literature is that there is nonetheless an Eu-
ler equation at the aggregate level. Werning [2015] explores the issue in detail and
provides clean theoretical results, but the result shows up with variations through-
out that literature (e.g. Krueger and Lustig [2010], Auclert et al. [2020, 2023]). To
be clear, one can write models where the aggregate Euler equation fails (see Bilbiie
[2021]), but an aggregate Euler equation can be consistent with realistic individual-
level consumption behavior. Our result is an empirical fact that should be used to
discipline and test macroeconomic models.

Lastly, we discuss the implications of our results for equity risk premia. Other
authors (e.g. Hong and Sraer [2016], Bali et al. [2017]) have observed that zero-beta
portfolios have returns that are on average roughly the same as the overall market
return, a finding we confirm. Our contribution emphasizes that the consumption

3See Christiano et al. [2005] or Smets and Wouters [2007] for the former, and Auclert et al.
[2020] for the latter.
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Euler equation appears to hold for the zero-beta rate, which is to say that there
may be no equity premium puzzle after all (contra Mehra and Prescott [1985]), if
one considers the risk premium of the market over the zero-beta rate. We further
emphasize this point by showing that the zero-beta rate we construct is volatile
enough and persistent enough to generate empirically realistic variation in price-
dividend ratios under the assumption of a constant equity risk premium. That is,
contra Campbell [1991], we find that variation in these ratios is not evidence for
time-varying risk premia. However, our estimates are certainly not precise enough
to rule out the existence of equity risk premia. Moreover, as we offer no theory
for the spread between zero-beta rates and Treasury bill yields, we cannot claim to
have resolved any asset pricing puzzles; at best, we have offered an explanation for
the old ones by creating a new one.

Our findings are consistent with the literature on the existence of the “beta
anomaly” (Black [1972] and the literature that follows). We innovate, relative
to this literature, by studying time-variation in the zero-beta rate and document-
ing the connection between the zero-beta rate and expected consumption growth.
Methodologically, we build on GMM tests of the Euler equation (Hansen and Sin-
gleton, 1982; Dunn and Singleton, 1986), using weak-instrument-robust methods
(Stock and Wright, 2000; Yogo, 2004) and a regularized covariance matrix estima-
tor [Ledoit and Wolf, 2017], in a procedure inspired by the maximum likelihood
approach of Shanken [1986]. Our choice of assets and factors is informed by the
work of Novy-Marx and Velikov [2022] on beta-sorted portfolios, and our choice
of instruments is guided by the literature on predicting business cycles (e.g. Kiley
[2022]).

We do not provide a theory of the spread between the zero-beta rate and bond
yields, although we conjecture that it originates with bank deposits and other pay-
ment instruments. In this we are influenced by Lenel et al. [2019], who propose this
explanation for the convenience of safe short-term debt and consider the effects of
stickiness in both prices and the supply of reserves. See also Piazzesi and Schneider
[2021], who study the effect of convenience yields for monetary policy with flexi-
ble prices. We introduce convenience in our modeling framework via safe bonds in
the utility function, as a transparent way of motivating our empirical exercise. Our
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contribution, however, is primarily empirical. Regardless of whether one believes
bonds offer non-pecuniary benefits or not, the data indicates that zero-beta rates
are much higher than safe bond yields and that the consumption Euler equation is
rejected for safe bond yields but not for the zero-beta rate.

Our paper is part of a larger literature on the segmentation of stock and bond
markets and the implications thereof. In our view, there are many otherwise-difficult-
to-explain phenomena that can be rationalized if one accepts that bonds are not
priced by the stochastic discount factor that prices stocks. We discuss these con-
nections in Section 6.

1 Theoretical Framework

The aggregate consumption Euler equation (1) has three distinct implications: (i)
a consumption-based SDF prices the cross-section of stocks, (ii) the yield on a
safe bond is the inverse of the mean growth of that consumption-based SDF, and
(iii) the expected return on a zero-beta portfolio is also the mean growth of that
consumption-based SDF. In equations, defining the nominal SDF Λt = δ t(ct)

−σ P−1
t ,

(i): 0 = Et

[
Λt+1

Λt
(Ri,t+1 −R j,t+1)

]
,

(ii): R−1
b,t = Et

[
Λt+1

Λt

]
,

(iii): R−1
0,t = Et

[
Λt+1

Λt

]
.

Here, Ri,t+1 and R j,t+1 are stock returns, Rb,t is the nominal return on a risk-free
bond, and R0,t is the expected return on a zero-beta (to the SDF) portfolio.

Our empirical exercise will test (iii) without imposing (i) or (ii). This is im-
portant because, as discussed above, neither (i) nor (ii) hold empirically. The first
fails because other factors apart from consumption are necessary to price the cross-
section of stock returns. The second fails both in the time series (Hansen and Sin-
gleton [1982]) and because there are safe bonds with different interest rates.

We first build a “proof-of-concept” monetary model to show that it is possible
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for (iii) to hold without (i) or (ii). The model features an additional factor in the
SDF (to explain why (i) fails) and a non-pecuniary benefit (to explain why (ii)
fails). These two features motivate our empirical exercise, in which we require
that the zero-beta portfolio have zero beta with respect to many factors (not just
consumption) and construct it using stocks and not bonds. That said, the findings of
our empirical exercise are facts about the data that hold irrespective of the validity
of our proof-of-concept model.

1.1 Setup

There is a representative household with preferences

E

[
∞

∑
t=0

δ
t
ξt

(
c1−σ

t

1−σ
+ηm,t log(Mt/Pt)+ηb,t log(Bt/Pt)

)]
, (2)

where ct is consumption at time t, Bt are holdings of safe, one-period nominal bonds
held at time t, Mt are money holdings, and Pt is the price level. ξt is an exogenous
stochastic process that will generate fluctuations in the stochastic discount factor
that are independent of macro quantities.

This is a standard monetary setting augmented with safe bonds in the utility
function and exogenous shocks to the stochastic discount factor. We include both
money and bonds in the utility function as a transparent way of introducing con-
venience to these assets; we do not provide a deeper theory of the source of this
convenience. Bonds and money enter the utility function separably from consump-
tion and from each other, and ηm,t and ηb,t are shocks to the demand for money and
bonds. If prices are flexible, money and bonds are neutral and super-neutral. We
assume ξt is a martingale and independent of Mt , Bt , ηm,t , and ηb,t .

For simplicity, we treat the supply of safe bonds Bs
t and money Ms

t as exogenous.
There are N risky assets in zero net supply, which are meant to capture equities in
the empirical work. Denote their nominal return by Ri,t+1. We assume that at any
time there is no portfolio of these risky assets that is risk-free and that there is at
least one portfolio of risky assets whose return is uncorrelated with the SDF.4

4Strictly speaking, the returns Ri,t and the SDF are endogenous objects. These assumptions
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The household’s budget constraint is:

Ptct +(Bt −Bs
t )+Mt +

N

∑
i=1

Xi,t ≤
(
Bt−1 −Bs

t−1
)

Rb,t−1+Mt−1+
N

∑
i=1

Xi,t−1Ri,t +Ptyt +T m
t .

(3)
Here T m

t = Ms
t −Ms

t−1 is a government transfer, yt is real income, and Xi,t is the
nominal amount the household invests in asset i. Note that the representative house-
hold is liable for the safe bonds Bs

t and also chooses to hold Bt .
The household’s problem is to choose ct , Bt , Mt and Xi,t to maximize (2) subject

to (3) and the natural borrowing limit, taking prices Pt , Rb,t , and Ri,t+1 as given.
Market clearing requires ct = yt , Bt = Bs

t , Xi,t = 0, and Mt = Ms
t . We do not model

the supply side of this economy (and in particular do not take a stand on nominal
rigidities), so the model does not pin down prices Pt and real output yt separately.
Our results are thus consistent with flexible prices and with different forms of price
stickiness.

1.2 Equilibrium

The household’s first order condition for consumption is

Λt = δ
t
ξtc−σ

t /Pt , (4)

where the Lagrange multiplier Λt is the SDF (note that this expression generalizes
the definition used above). Here we see the role ξt plays in creating a realistic SDF,
by allowing for movements in the SDF unrelated to consumption. We will guess
and verify that ξt is independent of c−σ

t /Pt .
The Euler equations for money, safe bonds, and risky assets are:5

c−σ
t = ηb,t (Bt/Pt)

−1 +δEt

[
c−σ

t+1
Rb,t

Pt+1/Pt

]
, (5)

should be understood as assumptions on the underlying payoffs of the risky assets.
5Here we use the guess that ξt is independent of c−σ

t /Pt and a martingale, so it drops out of
the Euler equation for money and bonds. Equation (6) then shows that the process for c−σ

t /Pt is a
function of the process for Mt/ηm,t and therefore independent of ξt , verifying the guess.
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c−σ
t = ηm,t (Mt/Pt)

−1 +δEt

[
c−σ

t+1
1

Pt+1/Pt

]
, (6)

c−σ
t = δEt

[
ξt+1

ξt
c−σ

t+1
Ri,t+1

Pt+1/Pt

]
. (7)

If the household saves in money or safe bonds, it takes into account the convenience
those assets provide. As a result, the traditional consumption Euler equation does
not work with the safe interest rate Rb,t (it would require ηb,t = 0).

Risky assets, on the other hand, do not have convenience, but the household
needs to consider the covariance of their return with the SDF, which includes ξt . As
a result, the traditional consumption Euler equation (with ξt = 1, i.e. the consump-
tion CAPM) does not hold in general for these assets.

However, the traditional consumption Euler equation holds for a specific type
of portfolio of risky assets. Let Rp,t+1 be the return of a portfolio of risky assets that
is conditionally uncorrelated with Λt+1/Λt . We can use (7) to obtain the traditional
consumption Euler equation6

c−σ
t = δEt

[
c−σ

t+1
Rp,t+1

Pt+1/Pt

]
= δR0,tEt

[
c−σ

t+1

Pt+1/Pt

]
, (8)

where the correct interest rate is the R0,t ≡ Et
[
Rp,t+1

]
. We call this expected return

the “zero-beta rate,” and note that it is the expected return of all non-convenient
zero-beta portfolios. It is straightforward to show that the zero-beta rate is the
inverse of the mean growth of the SDF, R0,t = Et [Λt+1/Λt ]

−1.
In summary, while the traditional consumption Euler equation does not work

with the return of safe assets (because of convenience), nor with risky assets (be-
cause of risk premia), it holds with portfolios of risky assets with zero covariance
to the SDF, whose expected return is the zero-beta rate. This result is robust to a
time-varying and potentially endogenous SDF and convenience on safe assets, and
is independent of assumptions on nominal rigidities and the supply environment.

6Here we use the fact that the return Rp,t+1 is uncorrelated with the SDF, and also that ξt is a
martingale independent of c−σ

t /Pt .
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2 Measuring the Zero-Beta Rate

In this section we describe our procedure for measuring the zero-beta rate using
stock portfolios. We first impose standard assumptions from the asset pricing lit-
erature on the structure of our data, then provide an intuitive description of our
estimation procedure, and lastly describe our estimator formally within a GMM
framework.

2.1 Asset Pricing Assumptions

We begin with a balanced panel of N assets (equity portfolios, which we refer to
as test assets) and T periods. Let Rt+1 denote the vector of returns across assets
i ∈ {1, . . . ,N}. We assume there is a set of K priced factors, whose values at time
t are Fj,t for j ∈ {1, . . . ,K}. The excess returns of each test asset can be projected
onto the space of factor returns as

Ri,t+1 −R0,t = αi +
K

∑
j=1

βi jFj,t+1 + εi,t+1, (9)

where εi,t+1 has an unconditional zero mean and αi and βi j are regression coef-
ficients. We assume the betas are constant over time (specifically, that εi,t+1 is
uncorrelated with the factors conditional on the information at time t).7 Consistent
with this assumption, we will use portfolios of stocks (beta-sorted portfolios and
industry portfolios) that might be expected to have stable betas over time, as op-
posed to considering individual companies. In our robustness exercises, we allow
for time-varying betas, and our results are largely unchanged. Let α be the vector
of the αi coefficients, and let εt+1 be the vector of regression residuals εi,t+1.

Our first key economic assumption is that the nonlinear SDF Λt+1/Λt can be
well approximated by a linear factor structure for the purpose of pricing equities.
The first of these factors is the excess return of the market with respect to the zero-
beta rate, F1,t+1 = Rm,t+1 −R0,t . The remainder of the factors are assumed to be
either zero-investment portfolios that do not explicitly involve the zero-beta rate

7We do not assume that the εi,t+1 are uncorrelated with each other. Equity returns might have
co-movement beyond the priced factors.
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(such as the SMB and HML portfolios of Fama and French [1993]) or non-traded
factors. Our assumption is that

Λt+1

Λt
= R−1

0,t +
K

∑
j=1

ω j,t
(
Fj,t+1 −Et

[
Fj,t+1

])
+ζt+1, (10)

where ζt+1 is mean zero and uncorrelated with any stock return, conditional on
the information at time t, Et [Ri,t+1ζt+1] = 0. This assumption implies that our non-
linear SDF is equivalent to a linear SDF for the purpose of pricing equity portfolios,

1 = Et

[
Λt+1

Λt
Ri,t+1

]
= Et

[(
R−1

0,t +
K

∑
j=1

ω j,t
(
Fj,t+1 −Et

[
Fj,t+1

]))
Ri,t+1

]
. (11)

Our framework allows for time variation in the zero-beta rate R0,t and the prices of
risk for each of the factors, ω j,t .

Up to this point we have a relatively standard asset-pricing setup, except that
the mean growth of the SDF and the excess returns are both defined using the zero-
beta rate R0,t instead of the Treasury bill yield Rb,t . This is important: both (9) and
(10) embed the assumption that the expected return of any zero-beta portfolio is the
zero-beta rate without imposing the traditional assumption that R0,t = Rb,t .

Instead, we assume that the zero-beta rate is linear in a set of L predictor vari-
ables, Zl,t for l ∈ {1, . . . ,L}, the vector of which we denote Zt . To simplify our
notation, let Z0,t = 1 and center (de-mean) Zl,t , for l ≥ 1. We assume

R0,t(γ) = γ
′ ·Zt , (12)

where γ ∈RL+1 is a vector of constants. The predictors Zt include the Treasury bill
yield Rb,t , so we nest as a special case the traditional view that R0,t = Rb,t .

2.2 An Infeasible Portfolio Procedure

To build intuition, we first describe a portfolio-based procedure to estimate the zero-
beta rate R0,t . This procedure is infeasible, but it provides the motivation and the
moments for the GMM procedure we use.
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First note that the zero-beta rate is the expected return of any zero-beta portfolio.
Let w be a vector of portfolio weights such that w′ ·β = 0, and let ι ∈ RN be the
vector of ones. Equations (9), (11), and (12) imply that

Et
[
w′ · (Rt+1 − ιR0,t)

]
= Et

[
w′ ·
(
Rt+1 − ιγ

′ ·Zt
)]

= 0.

Consider then the following procedure to estimate the zero-beta rate:

1. Run time-series regressions on (9) for each test asset i, to obtain α and β .
The moment conditions associated with these regressions can be written as
E[εt ⊗Ft ] = 0, adopting the convention that F0,t = 1.

2. Using the estimated betas, choose a zero-beta portfolio, w. Adopt the nor-
malization that the portfolio weights sum to one.

3. Predict the return of the zero-beta portfolio w with an OLS regression on:

w′ ·Rt+1︸ ︷︷ ︸
Rp,t+1

= γ
′ ·Zt︸ ︷︷ ︸
R0,t

+ut+1. (13)

The moment conditions for this regression are E [w′ · (Rt+1 − ιR0,t)Zt ] = 0.

This procedure is infeasible because we don’t know the zero-beta rate, which is used
to construct the excess returns Rt+1 −R0,t required for the time series regression in
step 1.8 That is, step 1 is not feasible until we have done step 3, which requires
the weights chosen in step 2, which requires an estimate of the betas from step 1.
The solution is to do all steps at once in a GMM procedure that uses the moment
conditions of the two regressions. We outline this procedure below.

