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Abstract

We develop a model for evaluating policy proposals that aim to prevent runs on money

market mutual funds (MMFs) and related intermediation arrangements. We first study

policies that impose a redemption fee when the fund’s liquid assets fall below a thresh-

old level, similar to the reforms adopted in the U.S. in 2014. We show that such policies

are often susceptible to a preemptive run in which investors rush to withdraw before

the fees are imposed, in line with events at the onset of the Covid crisis in March 2020.

We then study policies that impose a fee based on current redemption demand, even

in normal times. We show that such policies are more effective at preventing runs, and

we derive the best run-proof redemption fee policy. We show that this policy can have

surprising features, such as setting the fee as a non-monotone function of redemption

demand. Our framework indicates the new MMF reforms adopted in 2023 are an im-

provement over the previous round, but may still be susceptive to preemptive runs. We

discuss the implications of our results for further reforms to MMFs and for stabilizing

mutual funds more broadly.

∗Preliminary and incomplete. An earlier draft of this paper was titled “Optimal Swing Pricing.” We thank
seminar participants at the Bank of Korea, Hitotsubashi University, Kyoto University, the National Graduate
Institute for Policy Studies (GRIPS), Seoul National University and the University of Tokyo for helpful
comments.
†135 Xingang Xilu, Guangzhou, Guangdong, China. Email: xuesong.huangll@gmail.com
‡Dept. of Economics, 75 Hamilton Street, New Brunswick, NJ 08901. E-mail: todd.keister@rutgers.edu



1 Introduction

The failure of Lehman Brothers in September 2008 sparked a run on prime money market

mutual funds (MMFs) in the U.S, with over $400 billion dollars withdrawn in a two-week

period. Because these funds play an important role in short-term funding markets, the U.S.

Treasury and Federal Reserve introduced extraordinary programs to support MMF liquidity

and provide guarantees to MMF investors. In 2014, the Securities Exchange Commission

(SEC) introduced a set of reforms that aimed to prevent a repeat of this experience. These

reforms allowed an MMF to limit redemptions and impose a redemption fee when the fund’s

liquid assets fell below a threshold level. Prime MMFs experienced heavy outflows again at

the onset of the Covid crisis in March 2020, and the Federal Reserve again responded by

providing extraordinary liquidity facilities. This episode is widely interpreted as evidence

that the 2014 reforms were ineffective, and policymakers are again introducing reforms that

aim to prevent runs on MMFs during future periods of financial stress. In July 2023, the SEC

adopted new rules that replace the regime of redemption limits/fees based on a threshold

for liquid assets with a plan for fees based on current redemption demand.1 How effective

this second set of reforms will be remains to be seen. At a conceptual level, however, the

effectiveness of redemption fees as a financial stability tool, and the principles that should

guide their use, are not well understood.

We develop a model for evaluating the effectiveness of different MMF redemption rules at

preventing runs driven by investors’ self-fulfilling beliefs. Our goal is to provide a framework

for evaluating reform proposals and for understanding the principles that should govern MMF

operations. We build on the approach in Engineer (1989), which adds an additional time

period to the well-known framework of Diamond and Dybvig (1983). This additional period

allows for the possibility that investors will run on the fund preemptively if they anticipate

that redemptions may be restricted in future periods. Such preemptive reasoning is believed

to have played an important role in the run on prime MMFs in March 2020.2 We modify

the model in several ways, in part to reflect the operational environment of a mutual fund

rather than a bank. In particular, there is no first-come-first-served (or sequential service)

constraint within a period. Instead, the fund is able to observe total redemption requests in

each period before setting a redemption value for that period.

1 The SEC’s initial proposal in February 2022 would have required prime institutional funds to adopt a
swing-pricing policy that adjusts the price of a share based on current redemption demand. We view the
redemption fee policy in the SEC’s final rule to be economically very similar to swing pricing.