The choice of the weight vector w is arbitrary, provided that the portfolio has
zero-beta. A natural choice, given the goal of accurately estimating γ , is to choose
w so as to minimize the variance of ut+1. This is equivalent to choosing the unit-
investment, zero-beta portfolio that minimizes the variance of the excess returns
Rt+1 −R0,t . We adopt this weighting scheme in our GMM procedure.

8Constructing the first factor, F1,t+1 = Rm,t+1 −R0,t , also requires the zero-beta rate.
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2.3 Estimation via GMM

The relevant parameters of our model are θ = (α,β ,γ), where (α,β ) are the re-
gression coefficients associated with (9) and γ is the vector of coefficients in (12).
Following common practice (see Cochrane [2009]), we will use a reduced-rank
weighting matrix that selects moments and achieves exact identification, as opposed
to using a full-rank weighting matrix with over-identifying restrictions. Specifi-
cally, we will use the same moments as the portfolio procedure described above.

For given parameter values θ , define the residuals

ε̂i,t+1 (θ)=Ri,t+1−αi(θ)−(1−βi1(θ))
(
γ
′(θ) ·Zt

)
−βi1(θ)Rm,t+1−

K

∑
j=2

βi j(θ)Fj,t+1

(14)
which correspond to regression (9). Note that the first factor (the market excess
return) explicitly involves the zero-beta rate, which is why it is treated differently
from other factors in this definition of ε̂i,t+1.

We use two sets of moments. First, the moments corresponding to the time-
series regressions in step 1, E[ε̂t+1 (θ)⊗Ft+1(θ)] = 0. There are N × (K + 1) of
these moments, and they can be used to identify the parameters (α,β ).

Second, we impose our assumption that all zero-beta portfolios have an ex-
pected return equal to the zero-beta rate. Define the symmetric orthogonal projec-
tion matrix H (θ) = IN −β (θ)β (θ)+.9 Given any weight vector w, H(θ) ·w is a
zero-beta weight vector, and all zero-beta weight vectors can be formed this way.10

We use the moment conditions E[H (θ) · (Rt+1 − ιγ ′(θ) ·Zt)⊗ Zt ] = 0, which are
the moment conditions from step 3 above, applied to the set of all zero-beta portfo-
lios. Note that this moment condition is not valid without the orthogonal projection
matrix H(θ)– non-zero-beta portfolios can have expected returns that are not equal
to the zero-beta rate.

Thus, our estimation method fits precisely into a GMM procedure with moments

9Here, IN is the N ×N identity matrix, and (·)+ denotes the Moore-Penrose pseudo-inverse. H
is the orthogonal projection matrix with respect to the betas.

10If w is a zero-beta portfolio, w = H(θ) ·w.
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E [gt (θ)] = 0, where

gt+1(θ) =

[
ε̂t+1 (θ)⊗Ft+1(θ)

H (θ) · (Rt+1 − ιγ ′(θ) ·Zt)⊗Zt

]
.

As discussed above, we will choose a specific zero-beta portfolio to use in our esti-
mation, which is equivalent to using a reduced-rank weighting matrix. The specific
portfolio we choose is the minimum-variance unit-investment zero-beta portfolio.
Given an estimate of the covariance matrix of excess returns, ΣR(θ), we minimize
w′ ·ΣR(θ) ·w subject to the constraints w′ ·β = 0⃗ and w′ · ι = 1. We assume that ΣR

is of full rank and that ι does not lie in the span of β , so that the problem is feasi-
ble. Under these assumptions, the explicit solution to this minimization problem is
given by

w(θ) = ΣR(θ)
−1 ·
[
ι β (θ)

]
·

([
ι ′

β (θ)′

]
·ΣR(θ)

−1 ·
[
ι β (θ)

])+[
1
0⃗

]
. (15)

Our GMM weight matrix is

W (θ) =

[
IN×(K+1) 0

0 w(θ)w(θ)′⊗ IL+1

]
,

which weights our second set of moments by w(θ) and achieves exact identification.
Our weight matrix is not the efficient (in the GMM sense) weight matrix, but is
instead akin to a GLS weight matrix, and can also be motivated using a maximum
likelihood approach (see Appendix Section I).

Constructing a minimum-variance portfolio requires an estimate of the covari-
ance matrix ΣR. We use the Ledoit and Wolf [2017] estimator for ΣR. This covariance-
matrix estimator is designed for minimum-variance portfolio problems, and has
been shown by those authors to outperform other covariance matrix estimators with
respect to the out-of-sample portfolio variance in such problems. Loosely, this is
because it avoids over-fitting. We outline our estimation procedure in Appendix
Section B and discuss the details of how we apply the Ledoit and Wolf [2017] esti-
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mator to our setting in Appendix Section H.
Casting our estimator in this GMM framework allows us to compute standard

errors that take the estimation error of the betas into account. Because our problem
is exactly identified, conditional on γ , the

(
αi,βi j

)
point estimates will be the usual

OLS estimates. The caveat “conditional on γ” applies because one cannot construct
the excess returns Rt+1 −R0,t or the first factor F1,t+1 = Rm,t+1 −R0,t without an
estimate of the zero beta rate.

The risk prices ω j,t are not identified by these moments, because we consider
only zero-beta portfolios. Standard asset-pricing exercises typically assume one
knows the interest rate (the intercept of the SDF) and wants to estimate the risk-
prices (the slopes of the SDF). In contrast, we estimate the interest rate and are not
interested in risk prices. Our procedure can therefore allow arbitrary time variation
in the price of risk. We further discuss the interpretation of our procedure and the
potential effects of misspecification of the factors and instruments in Section 6.

3 Data and Results

Our procedure requires a set of equity portfolio returns (the Ri,t), a set of factors (the
Fk,t), and a set of instruments (the Zl,t). When we test the Euler equation we will
also need consumption data (ct). We will briefly describe the portfolios, factors,
instruments, and consumption data we use in our main specification in this section.
Additional details can be found in Appendix Section A, and results with alternative
portfolios, factors, instruments, and consumption data can be found in Appendix
Section G.

Equity Portfolios. Our main equity returns data consists of the equity returns in
CRSP which can be matched to a firm in COMPUSTAT, excluding the bottom 20%
of stocks by market value. For each of these stocks, we compute a five-year trail-
ing beta to the CRSP market return (using monthly data).11 We then construct 27

11Novy-Marx and Velikov [2022] point out that the smallest deciles of stocks are likely to be
less liquid than other stocks, and as result have betas that are attenuated relative to other stocks;
this notably affects the conclusions of Frazzini and Pedersen [2014]. For this reason, in our main
specification we exclude these stocks, and in our robustness exercises verify that our results are not
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(3x3x3) portfolios based on (i) market beta, (ii) market capitalization (i.e. size),
and (iii) book-to-market ratios (i.e. value). We construct 27 more portfolios (an-
other 3x3x3 sort) using market beta, size, and investment rates, and another 27
more based on market beta, size, and profitability. These 81 portfolios in total
have substantial variation in terms of their exposure to the five factors of Fama and
French [2015]. We augment these portfolios with the 49 industry portfolios (based
on four-digit SIC codes) from Ken French’s website,12 and thus consider 130 stock
portfolios in total.

There are two considerations that have guided our choices. First, we use beta-
sorted portfolios to ensure that there is a wide variation across our portfolios in
terms of their beta to the market. Our motive is evident from (14): an equity portfo-
lio with a beta of one to the market is in fact insensitive to the level of the zero-beta
rate. Second, we have included a variety of portfolios to ensure that it is possible to
form a well-diversified zero-beta portfolio. Commonly used portfolios such as the
Fama-French 25 size by value portfolios exhibit a strong factor structure; a portfo-
lio constructed from only the FF25 and forced to have zero beta to the market, size,
and value factors would load heavily on poorly estimated residuals.

Factors. Our main specification uses seven factors: the five equity-related factors
of Fama and French [2015], the return of a 6-10y Treasury bond portfolio over a
one-month Treasury bill, and return of long-term corporate bonds over long term
Treasury bonds (i.e. the Treasury bond and default factors of Fama and French
[1993]). We have chosen these factors because they are standard in the literature
and because they are thought to explain the cross-section of expected returns in
the equity portfolios we study.13 Our use of the five-factor Fama-French model

meaningfully altered by their inclusion. The robustness of our results to the inclusion of these stocks
likely stems from our use of betas based on monthly as opposed to daily data, which reduces impact
of liquidity on betas.

12Note that the industry portfolios include the smallest 20% of stocks; because the portfolios are
not beta-sorted and are value-weighted, the inclusion of these stocks in industry portfolios is unlikely
to affect our results.

13Additionally, if the test assets are highly correlated conditional on the factor realizations, the
Ledoit and Wolf [2017] shrinkage procedure will produce poor results. For this reason, our main
specification uses enough factors to explain a significant portion of the co-movement between our
test assets.
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is motivated in particular by the results of Novy-Marx and Velikov [2022], who
find that univariate-beta-sorted portfolios are correlated with the investment and
profitability factors of Fama and French [2015]. Our inclusion of the bond return
factors is motivated by our use of the term spread and excess bond premium as
instruments (discussed below).

In extensions we also include aggregate consumption growth as a factor. The
traditional Euler equation implies that the marginal utility of consumption should
be priced, justifying the use of a consumption factor. However, our goal is to first
construct the zero-beta rate and then show that it is consistent with an Euler equa-
tion; this result is sharper if we do not use consumption data when constructing the
zero-beta rate. For this reason, we have opted not to include a consumption factor in
our main specification. That said, especially after controlling for the other factors,
our equity portfolios have essentially no covariance with consumption growth, and
as a result the inclusion or exclusion of the consumption factor has an imperceptible
effect on our results. See Appendix Section G for details.

Instruments. We have chosen our instruments with the goal of predicting either
consumption growth or the intertemporal price of consumption. Our main specifi-
cation includes five instruments, all of which are available at the monthly frequency
starting in 1973.

We include the Treasury bill yield to nest the traditional view that the yield
on safe bonds is the intertemporal price. We also include a rolling average of the
previous twelve months of inflation (specifically, log-changes in the CPI index),
motivated in part by the result of Cohen et al. [2005], who find that the slope of the
security market line varies with the level of inflation. Given that finding, it is natural
to think that the intercept of the security market line (the zero-beta rate) might also
depend on the level of inflation.

We also include three instruments—the term spread (10yr less 3m Treasury
yields), the excess bond premium (EBP) of Gilchrist and Zakrajšek [2012], and the
unemployment rate (U6)—that have been found to predict recessions. There is an
extensive literature on predicting recessions using these and other variables; one
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recent example is Kiley [2022], who finds that similar variables14 can be used to
predict increases in unemployment rate at the one-year horizon. Insofar as con-
sumption growth is predictable, our prior is that variables that predict recessions
are likely to be useful in predicting consumption growth.

We employ these five instruments in our main specification. In robustness ex-
ercises, we also consider the cyclically-adjusted price-earnings (CAPE) ratio of
Campbell and Shiller [1988], the shadow spread defined by the difference between
actual bill yields and those implied by a smoothed term structure (Lenel et al.
[2019]),15 lagged consumption growth, and using the BAA corporate bond spread
(vs Treasurys) in the place of the EBP. When using lagged consumption growth and
lagged inflation as instruments, we use only log(ct−1/ct−2) and a trailing average
of inflation up to Pt−1 to avoid issues related to measurement error in ct and Pt , a
standard practice in the literature.

Consumption Data. We use real NIPA non-durable goods and services consump-
tion per capita growth as a our preferred consumption measure. We use this measure
both because it is standard in the literature and because our interest lies in studying
an aggregate Euler equation. In our robustness exercises, we also generate results
with non-durable goods consumption only. Our use of aggregate consumption data
should guide the interpretation of our estimates of the IES.16 In our baseline setting,
consumption data is not used to construct the zero-beta rate.

Data Sample. Our data sample begins in January 1973, when all of our instru-
ment variables become available, and ends in December 2020. Because some of
our instruments involve lags and changes, our returns series begins in March 1973,
and those returns are predicted using data from January and February 1973. Our

14Kiley [2022] uses the BAA-Treasury spread instead of the EBP, and the other variables are
defined slightly differently.

15We would like to thank Monika Piazzesi and Mortiz Lenel for suggesting that we include this
spread.

16Vissing-Jørgensen [2002] and others have shown that the consumption growth of financial mar-
ket participants is more sensitive to certain shocks than the consumption growth of non-participants.
Assessing the extent to which the consumption Euler equation with the zero-beta rate holds for
various sub-populations is an interesting direction for future research.
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sample is 574 months long. Appendix Table 2 presents summary statistics for our
instruments and consumption data.

3.1 Results

The first column of Table 1 presents the γ coefficients estimated with our GMM
procedure, with their associated standard errors. The first column of Table 1 also
presents the results of a Wald test of the hypothesis that all of the coefficients (except
the constant) are zero.

Several results are immediately apparent. First, our instruments have some abil-
ity to predict the return of our zero-beta portfolio—the Wald test p-value is very
close to zero. Moreover, all of our predictor variables except the unemployment
rate are statistically significant at the 5% level on their own. Collectively, our in-
struments have a non-trivial ability to predict the zero-beta portfolio return.

Second, the zero-beta rate is high and volatile. The constant in Table 1 is the
average monthly nominal return of the zero-beta portfolio (because the instruments
have been centered), so our estimates imply an average real zero-beta rate of around
8.3% per year (12.0% annualized nominal, with 3.7% inflation), with a standard
deviation of 9.3%.17 In contrast, the Treasury bill yield is low and stable, which
implies that there is a large and volatile spread over the Treasury bill yield, roughly
7.6% per year on average. By way of comparison, the mean monthly nominal return
of the market in our sample is 0.98% (11.8% annualized), which is to say that the
average returns of the zero-beta portfolio are similar to the average return on the
market. This finding is consistent with other estimates of the average zero-beta
return (Hong and Sraer [2016], Bali et al. [2017]).

The standard deviation of the return of the underlying zero-beta portfolio less
the zero-beta rate is about 2.7% per month, or 9.4% annualized (consistent with
the variances of the minimum-variance portfolios constructed by Ledoit and Wolf
[2017]). This standard deviation is substantially below the standard deviation of
the market return, which helps explain why we are able to reject the null of no-

17Our econometric analysis occurs at monthly frequencies. For the sake of simplicity and trans-
parency, when discussing annualized returns, we always report monthly returns multiplied by
twelve.
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Table 1: Constructing the Zero-Beta Rate
(1) (2)

GMM OLS (inf.)
RF 2.747 2.747

(0.706) (0.686)

UMP 0.0629 0.0629
(0.0820) (0.0818)

EBP -0.993 -0.993
(0.256) (0.238)

TSP 0.297 0.297
(0.0966) (0.0958)

CPI_Rolling -2.196 -2.196
(0.909) (0.875)

Constant 1.002 1.002
(0.112) (0.111)

Wald/F 35.74 8.125
p-value 1.1e-06 2.0e-07
RMSE 2.671
Observations 574 574
Standard errors in parentheses

Notes: The first column of this table shows our point estimates and standard errors for the γ coeffi-
cients from our GMM estimation. The instruments have been centered, so the constant is the average
monthly nominal return of the zero-beta portfolio . Standard errors in the first column are robust to
heteroskedasticity and account for estimation error in the other parameters. The Wald statistic in the
first column is a test of the hypothesis that all coefficients except the constant are zero; the p-value is
shown below. The second column shows (for comparison purposes only) the results of a predictive
regression of the excess return of the zero-beta portfolio on our instruments.
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predictability for our portfolio despite the notorious difficulty of predicting the mar-
ket return. The annualized average Sharpe ratio of the portfolio, computed using the
excess returns over Treasury bills, is about 0.8, and often (because the return is pre-
dictable) above one. Our view is not that this portfolio is a new asset pricing factor
uncorrelated with all other factors, but rather that the spread between the zero-beta
rate and the Treasury bill yield reflects the convenience of Treasury bills and other
safe assets. We treat the spread as a residual and do not propose an explanation for
the convenience of safe assets.

Third, the zero-beta rate increases more than one-for-one with Treasury bill
yields (i.e. the spread is increasing in bill yields) but is decreasing in the lagged
inflation rate. The former is consistent with the observation that Treasury bills have
money-like qualities (Nagel [2016]).

In addition, the unemployment rate and term spread positively predict the zero-
beta portfolio returns, whereas the EBP negatively predicts those returns.18 That is,
times when unemployment is low, the yield curve is inverted, and the excess bond
premium is high are times when the return of our portfolio is predicted to be partic-
ularly negative. These are exactly the times when an increase in the unemployment
rate (and a recession more generally) is particularly likely [Kiley, 2022]. In other
words, the zero-beta rate falls when a recession is likely.

The second column of Table 1 presents the results of an OLS regression in which
our instruments are used to predict the return of our zero-beta portfolio (i.e. step 3
in the infeasible procedure). This regression is infeasible on its own: one needs to
know the γ coefficients to construct the zero-beta portfolio return. The purpose of
this column is to illustrate two points. First, the moment conditions that define this
OLS regression are also moment conditions used in our exactly-identified GMM
procedure; as a result, the point estimates are identical. Second, the robust standard
errors used in the OLS regression do not account for the fact that betas used to
construct the zero-beta portfolio return are themselves estimated. Nevertheless,
they are only slightly smaller than our GMM standard errors, which do take this

18Specifically, a one percentage point increase in the level of the unemployment rate, term spread
(annual yield difference), or excess bond premium (annual yield difference), all else equal, leads to
an increase in the expected monthly return of our zero-beta portfolio of about .06, .3, and negative
one percentage points, respectively.
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into account, suggesting that the main source of uncertainty with respect to the γ

parameters is the uncertainty associated with the predictive regression.

4 The Euler Equation

In this section we show that the zero-beta rate fits the aggregate consumption Euler
equation remarkably well, in line with our interpretation of the zero-beta rate as the
intertemporal price. The aggregate consumption Euler equation plays a central role
in many macroeconomic models. This is true for both representative agent models
and in many models with heterogeneous agents (in which the consumption Euler
equation may not hold at the individual level but does at the aggregate level; see
Werning [2015]).

We start with a linearized version of the Euler equation,

Et [log(ct+1/ct)] = σ
−1 ln(δ )+σ

−1 (log(R0,t)−Et [log(Pt+1/Pt)]) .

That is, the real zero-beta rate should predict real consumption growth.
Let us now revisit Figure 1. This figure compares expected real consumption

growth with the expected real return of Treasury bills on the left panel, and with
the real zero-beta rate on the right panel. The two series are plotted on separate
axes, which have been aligned in terms of their mean values. The axes have also
been scaled to each represent +/- four standard deviations. In effect, these graphs
are tests of the linearized Euler equation, with σ defined by the ratio of the standard
deviations and δ set to ensure that equation holds at the average values. The con-
trast between these two panels is striking. The expected real Treasury return bears
essentially no resemblance to expected consumption growth. In contrast, the real
zero-beta rate co-moves strongly with expected consumption growth—the zero-beta
rate satisfies an aggregate consumption Euler equation.
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Figure 2: Results without COVID

Notes: Both panels present results for the “NoCOVID” robustness exercise (Appendix Section G),
in which the sample ends in December 2019. They plot expected real returns against expected
consumption growth, over time. Expected real returns are constructed using nominal rates (1m
bill yields on the left, the zero-beta rate on the right) less expected inflation. Expected inflation is
generated from predictive regressions using the instruments described in Section 3, which are the
same instruments used to construct the zero-beta rate. Expected consumption growth is generated in
the same fashion. In both panels, the right vertical axis is consumption growth, centered at its mean,
with limits equal to +/- four standard deviations. The left vertical axis is the same for the relevant
expected real return. All series are annualized.

We find an even more striking congruence between the two series when we
end the sample in 2019, excluding the COVID episode, shown in Figure 2. This
effect is driven by a change in the coefficients of our regression predicting con-
sumption growth (call them γc), which is a result of the unusually large changes in
consumption during that period.19 The coefficients the determine the zero-beta rate
are largely unchanged (see Appendix Section G).

There is nothing mechanical about these results, but it is important to interpret
them correctly. Let γ ′0 ·Zt and γ ′c ·Zt denote, respectively, the expected real zero-
beta rate and consumption growth conditional on Zt (after demeaning) .20 The raw
fact is that if one uses the set of macro variables Zt to separately predict (1) the real
return of the zero-beta portfolio, and (2) aggregate real consumption growth, both
after demeaning, the two vectors of prediction coefficients are nearly proportional
to each other. Importantly, we are not using consumption data when constructing

19There are four months in 2020 with more than six standard deviation movements in consumption
growth, one of which is a seventeen-standard-deviation event.

20The γ0 coefficients are the γ coefficients of our estimation less the coefficients of a regression
predicting inflation with the Zt instruments.
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the zero-beta rate. That is, we are choosing the γ0 coefficients to best predict the
real return of a portfolio of stocks, and separately constructing the γc to predict real
consumption growth. There is no reason to expect those vectors to be proportional
absent economic theory.

To understand this in more detail, let us define

∆ = γ0 −σ × γc,

If the linearized Euler equation held exactly for EIS σ and for all structural shocks,
∆ should be equal to a vector of zeroes. What the graphical test in Figure 1 shows
is that ∆ is very close to zero in the Zt−covariance sense, that is, Var(∆′ ·Zt) ≈ 0.
If we had only one predictor Zt (L = 1), the result would be mechanical, because
we can always define σ = |γ0|/|γc|. As long as these two coefficients have the same
sign, we will obtain a positive EIS. But once we have more than one predictor,
L ≥ 2, the result is not mechanical. Shocks to different predictors could move
the real zero-beta rate and expected consumption growth in different directions.
In our main specification, with five predictor variables, there are certainly many
other possible time series that could have been generated by our procedure. The
failure of the Euler equation with the expected real Treasury bill return provides
one illustration of this possibility—it is, in effect, a placebo test. Our procedure
could have concluded that either expected consumption growth or the real zero-
beta rate resembled the expected real Treasury bill return. It instead found that those
two series were proportional to each other, and neither resembled the expected real
Treasury bill return. In Appendix Section D we also conduct a similar placebo test
with long-term Treasury bonds, and find the Euler equation also fails for these bond
returns.21

Still, our point estimate for ∆ is not exactly a vector of zeros. Figure 1 leaves
open the possibility that our point estimates for ∆ differ substantially from zero for
shocks that are rare and small but of economic interest, so that Var(∆′ ·Zt)≈ 0 even
though ∆ itself is far from zero. We examine this issue in the next two subsections

21The failure of the Euler equation with respect to long term bonds is consistent with our view of
bonds as having some degree of convenience and with the presence of time-variation in bond risk
premia.
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in two complementary ways, one statistical and the other economic. The statistical
approach tests the Euler equation, loosely testing that ∆ = 0 (we in fact test the fully
non-linear Euler equation as opposed to its linearized version). The null hypothesis
is that any deviation of ∆ from zero reflects estimation error. The advantage of
this approach is that we test the Euler equation for all perturbations of Zt (i.e. all
potential structural shocks). The disadvantage of this test is that it might fail to
reject the Euler equation purely due to noise. The alternative economic approach,
in contrast, independently identifies economically interesting structural shocks (we
will use monetary shocks), and studies if the Euler equation holds, at our point
estimates, in response to these specific shocks.

Before moving on, let us point out that one potential concern with regards to
Figure 1 is that the predictive regressions that define the zero-beta rate and con-
sumption growth suffer from over-fitting.22 In our view, this is almost certainly
the case. Nevertheless, it is remarkable that the two predictive regressions, each of
which is overfitting a distinct time series, nevertheless generate such similar (up to
a scaling factor) predictions.

To further address the possibility of overfitting, in Figure 3 we compare a ridge-
penalized zero-beta rate (see Appendix Section C for details) with a similarly con-
structed forecast of consumption growth.23 The ridge penalty is designed to reduce
over-fitting and improve the out-of-sample reliability of our estimate of the zero-
beta rate. For this reason, the ridge estimate would be our preferred estimate if we
wished only to construct the zero-beta rate (as opposed to our exercise in the next
section, which tests the consumption Euler equation). The ridge penalty attenuates
the γ coefficients towards zero with the exception of the constant term, which is
not penalized, and the coefficient on the Treasury bill yield, which is attenuated
towards 1 (i.e. the traditional view that the zero-beta rate is the Treasury bill yield).
The scale of the penalty is determined via cross-validation, with the goal of min-
imizing the out-of-sample squared forecast error of the zero-beta portfolio return.
Figure 3 shows that ridge penalization reduces the scale of both expected consump-

22We view the potential overfitting of expected inflation as a less serious issue, due to the relative
ease of forecasting inflation as opposed to consumption growth or portfolio returns.

23That is, consumption growth is estimated using a ridge regression, whose penalty parameter is
selected via ten-fold cross-validation.
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tion growth and the zero-beta rate, and that they remain roughly proportional.

Figure 3: Results for Ridge Regressions

Notes: Both panels of this figure plot expected real returns against expected consumption growth,
over time. Expected real returns are constructed using nominal rates (1m bill yields on the left,
the zero-beta rate constructed using our main specification and ridge penalization on the right, see
Appendix Section C) less expected inflation. Expected inflation is generated from predictive regres-
sions using the instruments described in Section 3, which are the same instruments used to construct
the zero-beta rate. Expected consumption growth is generated in the same fashion, but with a ridge
regression whose penalty is chosen using ten-fold cross-validation. In both panels, the right vertical
axis is consumption growth, centered at its mean, with limits equal to +/- four standard deviations.
The left vertical axis is the same for the relevant expected real return. All series are annualized.

4.1 Statistical Tests of the Euler Equation

We will test the instrumented version of the non-linear Euler equation,

E

[(
δ

(
ct+1

ct

)−σ R0,t

Pt+1/Pt
−1

)
Zl,t

]
= 0. (16)

In addition to the zero-beta rate, we will test the Euler equation with the Treasury
bill yield Rb,t and with the market return Rm,t+1. These are classical tests of the
Euler equation and illustrate two polar issues. The Treasury bill return is very easy
to predict (the nominal return is known ex-ante), and statistical tests strongly reject
the Euler equation. The market return, in contrast, is hard to predict and one cannot
reject anything. The latter is a “weak-instruments” problem (Yogo, 2004). The
return of the zero-beta portfolio is considerably less volatile than the market and
easier to predict, as shown in Table 1. However, the F-test in the (infeasible) OLS
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regression suggests that we may suffer from a weak instruments problem,24 so we
will test the Euler equation using weak-instruments-robust methods.

The method we adopt follows Stock and Wright [2000] (see Appendix Section J
for the details of how their results can be applied to our problem). Our main interest
lies in testing whether or not, for some value of the IES σ−1, the model cannot be
rejected. The essence of the procedure is as follows:

1. Conjecture value of σ (the null hypothesis),

2. Estimate δ̂ (σ) using the unconditional Euler moments (16) with l = 0 (Z0,t =

1),

3. Test using the instrumented Euler moments (16) with l > 0.

Repeating this procedure for many possible values of σ allows us to construct a
confidence set, and to test if the model is rejected for all values of σ .

We can understand our procedure in the context of the GMM estimator ex-
panded to incorporate the Euler equation moments. Importantly, we do not use the
Euler equation moments to construct the zero-beta rate. We construct the zero-beta
rate exactly as in the previous section, and use the Euler equation moments only to
test. Expressing this procedure as one big GMM estimation allows us to properly
account for the estimation error in the zero-beta rate (see Appendix Section J for
more details). Let gTest,t(θ ,δ ,σ) be the vector of the Euler equation moments

gl,t+1(θ ,δ ,σ) =

(
δ

c−σ

t+1

c−σ
t

R0,t(θ)

Pt+1/Pt
−1

)
Zl,t ,

for L= 1...L, which are not targeted in the estimation of θ and δ . Let V̂Test(σ) be the
variance-covariance matrix of 1

T ∑
T
t=1 gTest,t(θ̂ , δ̂ (σ),σ). Under the null hypothesis

of an IES of σ−1, the test statistic

Ŝ(σ) =

(
1
T

T

∑
t=1

gTest,t

(
θ̂ , δ̂ (σ),σ

))′

·V̂Test(σ)−1 ·

(
1
T

T

∑
t=1

gTest,t

(
θ̂ , δ̂ (σ),σ

))
24It is close to the critical values suggested by, e.g., Olea and Pflueger [2013].
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is chi-square distributed with L degrees of freedom. Inverting this test statistic al-
lows us to construct confidence sets. Specifically, we construct a 95% confidence
set by computing Ŝ(σ) for values of σ between 1

4 and 10, and comparing the Ŝ(σ)

values to the 95th-percentile of a chi-squared distribution with L degrees of free-
dom.

The same procedure can be applied to traditional Euler equations. If we replace
R0,t(θ) in (16) with either the Treasury bill yield Rb,t or the CRSP market return
Rm,t+1, we can apply the exact same procedure to estimate δ̂ (σ) using the uncon-
ditional Euler equation moment and then test on the instrumented Euler equation
moments. In these cases θ does not enter the consumption Euler equation, and there
is no need to estimate the zero-beta rate while simultaneously testing the consump-
tion Euler equation for a different asset. The advantage of this approach is that the
same set of moments are used to test the consumption Euler equation as applied to
the three different assets (the Treasury bill, market portfolio, and zero-beta rate),
consistent with recommendations of Cochrane [2009] (sections 11.5 and 11.6).

To understand what the test is doing, notice that once we set δ̂ to satisfy the
Euler equation on average, what the other Euler moments say is that

c−σ

t+1

c−σ
t

Rt+1(θ)

Pt+1/Pt
(17)

is not predictable by Zt , where Rt+1 is one of R0,t , Rb,t , or Rm,t+1. The test rejects a
given σ if the instruments Zt collectively predict (17).

Our results are shown in Figure 4. Consistent with the findings of Hansen and
Singleton [1983], Dunn and Singleton [1986], and Yogo [2004], we are able to
reject the hypothesis that the Euler equation holds when applied to the Treasury
bill yield. Intuitively, our instruments have some ability to predict consumption
growth, and are certainly able to predict the real Treasury bill return. The finding
that expected real Treasury bill returns are not proportional to consumption growth
(Figure 1) essentially guarantees the rejection of the test.
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Figure 4: Tests of Specification by IES

Notes: This figure plots the log of the Ŝ(σ) statistic for values of σ from 0.25 to 10, which is
constructed using the Euler equation moments (16) as applied to the zero-beta rate, Treasury bill
yield, and CRSP market return. The dotted threshold line is the log of the 95th percentile critical
value of a chi-square distribution with degrees of freedom equal to the number of instruments (5).
The set of σ for which Ŝ(σ) is less than the threshold is the S-set (Stock and Wright [2000]).

Again consistent with the findings of Yogo [2004], our test fails to reject the
consumption Euler equation as applied to the market index for almost any values of
σ . The market return is volatile relative to consumption growth; for most values of
σ , the moment condition is essentially identical to the market return.25 The market
return is difficult to predict, and it is therefore unsurprising the procedure is unable
to reject the model. This lack of predictability is the weak-identification problem.

25This ceases to be true for σ sufficiently large; in this case, the predictability of consumption
growth allows the test to reject in some specifications. However, there is a separate issue that arises
when σ becomes excessively large, discussed below.
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In contrast, the test applied to the zero-beta rate is able to reject the model for
some but not all values of σ . In our baseline analysis, values of σ below 2 (IES
above 0.5) are rejected, and values of σ above 2 (IES below 0.5) cannot be rejected.
This again is unsurprising in light of Figure 1. Our instruments are able to predict
both consumption growth and the real zero beta return, and when the latter is scaled
down by a factor of five (i.e. σ ≈ 5), the two series are remarkably similar.