2 See, for example, the discussions in the reports of the President’s Working Group on Financial Markets
(2020) and the Securities Exchange Commission (2022).
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We begin our analysis by using the model to study a policy that captures the spirit of

the 2014 reforms. In this regime, the fund redeems shares at par until redemption demand

is large enough that it would exhaust the fund’s liquid assets if honored at par. When

that happens, a redemption fee is imposed. We restrict the fee policy to be time-consistent,

which prevents the fund from using non-credible threats in an attempt to influence investor

behavior. We show that this policy often admits a run equilibrium. In this equilibrium, all

investors with an opportunity to redeem in the first period do so because (i) they may need

to redeem in the next period and (ii) they correctly anticipate that a redemption fee may be

imposed at that point. In other words, when fees are imposed only once redemption demand

is unusually high, investors may have an incentive to run preemptively on the fund. This

discussion of why the 2014 reforms failed has focused largely on how the possibility a fund

will restrict redemptions (impose a “gate”) can lead to a preemptive run. Our results show

that the other component of the 2014 rules, redemption fees, suffers from the same problem.

Our analysis also highlights the importance of information flows in determining the vul-

nerability of MMFs to a run. If the fund were able to detect a run right away, before any

redemptions are processed, it could apply the fee to all redemptions. In that case, investors

would be unable to withdraw preemptively and there would be no incentive to run on the

fund. There are situations, however, where a run is underway but redemption demand

initially remains within the normal range. Because the fund cannot yet distinguish these

situations from normal times, it processes the initial redemption requests at par. This fact

gives investors an incentive to try to redeem preemptively and opens the door to a run

equilibrium.

We then turn our focus to policies that impose redemption fees based on current re-

demption demand, as in the 2023 reforms. To be effective in preventing runs, the fees must

sometimes apply even when redemption demand is in the normal range. Such policies are

costly because they impose risk on investors even in the absence of a run. However, an

appropriate choice of such a fee policy can always eliminate the run equilibrium. We derive

the best run-proof redemption fee policy and show how it balances the following tradeoff.

On one hand, imposing a larger fee today leaves the fund in better condition in the future

and thus reduces investors’ incentives to redeem early. On the other hand, imposing a fee

when redemption demand is normal harms investors who truly need liquidity, decreasing

the value of participating in the fund. We show that the optimal fee for a given level of

redemption demand depends on the relative likelihood of that demand in a run compared

to normal times.
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In a way, this result is very intuitive: the fee should be larger in situations that are more

likely to occur in the event of a run and smaller in situations that are more likely in normal

times. However, it can lead to unexpected patterns. Standard policy proposals satisfy

a monotonicity property: as redemption demand increases, the fee charged to redeeming

investors also increases, at least weakly. We show that, in the best run-proof policy, the fee

may instead be a decreasing or non-monotone function of redemption demand. In part, this

pattern reflects a desire to preserve the liquidity function of the fund, since applying a large

fee in states where many investors truly need liquidity may be very costly.

After characterizing the optimal redemption fee policy, we use our framework to evaluate

the new rules for prime institutional MMFs adopted by the SEC in July 2023. These rules

require that, when a fund’s redemption demand in a period exceeds 5% of its total assets,

a redemption fee be imposed equal to the costs that would be associated with liquidating a

pro-rata share of each asset in the fund’s portfolio. This rule typically delivers lower welfare

than the optimal policy we derive, but it has the advantage of being simpler. We examine

this rule’s effectiveness at preventing runs under two scenarios. When liquidation costs are

currently elevated and expected to remain unchanged, the rule is effective: it does not admit

a run equilibrium. However, if there is a significant chance that liquidation costs will increase

in the following period, a run equilibrium often exists. These results indicate that an effective

redemption fee policy must be forward-looking in the sense that the current fee must reflect

beliefs about future liquidation costs. Otherwise, situations will arise in which investors

expect the fee to increase over time, giving them an incentive to redeem preemptively.

Finally, we extend the analysis in three ways. First, we study the interaction between

the fund’s initial portfolio choice and the optimal design of the redemption fee policy. We

show that the flexibility created by the optimal policy often makes holding excess liquidity

undesirable. This result indicates that reform efforts should focus more on the design of the

fees and less on requiring funds to hold larger liquidity buffers. We then study two variations

in how the largest possible size of a run is modeled. In the baseline case, a known fraction of

investors have an opportunity to redeem in the first pricing period, which implies that the

maximum possible size of a run is also known in advance. We show that when this fraction

is instead a random variable, the insights of our analysis remain largely unchanged. Finally,

we take a robust-control approach in which the fund considers the worst-case scenario in

terms of the size of the run. Specifically, after the fund chooses a redemption fee policy,

nature chooses the size of a run to minimize the welfare associated with the chosen policy.