A key limitation of our test arises from the non-linear nature of the Euler equa-
tion. When σ becomes large (say, σ = 20), the realized SDF becomes very large on
the date with the largest consumption drop in the data sample (in our sample, April
2020). The realization on this date dwarfs all other realizations of the SDF; as a
consequence, the variance matrix V̂test(σ) becomes almost singular. All of our test
statistics (for the Treasury bill, zero-beta rate, and the market) converge towards
one in this case. Intuitively, it is as-if there are only two dates in our data set (April
2020 and not-April-2020), and the model is untestable in this case. For this reason,
we restrict our analysis to σ ≤ 10.26

4.2 Monetary Policy Shocks and the Euler Equation

In this section we study whether the Euler equation holds conditional on a monetary
shock. Specifically, we consider whether the linearized Euler holds at the point
estimates of the response of consumption growth and the real zero beta rate to an
identified monetary shock (i.e. if the effect of the shock on ∆′ ·Zt is small).

Monetary shocks are interesting on their own, but they are especially relevant in
our context because monetary policy aims to exploit the Euler equation as a struc-
tural relationship. However, there is a large and time-varying spread between the
safe rates that central banks control as policy instruments and the zero-beta rate that
enters the Euler equation. If this spread is exogenous to monetary policy, raising
the safe rate also raises the zero-beta rate one-to-one. This is what is assumed in ap-
plied work such as Smets and Wouters [2003, 2007]. But, as Chari et al. [2009] and
Fisher [2015] point out, if the spread is endogenous to monetary policy, movements
in the safe policy rates may have surprising effects on the zero-beta rate.

26Related to this point (the loss of power as σ grows large), we do not place any special emphasis
on the value of σ for which Ŝ(σ) is minimal, as the global minimum is always σ → ∞.
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We carry out an exercise analogous to the one behind Figure 1, but conditional
on a monetary shock. We regress the predictors Zt on measures of monetary policy
shocks, and then use our predictive regression coefficients to calculate the effect
on expected consumption growth, expected real Treasury bill returns, and the real
zero-beta rate (call them γc, γb, and γ0, respectively). Implicitly, we are assuming
that the relationship between Zt and these variables is structural. We run regressions
of the form:

γ j · (Zt+h −Zt−1) = φ0,h +φ1,h ·mpshockt + εt+h, (18)

where mpshockt is either the Romer and Romer [2004] shock or the Nakamura and
Steinsson [2018] shock,27 aggregated to the monthly frequency, and j ∈ {c,b,0}.
The Romer and Romer [2004] shocks are available from 1973 through 2007; the
Nakamura and Steinsson [2018] shocks are available from 2000 through 2019. We
use the coefficients from our ridge estimation (see Appendix Section C), as these
are less likely to suffer from over-fitting. Figure 5 shows our results graphically.

Both of the shocks are normalized to raise nominal Treasury bill yields by one
percent on impact. They are both estimated to increase real Treasury bill yields on
impact by roughly the same amount, but the Romer and Romer [2004] shocks are
more transitory. In both cases, the zero-beta rate is estimated to fall in response
to the shock, but the effect of the Romer and Romer [2004] shocks is considerably
smaller. In Appendix Section E we decompose the impact of each predictor in Zt . A
higher bill yield raises the zero-beta rate, other things equal. But monetary shocks
also flatten the term yield curve and increase credit spreads, and these lower the
zero-beta rate. These effects dominate the direct effect of the increase in Treasury
bill yields.

These results may seem surprising. A monetary contraction is supposed to work
by raising the cost of current consumption, but it actually makes it cheaper. How-
ever, it is perfectly in line with facts and theory. It is well-known that a monetary
contraction lowers expected consumption growth, also shown in Figure 5. Through
the Euler equation, the interest rate should fall as households, correctly expecting
lower consumption in the future, try to save. Our point estimates are consistent with

27As updated by Wieland and Yang [2020] and Acosta [2022], respectively.
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Figure 5: Effects of a Monetary Policy Shock on Real Rates and Consumption
Growth

Notes: This figure plots the coefficients φ1,h from our monetary policy shock regressions (18), for
three different γ j vectors (ones for the real zero-beta rate, the expected real Treasury bill return, and
expected consumption growth), with a horizon h from one to twelve months. The γ j vectors are
generated from our ridge specification (as in Figure 3 and Appendix Section C), and the vector for
the real zero-beta rate is scaled down by a factor of five, consistent with an IES of 0.2. The left panel
plots the results for the Romer and Romer [2004] shocks, the right for the Nakamura and Steinsson
[2018] shocks. Both shocks are scaled to represent a one percent increase in the federal funds rate
on impact.

the Euler equation holding in response to monetary shocks with an IES of roughly
0.2 (σ = 5), in line with our previous results.

Through the lens of the Euler equation, it is the rise of the expected real Treasury
bill return that is puzzling in light of the fall of consumption growth after a monetary
policy shock. Conversely, if one takes the rise in the Treasury yield as the defining
feature of a contractionary shock, the fall in consumption growth is puzzling if one
has in mind the conventional Euler equation applied to the Treasury return. In other
words, if we use the expected real Treasury bill return, the Euler equation fails not
only unconditionally, but also conditionally on a monetary shock.

A standard way of addressing the conditional failure of the Euler equation is
to introduce consumption habit formation into the model (as in Christiano et al.
[2005] or Smets and Wouters [2007]), which generates a modified Euler equation
and the kind of “hump-shaped” impulse response found in the data. However, this
does not resolve the unconditional failure of the Euler equation (Singleton [1994],
Canzoneri et al. [2007]), which is why Smets and Wouters [2007] still need wedges
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in this equation to match the data. It is also inconsistent with evidence on marginal
propensities to consume (Auclert et al. [2020]). Specifically, after receiving a trans-
fer, households tend to spend a substantial fraction of the transfer immediately,
with the level of increased spending decaying over time. This pattern, which those
authors call “micro jumps,” is inconsistent with habit preferences. They propose
informational frictions to reconcile the micro evidence with the hump-shaped re-
sponse of impulse response functions.

Our results suggest instead that the Euler equation holds both unconditionally
and conditionally on a monetary shock, when applied to the correct intertempo-
ral price of consumption (the real zero-beta rate). Impatience shocks and habits
or informational frictions on the consumption side are unnecessary, at least at the
aggregate level. Safe interest rates, in contrast, are not the correct intertemporal
price of consumption, do not enter the consumption Euler equation, and reflect an
endogenous spread with the zero-beta rate. Appendix Section F shows an example
of a stylized three-period New Keynesian model where a contractionary monetary
policy shock can at the same time raise the safe rate and reduce the spread so that
the zero-beta rate falls, consistent with our empirical findings.

5 Is there an Equity Risk Premium?

In Table 1, we reported that average return of our zero-beta portfolio was about 1%
per month, which is very close to the average return of the CRSP market index over
the same period. Thus, taken at face value, our point estimates imply a roughly zero
equity risk premium.

This finding is consistent with prior literature. Baker et al. [2011] and Hong
and Sraer [2016] both emphasize that low beta stocks have slightly outperformed
high beta stocks in post-1968 data; our result shows that this finding is robust to
the inclusion of the factors we consider.28 That said, we certainly cannot claim
with any statistical power that the equity premium relative to the zero-beta rate is
small or negative. The strongest claim we can make is that it may well be zero after
controlling for consumption risk.

28A closely related finding was reported in Blitz and Van Vliet [2007].
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This, however, is a radical claim: it implies that, contra Mehra and Prescott
[1985], there may be no equity premium puzzle after all. We are not the first to point
out that the zero-beta rate is high, or that convenience might help resolve the equity
premium and other asset pricing puzzles (see Bansal and Coleman [1996], Lagos
[2010] and Herrenbrueck [2019]). Our contribution is to show that the zero-beta
rate is both compatible with the consumption Euler equation and high enough to
resolve the equity premium puzzle. That said, our view resolves the equity premium
puzzle by creating a “convenience puzzle” (why are spreads so large?) about which
we have little to say.

However, the high level of equity returns is not the only evidence supporting the
existence of equity risk premia. A long line of literature, summarized in Cochrane
[2011], shows that time variation in expected equity returns (i.e. discount rates)
is required to explain the volatility of valuation ratios (such as the price-dividend
or price-earnings ratios). Campbell [1991], in particular, argues that the required
variation in expected equity returns must be variation in expected excess returns, as
there is simply not enough variation in Treasury bill yields.

We revisit this point using our zero-beta rate.29 Our analysis will focus on the
price-dividend ratio of a hypothetical consumption claim (a claim whose dividends
are proportional to aggregate consumption). We focus on this claim because it en-
joys a clear theoretical connection to the consumption Euler equation and because
it avoids the need to explicitly model the relationship between dividends and con-
sumption (see Longstaff and Piazzesi [2004] on this issue). For these reasons, this
claim has been studied in a variety canonical asset pricing models, such as Camp-
bell and Cochrane [1999], Bansal and Yaron [2004], and Barro [2006]. This clarity
comes at a cost, as the price-dividend ratio for a consumption claim is not directly
observable. In the analysis that follows, we use the market cyclically-adjusted price-
earnings (CAPE) ratio of Campbell and Shiller [1988] as a proxy, recognizing (as
pointed out in the papers above) that we expect the market to resemble a levered
version of a consumption claim.

Consider the Campbell-Shiller decomposition as applied to the log price-divided

29We would like to thank Monika Piazzesi for encouraging us to pursue this direction.
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ratio of a consumption claim. Setting aside constants,

pdt =
∞

∑
j=0

ρ
j (

∆ct+1+ j − rc
t+1+ j

)
+ cons.,

where rc
t is the log real return on the claim and pdt is the log price-dividend ratio

of the claim. If the linearized Euler equation holds when applied to the zero-beta
rate (as our empirical work suggests), then, taking expectations and continuing to
set aside constants,

Et [pdt ] =
(
σ
−1 −1

)
Et

[
∞

∑
j=0

ρ
jr0,t+ j

]
−Et

[
∞

∑
j=0

ρ
j (rc

t+ j+1 − r0,t+ j
)]

+ cons,

where r0,t is the log real zero-beta rate. That is, the price-dividend ratio of this
claim must predict either future real zero-beta rates, future excess returns, or some
combination thereof. If expected excess returns are constant, it follows that all time
variation in the price-dividend ratio of the consumption claim must be the result of
time-variation in future real zero-beta rates.

We explore this hypothesis in a VAR framework. Let us suppose that our pre-
dictor variables Zt follow a VAR(1) process:

Zt+1 = µ +ΦZt + εz,t+1, Et [εz,t+1] = 0.

This equation, together with (12),30 the Campbell-Shiller approximation, and the
hypothesis of constant expected excess returns implies, continuing to set aside con-
stants,

Et [pdt ] =
(
σ
−1 −1

)
γ
′
0 · (I −ρΦ)−1 ·Zt + cons. (19)

Note that, following Engsted et al. [2012], we write Et [pdt ] and not pdt , avoiding
the assumption that this ratio is observable.

Armed with this equation, we will first compute the standard deviation of Et [pdt ].
This is a lower bound on std(pdt), one that is tight if pdt is a deterministic function

30As in the preceding section, we use γ0 to denote the coefficients on the real zero-beta rate, which
equals γ less the predictive coefficients for inflation.
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of Zt . We will then plot Et [pdt ] and compare it to the log CAPE ratio. We assume
an annual ρ of 0.94 and an IES σ−1 of 0.2 (consistent with our estimates).31 We
estimate Φ using a standard VAR.

Our preferred specification for this exercise is one that includes the CAPE ratio.
Including or omitting this predictor variable had only a minimal effect on our earlier
results (see Appendix Section G), as the CAPE ratio’s one-period-ahead predictive
power is small. It is however, important for our VAR system, because it is more
persistent than our other predictor variables. This specification delivers a standard
deviation std(Et [pdt ]) of about 28% over our sample. This number is comparable to
the standard deviation of the price-dividend ratio of a consumption claim from the
Campbell and Cochrane [1999] model calibration (27%), a model that is designed
to match the variability of valuation ratios. The Campbell and Cochrane [1999]
model, famously, has a constant risk-free rate and attributes essentially all of that
variation to variation in excess returns. Our calculations suggest that it is instead
possible to attribute all of the variation to variation in the zero-beta rate. Our result
can also be compared to the std(Et [pdt ]) that would come from the same VAR, if
one used the Treasury bill rate instead of the zero-beta rate (9%).32

We find similar results when using the γ from our main specification (which
omits CAPE) while still including the CAPE ratio in the VAR system, which is
to say that the CAPE ratio predicts future zero-beta rates primarily by predicting
the future values of other predictor variables. We estimate a std(Et [pdt ]) of about
21% when omitting the CAPE variable from the VAR, which is consistent with the
intuition that the CAPE ratio should be informative about the price-dividend ratio
of a consumption claim.

Figure 6 below plots Et [pdt ] (from the specification that includes the CAPE
ratio) and the log of the CAPE ratio, centering both series to ignore constants. It
also plots, for reference, a version of Et [pdt ] that uses the Treasury bill yield in

31This value of ρ is consistent with the average value of the CAPE over our sample and with
the average real zero-beta rate less average consumption growth over our sample (which is the
appropriate comparison under the hypothesis of zero excess returns). Campbell [2017] section 5.3
recommends a slightly higher value (0.95 to 0.96) in the context of the market price-dividend ratio;
our results are not very sensitive to this difference.

32That is, our VAR is consistent with the findings of Campbell [1991]; it is our use of the zero-beta
rate instead of the bill yield that leads us to a different conclusion.
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place of the zero-beta rate. As noted above, we should expect the CAPE ratio, as
the valuation ratio of a claim on corporate cash flows, to be more variable than
a valuation ratio for a consumption claim. That said, we are able to generate a
striking amount of price-dividend variation in a consumption claim, given that we
have imposed the assumption of constant expected excess returns.

Figure 6: Predicted Valuation Ratio of a Consumption Claim

Notes: This figure plots Et [pdt ] as computed from (19) and a VAR on the Zt variables, using a
specification (“AltCAPE” from Appendix Section G) that includes the CAPE ratio of Campbell
and Shiller [1988], as well as the log of that ratio. It also plots a version of Et [pdt ] as computed
from (19) using the same VAR, but γb (corresponding to the expected real bill return) in the place of
γ0. All series have been centered.

In summary, our estimate of the zero-beta rate is high enough, volatile enough,
and persistent enough to rationalize the high level of equity returns and the volatil-
ity of valuation ratios under the assumption of a constant and small equity risk
premium. That said, we certainly cannot prove the non-existence of equity risk pre-
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mia. We also cannot rule out the possibility that equity risk premia are volatile and
tend to rise when the zero-beta rate falls. This possibility allows for time variation
in equity premia without generating excess variation in valuation rations, and could
be further explored using VAR methods in the style of Campbell [1991].

6 Interpretation and Misspecification Analysis

Our preferred interpretation of our results is that the zero-beta rate is the correct
intertemporal price. While its level and volatility may seem surprisingly large, it
simultaneously helps resolve macro and asset-pricing puzzles. It comes, however,
at the cost of a large and unexplained spread relative to safe bonds. We believe
this nonetheless represents progress, because the type of models that can explain
this spread are potentially quite different than those designed to explain large and
volatile risk premia or failures of the aggregate consumption Euler equation.

We will stress again that the fact that the zero-beta rate fits an aggregate con-
sumption Euler equation does not imply that there is a representative agent or that
individual households’ consumption is well described by an Euler equation. As
Werning [2015] points out, an aggregate consumption Euler equation is consistent
with heterogeneous-agent models where individual households are not on their Eu-
ler equation due to frictions such as uninsurable idiosyncratic risk or borrowing
constraints. Of course, it is possible to write models where the aggregate consump-
tion Euler equation fails with the zero-beta rate. Our results are evidence against
these models. That is, even if our interpretation of the zero-beta rate as the correct
intertemporal price is not accepted, the fact that the zero-beta rate fits an aggregate
consumption Euler equation is a stylized fact that should be used to discipline and
test models.

In the rest of this section we first explore the consequences of potential mis-
specification in our empirical strategy. We then discuss results from the literature
that support our interpretation of the zero-beta rate.
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6.1 Misspecification Analysis

In this section we explore what happens if we have the wrong set of asset-pricing
factors Ft and/or predictors Zt . We also clarify the relationship between our proce-
dure and the mathematics of stochastic discount factors. In Appendix Section G we
carry out several robustness tests using different set of asset-pricing factors Ft and
predictors Zt .

Asset-Pricing Factors Ft . If we include too many factors Ft , our estimate of the
zero-beta rate will be unbiased but noisy. The zero-beta portfolio will still be or-
thogonal to the true SDF, so its expected return will be the zero-beta rate. But since
it is also orthogonal to the extra factors, its variance will not be as small as possible.

The problem is more serious if we omit some asset-pricing factors. In this
case the zero-beta portfolio may have some covariance to the omitted factors, and
its expected return will contain some omitted risk premium. This is, in fact, the
conventional interpretation of the high-intercept of the security market line, but the
bias can go in either direction. Our use of the minimum-variance zero-beta portfolio
ensures that our portfolio will load only weakly on omitted factors that explain
a significant fraction of the cross-sectional variation on stock returns. The main
concern is if the omitted factor carries a significant risk price without explaining
much of the cross-section of returns.

The success of the consumption Euler equation with the zero-beta rate provides
some evidence about the possibility of omitted risk premia. If the omitted risk
premium is constant or not predictable by Zt , only the average level of the zero-
beta rate will be affected, so it will still fit the Euler equation but our estimate of
δ will be biased. Alternatively, if the omitted risk premium is predictable by Zt ,
the zero-beta rate will fit the Euler equation only if the omitted risk premium is
highly correlated with the true zero-beta rate, in which case our estimate of σ will
be biased. If the omitted risk premium is not highly correlated to the true zero-beta
rate, the zero-beta rate should not fit the Euler equation. The fact that it does then
provides some support for the time-variation in our measure of the zero-beta rate.
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Predictors Zt . If we include too few predictors Zt , we will obtain not the true
zero-beta rate, but its projection on the included predictors. If the consumption
Euler equation holds for true set of predictors it will also hold for those we include.
But the consumption Euler equation may hold using the included predictors even
when it doesn’t using the true predictors. For example, if the economy was hit by
true impatience shocks that move δt , the consumption Euler equation should not
hold (with a constant δ ) once these shocks are included. But if the shocks to δt

are orthogonal to the included predictors Zt , the consumption Euler equation will
appear to hold.

Including unnecessary predictors causes no particular difficulties, although if
the number of predictors is large relative to our sample size we will face an econo-
metric problem (“many weak instruments”). If we both include too many predictors
and have omitted some asset-pricing factors Ft , the potential for spurious variation
in the measured zero-beta rate arises. As explained above, in this case the measured
zero-beta rate will include some omitted risk premium, but if this omitted risk pre-
mium is not predictable by Zt , only the average level of the zero-beta rate will be
biased. If we now include some variables in Zt that do not predict the true zero-beta
rate but do predict the omitted risk premium, this will create spurious time variation
in the measured zero-beta rate.

Incomplete Markets and Multiple SDFs. The assumption that the vector of ones
does not lie in the span of the betas, which is familiar from arbitrage pricing theory
(Chamberlain and Rothschild [1983]) and is often viewed as a technical assumption
(see, eg., assumption 3.iii in Kim et al. [2021]), has an important economic meaning
in our context.

Our procedure estimates the zero-beta rate, R0,t = Et [Λt+1/Λt ]
−1, under the

assumption that the relevant innovations of the SDF Λt are spanned by the factors
Ft . However, even if this assumption is correct, since it is not possible to build a
risk-free portfolio using stocks, by the absence of arbitrage and given any stochastic
process R̃0,t , there is an SDF Λ̃t that prices stocks (Et

[
Λ̃t+1/Λ̃t ×Ri,t+1

]
= 1) and

satisfies R̃0,t = Et
[
Λ̃t+1/Λ̃t

]−1. In particular, one could choose R̃0,t = Rb,t . These
other SDFs attribute the spread between the zero-beta expected return our procedure
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recovers, R0,t , and the process R̃0,t to an omitted factor.33 All unit-investment, zero-
beta portfolios must load equally on the omitted factor to explain why their expected
return is R̃0,t and not R0,t . Put another way, the vector of ones must lie in the span
of the betas of the assets to the augmented set of factors (including both the omitted
factor and Ft), which means that it is not possible to build a portfolio with zero
covariance to these SDFs Λ̃t . To be concrete, if we took the return of the zero-
beta portfolio we build in our procedure and added it as an asset pricing factor,
Rp,t+1 −Rb,t , we could construct an SDF Λ̃t with Et

[
Λ̃t+1/Λ̃t

]−1
= Rb,t , but we

would not be able to apply our estimation procedure to the augmented factors. Our
procedure thus recovers, from the set of all possible rates R̃0,t , the R0,t that that does
not require an additional factor to which all assets are equally exposed.

This point can be further illustrated using the example of the “betting against
beta” model of Frazzini and Pedersen [2014] (but note that consumption is not
modeled in their framework, and hence their model cannot speak to the main part of
our analysis). In that model, leverage-constrained and unconstrained agents interact
in financial markets; the leverage-constrained agents are analogous to the agents
who value convenience in our model.34 The leverage-constrained agents have a
single-factor SDF (with the market as the single factor) that prices stocks, whose
mean is the inverse of the zero-beta rate. The unconstrained agents have a two-
factor SDF, whose factors are the market and a zero-beta portfolio, with a mean
consistent with safe bond yields. The betas of each asset to these two factors sum
to one (ι lies in the span of the betas). The two SDFs agree on equity prices,
but differ in their conditional means. Our procedure, applied to this hypothetical
economy, would recover the leverage-constrained investors’ SDF given the market
as the single factor. It cannot be applied to the two-factor SDF of the unconstrained
agents, as our assumption that ι does not lie in the span of the betas is violated.

33It is without loss of generality to assume this factor is orthogonal to the included factors Ft ,
implying that the conditional variance of these other SDFs is higher than the conditional variance of
Λt+1/Λt .

34The key difference between these two types of agents is that leverage-constrained agents do
not own any safe bonds. In the Frazzini and Pedersen [2014] model, any safe bonds in positive net
supply must be owned by an un-modeled third class of agents.
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6.2 Related Evidence

There are number of other facts documented in the literature that are consistent with
the view that the zero-beta rate is the correct intertemporal price.

• The reluctance of banks to finance themselves with equity instead of debt can
be explained by the observation that zero-beta rates are on average higher
than Treasury bill yields, and they represent the correct cost of capital [Baker
and Wurgler, 2015]. Baker et al. [2020] explore the implications of this idea
in the more general context of corporate capital structure decisions.

This point is particularly stark when dealing with arbitrage opportunities. Af-
ter the great financial crisis there were arbitrages, such as covered-interest-
parity violations [Du et al., 2018], that offered banks the opportunity to earn
risk-free profits. Boyarchenko et al. [2018] carefully model the constraints
facing banks. They find results for the 2014-2018 period that imply banks
could earn returns on equity of roughly 4 percent (annualized) over Trea-
sury bills on these risk-free trades, if they issued equity and levered the trade
as much as possible. Our point estimate for the average zero-beta spread
over Treasury bills during this period is 5 percent in our main specification.
The convenience spread van Binsbergen et al. [2019] construct using options
should also be interpreted in this way, as it provides an arbitrage opportu-
nity for banks, limited only by their ability to leverage their equity. More
generally, this point highlights the distinction between the zero-beta rate vs.
Treasury bill spread and the (much smaller) arbitrage spreads between bond-
like investments studied in the literature. Both of these things are sometimes
called “convenience,” but they are not the same.

• Recent work by Itskhoki and Mukhin [2021] explores the “disconnect” be-
tween exchange rates and the macroeconomy. In their model, exchange rates
are disconnected from interest rates as a result of financial frictions (see their
equation (16)), and the traditional consumption Euler equation with safe bond
yields holds (their equation (3)). Our results suggest instead a disconnect be-
tween bond yields and the intertemporal price of consumption. As suggested

43



by Jiang et al. [2021], such a disconnect (wedge) in the traditional consump-
tion Euler equation offer an alternative means of explaining various exchange
rate puzzles.

• Recent “two-account” heterogenous-agent models such as Kaplan et al. [2018]
and Auclert et al. [2023] make a distinction between liquid assets/accounts
and illiquid ones, which is conceptually related to the distinction between
the Treasury bill yield and zero-beta rate emphasized in this paper. Our evi-
dence, which suggest that an aggregate consumption Euler equation holds for
the zero-beta rate but not for Treasury bill yields, is potentially informative
about the nature of the frictions or preferences that should distinguish the two
accounts in this class of models. However, the mapping between the assumed
frictions or preferences and the aggregate consumption Euler equation is sub-
tle, in light of the general equilibrium effects emphasized by Werning [2015],
and we leave a further exploration of this issue for future work.

7 Conclusion

The interest rate plays a central role in macro and asset-pricing. The conventional
view is that a safe interest rate is the correct intertemporal price, which implies
that there is no stable aggregate consumption Euler equation and that risk premia
are large and volatile. We propose instead that the zero-beta rate is the correct
intertemporal price. Our view is supported by the success of the aggregate con-
sumption Euler equation with the zero-beta rate and is consistent with small and
stable risk premia. The zero-beta rate simultaneously resolves asset-pricing and
macro puzzles, but comes at the cost of an unexplained convenience spread for safe
assets, which we make no attempt to explain in this paper.
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Appendix for “The Zero-Beta Rate,”

Di Tella, Hébert, Kurlat, Wang

A Data Details

A.1 Equity Portfolios35

We use monthly equity returns in CRSP which can be matched to a firm in COM-

PUSTAT, from 1973 to 2020. The CRSP returns are augmented with the delisted

returns also from CRSP. If the return or delisted return reported in CRSP is missing,

we replace the missing value with 0. Then we compute the following object:

radj
t = (1+ rt)

(
1+ rdelisted

t

)
−1

where rt is the reported return, and rdelisted
t is the delisted return. We use radj

t as the

variable of return used in all further calculations and therefore simply referred it as

return. We replace negative prices (indicating mid as opposed to closing prices)

in CRSP with their absolute values. We drop duplicated records (identified by

35This section constructs equity portfolios following the standard procedure of Fama and
French [1993]. Qingyi (Freda) Song Drechsler publishes her implementation of the Fama and
French [1993] value and size portfolios on her website, as well as on WRDS (https://wrds-
www.wharton.upenn.edu/pages/wrds-research/applications/python-replications/fama-french-
factors-python/). We follow closely her program when computing accounting variables and
handling missing values.
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GVKEY and Year) in COMPUSTAT data. For each firm, we compute the book-

to-market ratio, market value, operational profitability and investment with annual

accounting data according to Fama and French [1993, 2015].

1. Market value

For portfolio in year t, it is measured with market data for the fiscal year

ending in year t −1 and is share outstanding (SHROUT) times price (PRC).

Since we will later sort stocks into groups based on their firm characteristics,

we use the total market value of a firm, by summing across different stock

issuances if a firm has multiple stock issuances.

2. Book-to-market ratio

For portfolio in year t, it is measured with accounting data for the fiscal year

ending in year t − 1 and is the ratio between book equity (BE) and market

value (ME). Book equity at t is shareholder equity (SEQ) plus deferred taxes

and investment tax credit (TXDITC) minus preferred stock redemption value

(PSTKRV). Depending on availability, we use redemption (item PSTKRV),

liquidating (item PSTKL), or par value (item PSTK) for the book value of

preferred stock, in this order. If none of these variables are available, we treat

the book value of preferred stock as 0. If deferred taxes and investment tax

credit (TXDITC) is missing, we use the sum of deferred taxes (TXDB) and

investment tax credit (ITCB). If all of these are missing, we treat the value of

deferred taxes and investment tax credit as 0.

3. Operational profitability
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For portfolio in year t, it is measured with accounting data for the fiscal

year ending in year t − 1 and is revenues (REVT) minus cost of goods sold

(COGS), minus selling, general, and administrative expenses (XSGA), minus

interest expense (XINT), all divided by book equity.

4. Investment

For portfolio in year t, is the change in total assets (AT) from the fiscal year

ending in year t − 2 to the fiscal year ending in t − 1, divided by t − 2 total

assets.

We compute the market beta of each stock using rolling 5-year, monthly linear

regressions with the market return provided on Ken French’s website.36 We limit

the sample to stocks that have at least 24 months of data points in the 5-year window.

At the end of each June, the bottom 20% of stocks, in terms of market value,

are dropped.37 Then stocks are allocated to three groups according to NYSE break-

points, common share stock, on 30% percentile and 70% percentile, with respect

to: Book-to-Market and Market Value. When matched with COMPUSTAT, we use

accounting information at the end of year t − 1 to match with CRSP stock records

at the end of June of year t.38 This way we make sure the accounting information is

available to the investors when creating portfolios according to firm characteristics.

Then for each June of year t, we compute 30% percentile and 70% percentile break-

points of Market Beta within each Book-to-Market and Market Value group.39 We

36https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data_Library/f-f_factors.html
37Note if a stock drops below the 20% in the following month, it is still included.
38For example, if we are observing a portfolio return at the end of March, 1975, this means this

portfolio was constructed at the end of June, 1974, using the account information available at that
time, which was from the end of Dec, 1973.

39For example, the beta breakpoints of the low Book-to-Market, low Market Value group are
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then take the intersections of these groups to create portfolios. In particular, we con-

struct 27 (3x3x3) portfolios on market beta, size, and book-to-market.40 We com-

pute the value-weighted monthly average returns of these portfolios. The weight we

use is market value at the end of May, one month before the portfolio is constructed,

times the cumulative return without dividend between current month and the end of

May.41 By doing this, we eliminate the effect of equity issuance on weights. We

construct two additional sorts on market beta, size, and operational profitability, 27

(3x3x3), and on market beta, size, and investment, 27 (3x3x3), in similar fashion.

We then augment these portfolios with the 49 industry portfolios provided on

Ken French’s website.42 These 130 portfolios are our baseline test assets. In our

robustness exercises (and in earlier versions of the paper), we omit the profitability

and investment sorts.

A.2 Factors

The Fama and French factors are downloaded directly from Ken French’s website.

The Treasury bond factor is the return of the 6-10y Treasury bonds over the one-

month Treasury bill (the latter as defined below).43 The default factor is the return

different from those of the high Book-to-Market, low Market Value group. We do not impose the
NYSE restriction and share code restrictions when computing the breakpoints of Beta.

40Every stock in the portfolios needs to have non-missing value for Market Beta, Book-to-Market
and Market Value. Otherwise the stock is dropped from the portfolio from the end of June, year t to
the end of June, year t +1.

41For example, to compute the weights used in March, 1973, we multiple the market values of
stocks at May, 1972, by the cumulative returns without dividend of these stocks between May, 1972,
and March, 1973.

42https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data_Library/det_49_ind_port.html
43Specifically, we use the Fama maturity portfolio with maturity greater than 60 months and less

than 120 months from CRSP Treasury as our long-term bond return measure.
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of long-term corporate bonds less the return of long-term Treasury bonds.44 The

consumption factor (if used) is built using the same consumption series used when

testing the Euler equation.

A.3 Main Specification Instruments

1. Treasury bill yield

One-month Treasury bill yield from Fama and French [2015].

2. Rolling average inflation

Rolling average of the previous twelve months of inflation, which is the log-

change in CPI index. CPI index from FRED.45

3. Term spread

Difference in the yields of 10-year treasury bond46 and 1-month treasury bill.

4. Excess bond premium

From Gilchrist and Zakrajšek [2012], as updated by Favara et al. [2016].47.

5. Unemployment rate

From FRED.48

44We use the ICE BofA 15+ Year US Corporate Index Total Return Index from FRED
(https://fred.stlouisfed.org/series/BAMLCC8A015PYTRIV) and the 10+ Fama bond portfolio from
CRSP.

45https://fred.stlouisfed.org/series/CPILFESL
46https://fred.stlouisfed.org/series/GS10
47https://www.federalreserve.gov/econres/notes/feds-notes/updating-the-recession-risk-and-the-

excess-bond-premium-20161006.html
48https://fred.stlouisfed.org/series/UNRATE
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A.3.1 Additional Instruments

1. CAPE

From Campbell and Shiller [1988], as updated on Robert Shiller’s website.49

2. Shadow spread

Following Lenel et al. [2019], we evaluate a variation of equation (9) in

Gurkaynak et al. [2007] at maturity 3/12 for their estimated parameter val-

ues.

ft (1/4,0)= β0+β1

1− exp
(
−1/4

τ1

)
1/4
τ1

+β2

1− exp
(
−1/4

τ1

)
1/4
τ1

− exp
(
−1/4

τ1

)
+β3

1− exp
(
−1/4

τ2

)
1/4
τ2

− exp
(
−1/4

τ2

)

We then use the estimated 3-month forward rate to proxy for the three month

yield. The estimated series is at daily frequency. To aggregate to monthly

frequency, we follow the procedure by Lenel et al. [2019]. We first take the

average of the yield from last Thursday to this Wednesday. The weekly data is

thus measured on each Wednesday. We then take the monthly average of the

weekly yields. We download daily 3-month T-bill yield data from the Fred50,

then aggregate it to monthly following the same steps as the estimated series.

The shadow spread is then the difference between the monthly estimate and

the 3-month T-bill yield. In our specification, the shadow spread is divided

49http://www.econ.yale.edu/~shiller/data.htm
50https://fred.stlouisfed.org/series/DTB3
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by 12 to convert into monthly spread.

3. Corporate bond spread

Difference between the yield of Moody’s seasoned BAA corporate bonds 51

and Moody’s seasoned AAA corporate bonds.52

A.4 Consumption

We use the monthly nominal aggregate consumption expenditures on non-durables

and services from National Income and Product Accounts (NIPA) Table 2.8.5, the

population numbers from NIPA Table 2.6 and the price deflator series from NIPA

Table 2.8.4. The consumption growth series used in the estimation is defined as

∆ct = 100× log
(

ct

ct−1

)

where ct is real consumption expenditures per capita. The sample of consumption

growth is from March, 1973 to Dec, 2020. However, when using lagged consump-

tion growth as instrument, the sample is from Jan, 1973, to Oct, 2020 to avoid issues

related to measurement error in ct .

In one robustness exercise, we use non-durable consumption only (excluding

services), and otherwise construct the consumption growth variable in an identical

fashion.
51https://fred.stlouisfed.org/series/BAA
52https://fred.stlouisfed.org/series/AAA
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A.5 Summary Statistics

Table 2: Summary Statistics of Instruments and Consumption Growth
Mean SD Min 25% 50% 75% Max

T-bill Yield (%, Monthly) 0.370 0.288 0.000 0.110 0.390 0.538 1.350
Unemployment (%) 6.287 1.709 3.500 5.000 5.900 7.400 14.700
Excess Bond Premium (%, Annual) 0.075 0.549 -1.085 -0.263 -0.048 0.252 3.472
CAPE 20.761 8.861 6.639 13.015 20.844 26.495 44.198
Term Spread (%, Annual) 1.760 1.366 -3.040 0.750 1.920 2.797 6.940
Shadow Spread (%, Monthly) 0.023 0.021 -0.164 0.012 0.020 0.030 0.137
Corporate Bond Spread (%, Annual) 1.088 0.449 0.550 0.780 0.950 1.270 3.380
Rolling Inflation (%, Monthly) 0.315 0.213 0.050 0.174 0.221 0.380 1.069
Consumption Growth (%, Monthly) 0.124 0.747 -12.909 -0.037 0.139 0.315 6.150

Notes: Summary statistics of the monthly times series included as instruments (for both the main
specification and robustness exercises), as well as consumption growth series. The columns 25%,
50%, and 75% are the 25 percentile, median, and 75 percentile of the sample values respectively.
Rolling Inflation is the 12-month rolling average of monthly inflation. The rolling inflation sample
starts from Jan, 1973, ends at Oct, 2020, to avoid issues related to measurement error, as mentioned
in the main text. The sample of consumption growth is from March, 1973 to Dec, 2020. Note, when
using lagged consumption growth as instrument, the sample is instead from Jan, 1973, to Oct, 2020.
All other instrument variables have sample from Feb, 1972, to Nov, 2020.

B Estimation Algorithm

In this appendix section, we discuss the estimation procedure outlined in the text in

more detail. Our procedure takes as input a panel of instruments Zt , factors Ft , and

returns Rt .

The procedure is as follows:

1. Guess a value of γ , and generate R0,t using (12).

(a) We use R0,t = Rb,t as our initial guess.

2. Run time series regressions for each asset i to estimate αi and βi, as in (9).

3. Estimate ΣR(θ) using our adaptation of the Ledoit and Wolf [2017] proce-

dure; see Appendix Section H for details.
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(a) Matlab code for the analytical shrinkage estimator we use can be found

in Ledoit and Wolf [2020]; their file is called “analytical_shrinkage.m”.

4. Construct portfolio weights for the zero-beta portfolio, using (15).

5. Calculate the GMM objective function

L

∑
l=1

(T−1
T

∑
t=1

(w(θ)′ ·Rt+1 − γ
′(θ) ·Zt)Zl,t)

2.

6. Repeat steps 1-5 to minimize the GMM objective.

This procedure takes advantage of the factor that it is possible to analytically com-

pute the (α,β ) parameters and weighting matrix w(θ) given an estimate of γ , which

greatly speeds up the computation. However, the procedure is not sufficient to gen-

erate standard errors. Standard errors can be calculated using the usual GMM stan-

dard error formulas, given our definitions of the moments gt+1(θ) and weighting

matrix W (θ). This requires calculating the jacobian of the moments with respect

to the parameters, which is somewhat involved in our setting but straightforward

conceptually. See Appendix Section J for an explicit formula.

C Ridge Estimation

In this appendix section, we describe the details of our regularized estimation (“ridge”)

procedure used to construct the zero-beta rate and expected consumption growth

presented in Figure 3.

We will treat the projection moments as restrictions in our GMM estimation,

which is to say that we require that they hold exactly. Loosely, this can be thought

9



of as putting infinite weight on these moments, relative to other moments. The

benefits of this approach are two-fold. First, it allows us to compute the regression

coefficients (α,β ) analytically, which greatly reduces the time required to compute

the estimator. Second, it simplifies the interpretation of our procedure (as described

in Section 2.2).

We use a ridge regression approach to avoid over-fitting with regards to the γ

parameters. Specifically, we penalize the square norm of the γ vector, according

to a weight ψ ≥ 0. We choose ψ using cross-validation, in a manner described

below. We exclude the γ0 parameter (which reflects the average difference between

the zero beta rate and the safe rate) from the penalty term. We shrink the γ1 coeffi-

cient (which corresponds to Z1,t = Rb,t) towards one, and the remaining coefficients

towards zero. This form of penalization has the effect of shrinking our estimate of

R0,t towards Rb,t plus a constant, biasing us against finding in-sample time variation

in the spread between R0,t and Rb,t . Introducing this kind of bias is useful in that it

can reduce the variance of our out-of-sample forecast error, and can be interpreted

as imposing a Bayesian prior.53

Our GMM analysis thus solves

θ̂1 ∈ argmin
θ

L

∑
l=0

(
T−1

T

∑
t=1

w(θ)′ · (α(θ)+ ε̂t(θ))Zl,t−1

)2

︸ ︷︷ ︸
Instrumented Asset Pricing Moment Squared

+ψ(γ1(θ)−1)2 +
L

∑
l=2

γl(θ)
2)︸ ︷︷ ︸

Ridge Penalty

subject to

(
T−1

T

∑
t=1

ε̂i,t(θ)Fj,t

)
︸ ︷︷ ︸

Projection Errors

= 0,∀i, j.

53See Hastie et al. [2009].
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The problem is exactly identified (the number of asset pricing moments is equal to

the number of predictor variables plus one, and the number of projection moments

is equal to the number of (αi,βi j) parameters). As a consequence of the restrictions,

conditional on γ , the (αi,βi j) point estimates will be the usual OLS estimates, as in

the main text.54

We select the ridge penalty ψ via cross-validation. Given a candidate ψ , we di-

vide our data sample into ten equal-length, non-overlapping subsets, {T1, . . . ,T10},

and estimate our model leaving out one particular Tm, producing a parameter esti-

mate θ̂m(ψ). In the left-out subset, we compute the squared moment,
(

w
(
θ̂m(ψ)

)′ · ε̂t+1
(
θ̂m(ψ)

))2
,

which is the out-of-sample variance of the surprise return of zero-beta portfolio.

We repeated this process for each m, computing the sum of squared moments, and

choose ψ to minimize this value:

ψ̂ ∈ argmin
ψ≥0

10

∑
m=1

(
w
(
θ̂m(ψ)

)′ · ε̂t+1
(
θ̂m(ψ)

))2
.

Once the value of ψ̂ is chosen, we compute θ̂ using this value and the full sample.55

54The restriction approach is necessary for this result due to the ridge penalty. Absent the ridge
penalty (as in the main text), the asset pricing moments would be zero at the estimated θ̂ and the
estimates of β̂ would coincide with OLS estimates even if these moments received finite weight.
With the ridge penalty and finite weight on the projection moments, the asset pricing moments will
be non-zero at θ̂ and the estimator will distort β̂ to reduce asset pricing errors at the expense of
larger projection errors. There is nothing incorrect about such an approach, but it complicates the
computation and interpretation of the estimator.

55This tenfold cross-validation procedure follows the recommendation of Hastie et al. [2009].
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D Placebo Test

Figure 7 below presents the results of a regression that the predicts the real re-

turn of a Treasury bond portfolio (the Fama 6-10y portfolio) using our instruments.

The purpose of this placebo test is to demonstrate that there is nothing mechanical

about results: our Zt variables do not perfectly co-move, and there is no guarantee

that the same combination of them that predicts bond returns will predict consump-

tion growth. Moreover, our theory predicts that expected real bond returns should

(generically) not line up with expected consumption growth, for two reasons. First,

longer maturity bonds may inherit some of the convenience of shorter maturity

bonds, because they can also be used to back short-dated safe claims (such as de-

posits or repo). Second, it is well-known (Campbell and Shiller [1991]) that the

excess return of bonds over bills is predicted by the term spread (one of our instru-

ments), which is to say that there is a time-varying risk premium for longer-maturity

bonds. For both these reasons, we should not expect to two series to be aligned.

12



Figure 7: Expected Consumption Growth vs. Expected Real Tsy. Bond (6-10y)
Returns

Notes: This figure plots the expected real return of a 6-10y Treasury bond portfolio against expected
consumption growth, over time. Expected nominal returns are generated from predictive regressions
using the instruments described in Section 3, which are the same instruments used to construct the
zero-beta rate, and then converted to real returns by subtracting expected inflation (predicted with
those same instruments). The right vertical axis is consumption growth, centered at its mean, with
limits equal to +/- four standard deviations. The left vertical axis is the same for the expected real
bond return. All series are annualized.

E Decomposition of the Effects of a Monetary Shock

In this appendix section, we present in table form some of the point estimates shown

in Figure 5. Specifically, in the first four columns of Tables 3 and 4 we present point

estimates for six-month changes (h = 5), for each of the three variables shown in

13



Figure 5 (the real zero-beta rate, the real expected Treasury bill return, and con-

sumption growth). Columns 4-8 in these tables show the coefficients (φ l
0,φ

l
1) of the

regression

γ̂l · (Zl,t+5 −Zl,t−1) = φ
l
0 +φ

l
1 ·mpshockt + ε

l
t+5,

for each of our L instruments, where γ̂l is the point estimate from our GMM analysis

with ridge penalization.

The sum of the coefficients φ l
1, for l ∈ {1, . . . ,L}, is the effect on the nominal

zero-beta rate, by (12). The tables thus illustrate the key drivers of the result that

a monetary shock (normalized to increase the nominal safe rate by one percent on

impact) can simultaneously increase the safe rate while decreasing the zero-beta

rate.

Both shocks increase the safe rate (the Treasury bill yield), and for this reason

would be expected to increase the zero-beta rate if all else were equal. However, all

else is not equal. Both the Romer and Romer [2004] and Nakamura and Steinsson

[2018] shocks result in a significant flattening of the yield curve and an increase

in the excess bond premium, which more than offsets the effect of the increase in

short rates (see columns 7 and 8 of tables below).. The two shocks differ in both

their construction and in the periods in which they are available (and the conduct of

monetary policy has changed over time), either of which might explain the observed

differences in the scale of their effects. Note also that neither of these tables includes

standard errors.
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Table 3: Decomposition of the Effects of a Romer-Romer Shock
(1) (2) (3) (4) (5) (6) (7) (8)

Real Bill Real Z.B. Ex. C. Gr. g_RF g_UMP g_EBP g_TSP g_CPI_Rolling
RR_shock 0.338 -1.870 -0.292 1.094 -0.185 -1.449 -0.649 -0.268

Constant -0.0273 -0.0412 -0.00868 -0.0717 -0.000763 -0.0267 0.0242 0.0117
Observations 413 413 413 413 413 413 413 413

Table 4: Decomposition of the Effects of a Nakamura-Steinsson Shock
(1) (2) (3) (4) (5) (6) (7) (8)

Real Bill Real Z.B. Ex. C. Gr. g_RF g_UMP g_EBP g_TSP g_CPI_Rolling
NS_shock 1.801 -9.469 -1.873 6.107 -2.272 -3.256 -6.765 -0.886

Constant -0.0856 -0.00218 0.00492 -0.132 -0.00881 0.167 -0.0375 0.00373
Observations 230 230 230 230 230 230 230 230

F An Example of Monetary Shocks and Endogenous

Spreads

Consider a version of the model from Section 1.1 with completely sticky goods

prices (leading to standard New Keynesian forces), where the following shock takes

place. The economy starts in period 0 at a steady state. In period 1, the Central Bank

conducts an (unexpected) open market operation that increases the supply of safe

bonds. The money multiplier takes one period to work its way through the banking

system, so M only falls in period 2, and remains permanently low. From period 2

onwards, the supply of safe bonds adjusts to bring the zero-beta vs. safe rate spread

back to steady state, and all quantities and prices are constant thereafter. What we

have in mind is that the private supply of safe assets is endogenous and adjusts with

some delay until the spread returns to its steady state value. We pick parameters

to match a steady state spread of 8% and real zero-beta rate 10%, and pick σ = 5.

Figure 8 shows the impulse responses.
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Figure 8: Effects of a Monetary Policy Shock in the Model

Notes: This figure plots the effects of a monetary contraction. In period one, the central bank
sells bonds in exchange for base money. This contracts the supply of broad money (labeled Money
Supply) with a delay, in period two, and the supply of safe bonds (Bond Supply) contracts in period
two to restore the convenience spread (Spread) to its original value. The impact of this shock on
the level of consumption, the zero-beta rate, and the safe bond rate is shown in the remaining three
sub-figures.

The first column shows the shock itself. In period 1 there is an increase in the

supply of bonds of just under 1%, and from period 2 onwards there is a permanent

fall in the money supply of about 1.5%. The magnitudes are chosen to match the

effect of an average-sized Nakamura and Steinsson [2018] shock that raises the safe

rate by 2.7 bps.56 The bond supply falls in period 2 to return spreads back to their

steady state.

The second column shows the effect on consumption and spreads. Consumption

falls on impact and then falls further when the money supply actually contracts in

period 2, so that consumption growth also falls by 3.6 bps. The spread falls on

56The movements in money and safe bond supply are relatively large compared to the movements
in interest rates they generate. This is because the log specification of preferences implies a high
interest-elasticity of money and safe bond demand.
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impact due to both the fall in consumption (which reduces liquidity demand) and

the increase in bond supply.

The third column shows the effect on interest rates. The zero-beta rate falls by

20 bps. With σ = 5 this is consistent with the magnitude of the fall in consumption

growth. The fall in spreads and in zero-beta rates push the safe rate in opposite

directions. In this example, the spread falls enough that the safe rate rises by 2.7

bps. All these magnitudes are in line with Figure 5 (scaled by the size of the shock).

Overall, the shock looks like a relatively standard monetary contraction: an

open market operation that contracts the money supply with some delay, raises the

safe interest rate and lowers consumption and consumption growth. It may seem

surprising that the relevant interest rate for intertemporal decisions, the zero-beta

rate, falls instead of rising, but this is actually consistent with the intertemporal

pattern of money supply and consumption. The assumption that the shock to money

supply is permanent and goods prices completely fixed implies that consumption

remains permanently depressed. If we allowed money supply to revert to its original

level, or prices to eventually adjust, consumption would return to its original level.

In this case, the Euler equation implies that there would be a period of above-steady-

state zero-beta rates as consumption recovers, and the contemporaneous impact of

the shock on the level of consumption would be different. The purpose of this

analysis is to show that a rise in safe rates accompanied by a fall in consumption

growth and in the zero-beta rate is consistent with a basic New Keynesian model

augmented with convenience on safe assets.
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G Robustness Exercises

This appendix section contains our robustness exercises. We first provide an index

of the various exercises, with a label used to identify the specification.

• NoDrop20: With the bottom two deciles of stocks (by market value) included

in the data sample.

• FF3Industry: With Fama-French 3-factor sorted (27 size by book-to-market

by beta portfolios) + industry portfolios (76 total) and instead of 5-factor +

industry portfolios (130 total).

– An earlier version of this paper used this as the main specification.

• LinearCons: With a linear consumption factor F8,t = ∆ct+1.

• WithConsSigma1: With a σ = 1 non-linear consumption factor, F8,t =
c−σ

t+1/Pt+1

c−σ
t /Pt

.

– The Ŝ(σ) statistic re-estimates the zero-beta rate for each σ in this case,

as it depends on σ . The assumption of σ = 1 applies only to the analog

of Figure 1.

• WithConsSigma5: With a σ = 5 non-linear consumption factor, F8,t =
c−σ

t+1/Pt+1

c−σ
t /Pt

.

– The Ŝ(σ) statistic re-estimates the zero-beta rate for each σ in this case,

as it depends on σ . The assumption of σ = 5 applies only to the analog

of Figure 1.

• MktOnly: With only the market factor.

18



• FF3Only: With only the market, size, and value factors of Fama and French

[1993].

• AltBAAS: With our preferred instruments, using the BAA-AAA spread in

the place of the excess bond premium.

– The EBP and BAA-AAA spread are highly correlated conditional on

our other instruments, and for this reason we don’t include them both.

• AltCAPE: With our preferred instruments plus the cyclically adjusted price-

earnings (CAPE) ratio.

• LagCons: With our preferred instruments and a lag of consumption growth,

Z6,t = ∆ct−1.

– We use the second lag to reduce the problem of measurement error in

ct , following standard practice in the literature.

• Shadow: With our preferred instruments and the “shadow spread” used by

Lenel et al. [2019].

• VaryingBetas: With instruments-by-factor interactions as factors (allowing

for time-varying betas).

– i.e. with the seven factors of our main specification, plus 35 factors

F̃j′′,t+1 = Fj,t+1Zl,t for j ∈ {1, . . .7} and l ∈ {1, . . .5}(42 factors total).

This specification is isomorphic to a model in which the betas to the

seven main specification factors are linear in the Zt variables.
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• NDOnly: With non-durable goods consumption per capita as opposed to non-

durable goods + services per capita.

• NoCOVID: With a data sample ending in December 2019 (pre-COVID 19).

20
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Figure 9: NoDrop20: Results with Bottom Decile Stocks Included

Notes: Both panels present results for the “NoDrop20” robustness exercise (Appendix Section G). The left panel plots the
estimated real zero-beta rate against expected consumption growth. Expected real returns are constructed using the nominal
zero-beta rate less expected inflation. Expected inflation and expected consumption growth are generated from predictive
regressions using the same instruments used to construct the zero-beta rate. The right vertical axis is consumption growth,
centered at its mean, with limits equal to +/- four standard deviations. The left vertical axis is the same for the real zero beta
rate, and both series are annualized. The right panel plots the log of the Ŝ(σ) statistic for values of σ from 0.25 to 10, which
is constructed using the Euler equation moments (16) as applied to the zero-beta rate, Treasury bill yield, and CRSP market
return. The dotted threshold line is the log of the 95th percentile critical value of a chi-square distribution with degrees of
freedom equal to the number of instruments (5).

Figure 10: FF3Industry: Results with FF3+Industry Portfolios

Notes: Both panels present results for the “FF3Industry” robustness exercise (Appendix Section G). The left panel plots the
estimated real zero-beta rate against expected consumption growth. Expected real returns are constructed using the nominal
zero-beta rate less expected inflation. Expected inflation and expected consumption growth are generated from predictive
regressions using the same instruments used to construct the zero-beta rate. The right vertical axis is consumption growth,
centered at its mean, with limits equal to +/- four standard deviations. The left vertical axis is the same for the real zero beta
rate, and both series are annualized. The right panel plots the log of the Ŝ(σ) statistic for values of σ from 0.25 to 10, which
is constructed using the Euler equation moments (16) as applied to the zero-beta rate, Treasury bill yield, and CRSP market
return. The dotted threshold line is the log of the 95th percentile critical value of a chi-square distribution with degrees of
freedom equal to the number of instruments (5).
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Figure 11: LinearCons: Results with a Linear Consumption Factor

Notes: Both panels present results for the “LinearCons” robustness exercise (Appendix Section G). The left panel plots the
estimated real zero-beta rate against expected consumption growth. Expected real returns are constructed using the nominal
zero-beta rate less expected inflation. Expected inflation and expected consumption growth are generated from predictive
regressions using the same instruments used to construct the zero-beta rate. The right vertical axis is consumption growth,
centered at its mean, with limits equal to +/- four standard deviations. The left vertical axis is the same for the real zero beta
rate, and both series are annualized. The right panel plots the log of the Ŝ(σ) statistic for values of σ from 0.25 to 10, which
is constructed using the Euler equation moments (16) as applied to the zero-beta rate, Treasury bill yield, and CRSP market
return. The dotted threshold line is the log of the 95th percentile critical value of a chi-square distribution with degrees of
freedom equal to the number of instruments (5).

Figure 12: WithConsSigma1: Results with Consumption Factor, σ = 1

Notes: Both panels present results for the “WithConsSigma1” robustness exercise (Appendix Section G). The left panel
plots the estimated real zero-beta rate against expected consumption growth. Expected real returns are constructed using
the nominal zero-beta rate less expected inflation. Expected inflation and expected consumption growth are generated from
predictive regressions using the same instruments used to construct the zero-beta rate. The right vertical axis is consumption
growth, centered at its mean, with limits equal to +/- four standard deviations. The left vertical axis is the same for the real
zero beta rate, and both series are annualized. The right panel plots the log of the Ŝ(σ) statistic for values of σ from 0.25
to 10, which is constructed using the Euler equation moments (16) as applied to the zero-beta rate, Treasury bill yield, and
CRSP market return. The dotted threshold line is the log of the 95th percentile critical value of a chi-square distribution with
degrees of freedom equal to the number of instruments (5).
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Figure 13: WithConsSigma5: Results with with Consumption Factor, σ = 5

Notes: Both panels present results for the “WithConsSigma5” robustness exercise (Appendix Section G). The left panel
plots the estimated real zero-beta rate against expected consumption growth. Expected real returns are constructed using
the nominal zero-beta rate less expected inflation. Expected inflation and expected consumption growth are generated from
predictive regressions using the same instruments used to construct the zero-beta rate. The right vertical axis is consumption
growth, centered at its mean, with limits equal to +/- four standard deviations. The left vertical axis is the same for the real
zero beta rate, and both series are annualized. The right panel plots the log of the Ŝ(σ) statistic for values of σ from 0.25
to 10, which is constructed using the Euler equation moments (16) as applied to the zero-beta rate, Treasury bill yield, and
CRSP market return. The dotted threshold line is the log of the 95th percentile critical value of a chi-square distribution with
degrees of freedom equal to the number of instruments (5).

Figure 14: MktOnly: Results with only the Market Factor

Notes: Both panels present results for the “MktOnly” robustness exercise (Appendix Section G). The left panel plots the
estimated real zero-beta rate against expected consumption growth. Expected real returns are constructed using the nominal
zero-beta rate less expected inflation. Expected inflation and expected consumption growth are generated from predictive
regressions using the same instruments used to construct the zero-beta rate. The right vertical axis is consumption growth,
centered at its mean, with limits equal to +/- four standard deviations. The left vertical axis is the same for the real zero beta
rate, and both series are annualized. The right panel plots the log of the Ŝ(σ) statistic for values of σ from 0.25 to 10, which
is constructed using the Euler equation moments (16) as applied to the zero-beta rate, Treasury bill yield, and CRSP market
return. The dotted threshold line is the log of the 95th percentile critical value of a chi-square distribution with degrees of
freedom equal to the number of instruments (5).
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Figure 15: FF3Only: Results with only the FF3 Factors

Notes: Both panels present results for the “FF3Only” robustness exercise (Appendix Section G). The left panel plots the
estimated real zero-beta rate against expected consumption growth. Expected real returns are constructed using the nominal
zero-beta rate less expected inflation. Expected inflation and expected consumption growth are generated from predictive
regressions using the same instruments used to construct the zero-beta rate. The right vertical axis is consumption growth,
centered at its mean, with limits equal to +/- four standard deviations. The left vertical axis is the same for the real zero beta
rate, and both series are annualized. The right panel plots the log of the Ŝ(σ) statistic for values of σ from 0.25 to 10, which
is constructed using the Euler equation moments (16) as applied to the zero-beta rate, Treasury bill yield, and CRSP market
return. The dotted threshold line is the log of the 95th percentile critical value of a chi-square distribution with degrees of
freedom equal to the number of instruments (5).

Figure 16: AltBAAS: Results with the BAA-AAA Spread instead of the EBP

Notes: Both panels present results for the “AltBAAS” robustness exercise (Appendix Section G). The left panel plots the
estimated real zero-beta rate against expected consumption growth. Expected real returns are constructed using the nominal
zero-beta rate less expected inflation. Expected inflation and expected consumption growth are generated from predictive
regressions using the same instruments used to construct the zero-beta rate. The right vertical axis is consumption growth,
centered at its mean, with limits equal to +/- four standard deviations. The left vertical axis is the same for the real zero beta
rate, and both series are annualized. The right panel plots the log of the Ŝ(σ) statistic for values of σ from 0.25 to 10, which
is constructed using the Euler equation moments (16) as applied to the zero-beta rate, Treasury bill yield, and CRSP market
return. The dotted threshold line is the log of the 95th percentile critical value of a chi-square distribution with degrees of
freedom equal to the number of instruments (5).

25



Figure 17: AltCAPE: Results with the CAPE Instrument Included

Notes: Both panels present results for the “AltCAPE” robustness exercise (Appendix Section G). The left panel plots the
estimated real zero-beta rate against expected consumption growth. Expected real returns are constructed using the nominal
zero-beta rate less expected inflation. Expected inflation and expected consumption growth are generated from predictive
regressions using the same instruments used to construct the zero-beta rate. The right vertical axis is consumption growth,
centered at its mean, with limits equal to +/- four standard deviations. The left vertical axis is the same for the real zero beta
rate, and both series are annualized. The right panel plots the log of the Ŝ(σ) statistic for values of σ from 0.25 to 10, which
is constructed using the Euler equation moments (16) as applied to the zero-beta rate, Treasury bill yield, and CRSP market
return. The dotted threshold line is the log of the 95th percentile critical value of a chi-square distribution with degrees of
freedom equal to the number of instruments (6).

Figure 18: LagCons: Results with the Lagged Consumption Growth Instrument
Included

Notes: Both panels present results for the “LagCons” robustness exercise (Appendix Section G). The left panel plots the
estimated real zero-beta rate against expected consumption growth. Expected real returns are constructed using the nominal
zero-beta rate less expected inflation. Expected inflation and expected consumption growth are generated from predictive
regressions using the same instruments used to construct the zero-beta rate. The right vertical axis is consumption growth,
centered at its mean, with limits equal to +/- four standard deviations. The left vertical axis is the same for the real zero beta
rate, and both series are annualized. The right panel plots the log of the Ŝ(σ) statistic for values of σ from 0.25 to 10, which
is constructed using the Euler equation moments (16) as applied to the zero-beta rate, Treasury bill yield, and CRSP market
return. The dotted threshold line is the log of the 95th percentile critical value of a chi-square distribution with degrees of
freedom equal to the number of instruments (6).
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Figure 19: Shadow: Results with the Shadow Spread Instrument Included

Notes: Both panels present results for the “Shadow” robustness exercise (Appendix Section G). The left panel plots the
estimated real zero-beta rate against expected consumption growth. Expected real returns are constructed using the nominal
zero-beta rate less expected inflation. Expected inflation and expected consumption growth are generated from predictive
regressions using the same instruments used to construct the zero-beta rate. The right vertical axis is consumption growth,
centered at its mean, with limits equal to +/- four standard deviations. The left vertical axis is the same for the real zero beta
rate, and both series are annualized. The right panel plots the log of the Ŝ(σ) statistic for values of σ from 0.25 to 10, which
is constructed using the Euler equation moments (16) as applied to the zero-beta rate, Treasury bill yield, and CRSP market
return. The dotted threshold line is the log of the 95th percentile critical value of a chi-square distribution with degrees of
freedom equal to the number of instruments (6).

Figure 20: VaryingBetas: Results with Linear Betas

Notes: Both panels present results for the “VaryingBetas” robustness exercise (Appendix Section G). The left panel plots the
estimated real zero-beta rate against expected consumption growth. Expected real returns are constructed using the nominal
zero-beta rate less expected inflation. Expected inflation and expected consumption growth are generated from predictive
regressions using the same instruments used to construct the zero-beta rate. The right vertical axis is consumption growth,
centered at its mean, with limits equal to +/- four standard deviations. The left vertical axis is the same for the real zero beta
rate, and both series are annualized. The right panel plots the log of the Ŝ(σ) statistic for values of σ from 0.25 to 10, which
is constructed using the Euler equation moments (16) as applied to the zero-beta rate, Treasury bill yield, and CRSP market
return. The dotted threshold line is the log of the 95th percentile critical value of a chi-square distribution with degrees of
freedom equal to the number of instruments (5).
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Figure 21: NDOnly: Results with Non-Durable Goods Consumption

Notes: Both panels present results for the “NDOnly” robustness exercise (Appendix Section G). The left panel plots the
estimated real zero-beta rate against expected consumption growth. Expected real returns are constructed using the nominal
zero-beta rate less expected inflation. Expected inflation and expected consumption growth are generated from predictive
regressions using the same instruments used to construct the zero-beta rate. The right vertical axis is consumption growth,
centered at its mean, with limits equal to +/- four standard deviations. The left vertical axis is the same for the real zero beta
rate, and both series are annualized. The right panel plots the log of the Ŝ(σ) statistic for values of σ from 0.25 to 10, which
is constructed using the Euler equation moments (16) as applied to the zero-beta rate, Treasury bill yield, and CRSP market
return. The dotted threshold line is the log of the 95th percentile critical value of a chi-square distribution with degrees of
freedom equal to the number of instruments (5).

Figure 22: NoCOVID: Results Excluding 2020

Notes: Both panels present results for the “NoCOVID” robustness exercise (Appendix Section G). The left panel plots the
estimated real zero-beta rate against expected consumption growth. Expected real returns are constructed using the nominal
zero-beta rate less expected inflation. Expected inflation and expected consumption growth are generated from predictive
regressions using the same instruments used to construct the zero-beta rate. The right vertical axis is consumption growth,
centered at its mean, with limits equal to +/- four standard deviations. The left vertical axis is the same for the real zero beta
rate, and both series are annualized. The right panel plots the log of the Ŝ(σ) statistic for values of σ from 0.25 to 10, which
is constructed using the Euler equation moments (16) as applied to the zero-beta rate, Treasury bill yield, and CRSP market
return. The dotted threshold line is the log of the 95th percentile critical value of a chi-square distribution with degrees of
freedom equal to the number of instruments (5).
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H Details on the Covariance Matrix Estimator

The Ledoit and Wolf [2017] covariance matrix estimator, as we apply it, can be

thought of as a function of the estimated β parameters, the sample covariance ma-

trix of factor returns Σ̂K(γ), and the sample covariance matrix of excess returns,

Σ̂(γ) = T−1
T

∑
t=1

(Rt+1 − ιR0,t(γ))(Rt+1 − ιR0,t(γ))
′ .

Note that Σ̂K(γ) depends on γ via the dependence of first factor (the excess return

of the market) on R0,t .

We begin by pre-conditioning (as in section 4.2 of Ledoit and Wolf [2017])

using our factor model. Define

Σ̂F(θ) = β Σ̂K(γ)β
′+diag

(
Σ̂(γ)−β Σ̂K(γ)β

′) ,
where diag(M) is a diagonal matrix whose diagonal is equal to that of M. The

covariance matrix Σ̂F can be thought of as the covariance matrix implied by an

exact factor model, with our chosen factors.

We next transform the excess return data, to generate

Yt(θ) = (Σ̂F(θ))
1
2 )−1(Rt+1 − ιR0,t(γ)),

where (·) 1
2 is the symmetric matrix square root. We then apply the Ledoit and

Wolf [2017] shrinkage estimator to estimate the covariance matrix of Yt(θ) (call

this Σ̂c(θ)), and finally generate our estimate of the variance-covariance matrix of
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returns using

Σ̂R(θ) =
(
Σ̂F(θ)

) 1
2 Σ̂c(θ)

(
Σ̂F(θ)

) 1
2 .

This pre-conditioning in effect imposes a uniform prior about the orientation of the

eigenvectors of Σ̂c(θ), as opposed to about the orientation of the same for Σ̂R(θ).

The former is more appropriate in light of the co-movement of stocks with, for

example, the market factor. Our procedure differs from the empirical exercise in

Ledoit and Wolf [2017] in that it uses our K-factor model for pre-conditioning in-

stead of a single factor model, which seems more appropriate for our application.

We also modify their procedure in one additional respect, by using the ana-

lytical non-linear shrinkage estimator of Ledoit and Wolf [2020] in the place of the

“non-linear” shrinkage estimator. The two methods offer similar out-of-sample per-

formance in the minimum-variance portfolio problem, and the analytical method is

substantially faster to compute.

I Relationship to Shanken [1986]

Our starting point when developing our procedure was the MLE approach of Shanken

[1986], described in Campbell et al. [1998]. The Shanken [1986] procedure is de-

signed to extract a constant (over the sample period) risk-free rate. The key way in

which we have modified the procedure is via our assumption on the structure of the

zero-beta rate, equation (12), which replaces the assumption of a constant zero-beta

rate. Aside from this difference, our procedure deviates from the MLE estimator by

using a regularized covariance matrix estimator.

To begin, let us suppose that the residuals in the projection regressions (14),
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ε̂t , are Gaussian and i.i.d. with variance–covariance matrix Σε , and that all of the

factors are tradable. Shanken [1986] derives an MLE estimator for a constant zero-

beta rate under these assumptions.57 Using Σε has one particular disadvantage: Σε

may not be full rank (for example, if the value-weighted sum of the test assets is the

market portfolio). In contrast, our procedure handles this case without modification.

In the discussion that follows, assume Σε is invertible.

Under these assumptions, the log-likelihood function is, ignoring constants,

f (Rt+1,Ft+1,Zt ;θ ,Σε) =
1
2

ln
(
det(Σ−1

ε )
)
− 1

2
ε̂t+1 (θ)

′ ·Σ−1
ε · ε̂t+1 (θ) ,

where ε̂t+1(θ) is defined from (Rt+1,Ft+1,Zt) as in (14).

Maximizing the log-likelihood over θ , it follows, given the MLE estimate of γ ,

that the maximum likelihood (α,β ) estimates are exactly the OLS coefficients of

the projection regression. Specifically, they solve

E
[
Fj,te′i ·Σ−1

ε · ε̂t+1(θ)
]
= 0

for i∈ {1, . . . ,N} and j ∈ {0, . . . ,K}, where ei ∈RN denotes the basis vector that se-

lects the i-th asset. Because this must hold for all i and Σ is full rank, it is equivalent

to E[Fj,t · ε̂i,t+1(θ)] = 0 for all (i, j), which are the moment conditions associated

with the time series regressions (9).

57Shanken [1986] in fact assumes a single factor model, but the extension to multi-factor models
with tradable factors is straightforward.
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The first order condition with respect to γ yields

E

(ι −β·,1)
′ ·Σ−1

ε︸ ︷︷ ︸
wMLE

·ε̂t+1(θ)Zt

= 0.

We will next show that under the stated assumptions, the “portfolio weight” wMLE =

(ι −β·,1)
′ ·Σ−1

ε is equal to our w(θ).

Consider our procedure, applied to an augmented set of test assets that includes

the factors themselves (which are now by assumption tradable). Specifically, let

RN+ j,t+1 = Fj,t+1 for j = {1, . . . ,K}. Note that, because the non-market factors

are assumed to be zero-investment, our procedure would have to be modified by

re-defining the ι ∈ RN+K to be equal to one for its first N + 1 elements and zero

otherwise.

The covariance matrix ΣR for the augmented set of test assets can be written in

block form as

ΣR =

βΣKβ ′+Σε βΣK

ΣKβ ′ ΣK

 ,
where ΣK is the covariance matrix of the factors.

The minimum-variance zero-beta unit-investment portfolio problem that defines

w(θ) ∈ RN+K in this case is equivalent to solving

min
w̃∈RN

w̃′ ·
[

I −β

]
·ΣR ·

 I

−β ′

 · w̃
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subject to w̃′ ·
[

I −β

]
· ι = 1. Here, we have defined w =

 I

−β ′

 · w̃ and in effect

constructed zero-beta portfolios by hedging out the tradable factors. Straightfor-

ward algebra shows that this problem simplifies to a minimum variance portfolio

problem, whose solution is w̃∗ = wMLE = (ι −β·,1)
′ ·Σ−1

ε . Thus, under the stated

assumptions, our portfolio weights are equivalent to the ones implied by the MLE

procedure of Shanken [1986] conditional on the estimate of Σε and ΣF .

More generally, whenever all factors are tradable and each of those factors lies

in the span of the test assets (e.g. using the Fama-French 25 portfolios and three

factors), our procedure’s w(θ) and wMLE will coincide (again, conditional on the

covariance matrices). Our procedure has the advantages of handling the case of

non-tradable factors and of avoiding the assumption that Σε is of full rank, but is

otherwise similar.

The more significant difference between our procedure and the MLE estimator

arise from our use of the Ledoit and Wolf [2017] covariance matrix estimator. The

MLE estimator for Σε (which can be derived from the first-order conditions) is the

sample covariance matrix of the residuals, and use of the Ledoit and Wolf [2017]

estimator for ΣR avoids over-fitting. In summary, our GMM estimator is essentially

the MLE estimator, modified to avoid overfitting.

J Details on the Application of Stock and Wright [2000]

In this appendix section, we describe in more detail the procedure we use when

constructing the S-sets described in Section 4 of the main text.
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At a high level, our follows the approach of Stock and Wright [2000]. The only

meaningful modification we make to their approach is to use one set of moments for

the purpose of estimating the strongly-identified parameters (δ ,θ = (α,β ,γ)) (in

particular, constructing the zero-beta rate) and then using a different set moments

(the consumption Euler equation) for the purpose of constructing the test statistic.

This approach (which is well-known, see chapter 11.6 of Cochrane [2009]) has the

advantage of being easily interpretable. It also has the advantage, in our particular

application, of allowing us to analytically compute the (α,β ) parameters given

any value of γ , which facilitates computation, and it ensures that the zero-beta rate

described in Section 3 is the same as the zero-beta rate being tested in Section 4.

Stock and Wright [2000] present results under the assumption that the same weight

matrix used to estimate the well-identified parameters is also used to construct the

test statistic; the purpose of the appendix section is to show that their results can

be generalized away from this case. Those authors also assume (for convenience) a

positive-definite weighting matrix; our procedure is most naturally cast as involving

a positive semi-definite matrix.

Note that we do not prove the standard GMM identification assumptions (global

identification, differentiability, etc...) in our setting, and instead assume that they

apply. Necessary conditions include that the factors Fj,t not be co-linear (as other-

wise β cannot be identified) and that the instruments Zt not be co-linear (as other-

wise γ cannot be identified).
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Recall the our moment conditions are

gt+1(θ ,δ ,σ) =


ε̂t+1(θ)⊗Ft+1(σ ,γ)

H(β ) · (Rt+1 − ιR0,t(γ))⊗Zt

(δ
c−σ

t+1
c−σ

t

R0,t(γ)
Pt+1/Pt

−1)⊗Zt


and that our weight matrix used in estimation is

WT (θ) =


IN×(K+1) 0 0

0 wT (θ)wT (θ)
′⊗ IL+1 0

0 0 e0e′0

 .

We have written WT as a function of the sample size because the zero-beta portfolio

weight vector wT involves an estimate of the variance-covariance matrix. Let Θ be

the compact set of possible parameters for (θ ,δ ,σ), which excludes parameters for

which ι lies in the span of β .

Define

mT (θ ,δ ,σ) = E

[
T−1

T

∑
t=1

gt(θ ,δ ,σ)

]
and

ΨT (θ ,δ ,σ) = T− 1
2

T

∑
t=1

(gt(θ ,δ ,σ)−E [gt(θ ,δ ,σ)]) .

We will assume ΨT (θ ,δ ,σ) converges to a Gaussian process Ψ(θ ,δ ,σ) (As-

sumption B of Stock and Wright [2000]; those authors provide more primitive

assumptions in which this holds). Let Ω(θ ,δ ,σ) = E [Ψ(θ ,δ ,σ)Ψ(θ ,δ ,σ)′] be

the limiting covariance matrix; we assume it can be consistently estimated using
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heteroskedasticity-robust methods (Assumption D′′ of Stock and Wright [2000]).58

We will also assume that WT (θ) converges uniformly in probability to a symmetric

positive semi-definite matrix-valued function W (θ) that is continuous in θ (As-

sumption D of Stock and Wright [2000], weakened to required only positive semi-

definiteness).

We will treat the parameter σ as weakly identified, and the parameters (θ ,δ ) as

strongly identified. Suppose (θ0,δ0,σ0) are the true parameters. We decompose

mT (θ ,δ ,σ) = m1T (θ ,δ ,σ ,σ0)+m2(θ ,δ ,σ0),

where in our context,

m2(θ ,δ ;σ0) = E

[
T−1

T

∑
t=1

gt(θ ,δ ,σ0)

]

and

m1T (θ ,δ ,σ ;σ0) = E

T−1
T

∑
t=1


ε̂t+1(θ)⊗ (Ft+1(σ ,γ)−Ft+1(σ0,γ))

0(
δ

(
c−σ

t+1
c−σ

t
− c

−σ0
t+1

c
−σ0
t

)
R0,t(γ)
Pt+1/Pt

)
⊗Zt


 .

Note that, following Stock and Wright [2000], we have assumed that m2(·) does not

depend on T , without imposing this assumption on m1T . In our specifications with

58Consistent with the equations of our model, we assume the residuals are serially uncorrelated
(following Hansen and Singleton [1982] and chapter 11.7 of Cochrane [2009]).
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a non-linear consumption factor,

Ft+1(σ ,γ)−Ft+1(σ0,γ) = e8
Pt

Pt+1

(
c−σ

t+1

c−σ
t

−
c−σ0

t+1

c−σ0
t

)
,

which is to say that only the non-linear consumption factor depends on σ . In our

other specifications, Ft+1(σ ,γ) is invariant in σ , but in both cases, the Euler equa-

tion moments depend on σ .

The potential for weak identification is readily apparent: if the difference of the

two consumption SDFs (with σ and σ0) is only weakly related to stock returns and

our instruments, the parameter σ will be largely unidentified.

Our key assumption is that the moments m2(·) satisfy the usual GMM iden-

tification conditions. We assume (following Assumption C of Stock and Wright

[2000]) that:

1. The function T
1
2 (mT (θ ,δ ,σ)−m2(θ ,δ ;σ0)) converges uniformly to the func-

tion m1(θ ,δ ,σ), which is continuous and bounded on Θ and satisfies m1(θ0,σ0,δ0)=

0.

2. The function m2(θ ,δ ;σ0) satisfies m2(θ0,δ0;σ0)= 0 and W (θ)m2(θ ,δ ;σ0) ̸=

0 for all (θ ,δ ) ̸= (θ0,δ0). The function m2(θ ,δ ;σ0) is continuously differ-

entiable with respect to (θ ,δ ) in the neighborhood of (θ0,δ0), with Jacobian

R(θ ,δ ;σ0), and W (θ)R(θ ,δ ,σ0) has full column rank.

The first part of this assumption is exactly part (i) of Assumption C of Stock and

Wright [2000]. The second part is a modified version of part (ii) of that assump-

tion: we impose the standard global and local GMM identification conditions on the

weighted moments as opposed to the unweighted ones. This modification (which is
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standard in the GMM literature) allows us to consider positive semi-definite weight-

ing matrices.

First note that, under these assumptions,

(θ̂(σ0), δ̂ (σ0))= arg min
(θ ,δ ):(θ ,δ ,σ0)∈Θ

(T−1
T

∑
t=1

gt(θ ,δ ,σ0))
′WT (θ)(T−1

T

∑
t=1

gt(θ ,δ ,σ0))

is a
√

T -consistent estimator for (θ0,δ0) given σ0.59 It follows that the usual GMM

formula applies,

√
T ((θ̂(σ0), δ̂ (σ0))− (θ0,δ0))⇒−[R(θ0,δ0,σ0)

′W (θ)R(θ0,δ0,σ0)]
−1× (20)

R(θ0,δ0,σ0)
′W (θ)Ψ(θ0,δ0,σ0).

Likewise, the usual formula for the moments applies (via the delta method):

√
T m2(θ̂(σ0), δ̂ (σ0),σ0)⇒ R̃(θ0,δ0,σ0)Ψ(θ0,δ0,σ0),

where

R̃(θ0,δ0,σ0)= (I−R(θ0,δ0,σ0)[R(θ0,δ0,σ0)
′W (θ0)R(θ0,δ0,σ0)]

−1R(θ0,δ0,σ0)
′W (θ0)).

Using this formula, we can define the variance-covariance matrix

VTest(σ0) = T−1Wtest R̃(θ0,δ0,σ0)Ω(θ0,δ0,σ0)R̃(θ0,δ0,σ0)
′Wtest ,

59This can be proven along the lines of Lemma A1 in Stock and Wright [2000]; the proof must
be adapted in relatively straightforward way to the positive semi-definite case.
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where

Wtest =


0 0 0

0 0 0

0 0 I − e0e′0

 .
Note that Wtest selects moments not used in the estimation; as a result, VTest(σ0) will

generically have full rank. This matrix can be consistently estimated, conditional

on σ0, as

V̂Test(σ0) =Wtest R̃(θ̂(σ0), δ̂ (σ0),σ0)Ω̂(θ̂(σ0), δ̂ (σ0),σ0)R̃(θ̂(σ0), δ̂ (σ0),σ0)
′Wtest

where

R̃T (θ0,δ0,σ0)= (I−R(θ0,δ0,σ0)[R(θ0,δ0,σ0)
′WT (θ0)R(θ0,δ0,σ0)]

−1R(θ0,δ0,σ0)
′WT (θ0)).

Using

(
1
T

T

∑
t=1

gTest,t(θ̂(σ0), δ̂ (σ0),σ0)) =Wtest(T−1
T

∑
t=1

gt(θ̂(σ0), δ̂ (σ0),σ0)),

it follows via the usual arguments that the statistic Ŝ(σ0) is chi-squared distributed

with L degrees of freedom.

Note also that the standard errors associated with our parameter estimates (as in

Table 1) can be computed using the standard GMM parameter covariance matrix,

Vθ ((θ̂(σ0), δ̂ (σ0),σ)=T−1GT (θ̂(σ0), δ̂ (σ0),σ0)Ω̂(θ̂(σ0), δ̂ (σ0),σ0)GT (θ̂(σ0), δ̂ (σ0),σ0)
′
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where

GT (θ̂(σ0), δ̂ (σ0),σ0) = [R(θ̂(σ0), δ̂ (σ0),σ0)
′WT (θ̂(σ0))R(θ̂(σ0), δ̂ (σ0),σ0)]

−1

×R(θ̂(σ0), δ̂ (σ0),σ0)
′WT (θ̂(σ0)).
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