In this case, we show that the optimal redemption fee policy is monotone: higher redemption
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demand is always associated with a (weakly) higher redemption fee.

Related literature. Our paper is related to several strands of the broad literature on

preventing runs on financial intermediation arrangements. One strand of this literature

studies swing pricing, that is, policies that adjust the price of a mutual fund share in response

to redemption demand.3 For example, Ma et al. (2022) use a Diamond-Dyvig framework

to study a swing-pricing adjustment to a mutual fund’s NAV that is an increasing function

of the outflow. Interestingly, they show that swing pricing may improve liquidity provision

by the fund in equilibrium since swing pricing can eliminate run incentives and therefore

reduces the fund’s need to hold liquid assets. The redemption fee policies we study are

economically equivalent to a form of swing pricing. Similar to the result in Ma et al. (2022),

we show that adopting the optimal run-proof redemption fee policy with no excess liquidity

can yield higher welfare than having the fund hold excess liquidity. However, different from

Ma et al. (2022), the optimal policy in our paper is not necessarily a monotone function of

the redemption demand.

Lewrick and Schanz (2017b) study a Diamond-Dybvig model with an external asset

market that incurs trading costs. They identify conditions under which the fund swings

the NAV to maximize investors’ welfare. In contrast, we study a different variation of

the Diamond-Dybvig framework based on Engineer (1989) and fully characterize the best

run-proof policy. In particular, we show how the optimal payment adjustment depends

on the redemption demand. In a different framework with redemption demand triggered

by an exogenous asset market shock, Capponi et al. (2020) study how the design of the

swing pricing rule can break the negative feedback loop between mutual fund outflows and

asset illiquidity. In contrast, we focus on the endogenous pattern of investors’ redemption

demand and study how the optimal rule balances the trade-off between preventing runs and

maximizing investors’ welfare.

Our paper is also related to the literature on preemptive banks runs under policies with

deposit freezes and withdrawal fees, as in Engineer (1989), Cipriani et al. (2014); Cipriani

and La Spada (2020) and Voellmy (2021). The logic underlying the preemptive runs in our

framework is different, however. In those papers, the bank or fund processes redemption

requests sequentially and halts redemptions when requests pass a threshold. If a run is

underway, this action creates a backlog of investors with true liquidity needs who have not

yet been served and who will redeem at the next available opportunity. This backlog implies

that redemption demand will be high enough in the next period to trigger restrictions again,

3 See Capponi et al. (2022) for a survey on this strand of literature.
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which gives investors an incentive to redeem today if possible. In our model, in contrast,

the fund processes all redemption requests in the period they are received – no backlog of

unfilled requests is created. Instead, the existence of a preemptive run under the redemption

fee policy is due to the fund’s inability to detect a moderate-scale run today, which puts the

fund in a bad position tomorrow. Furthermore, we show how a well-designed redemption fee

policy can resolve this issue and prevent preemptive runs.

We also contribute to the literature on the mechanism design approach to bank runs

pioneered by Wallace (1990). A defining characteristic of this strand of literature is that

the bank/fund can consider a large set of contracts beyond the simple demand-deposit con-

tract studied in Diamond and Dybvig (1983). In the classic three-period Diamond-Dybvig

framework with sequential service and full commitment, efficient ways to prevent runs us-

ing direct mechanisms have been identified by Green and Lin (2003) and Huang (2023),

while approaches using indirect mechanisms have been identified by Cavalcanti and Mon-

teiro (2016) and Andolfatto et al. (2017).4 We interpret the progression of policy reforms

in recent years as expanding the set of contracts available to money market funds and thus

bringing practice closer to the environments in these models. However, these papers all im-

pose a sequential-service approach that is appropriate for banks but not for mutual funds.

We remove the sequential service constraint while adding an additional consumption period

to the model, which substantially changes the set of available contracts. We solve for the

best run-proof contract and show how the result can be naturally interpreted as a policy

with redemption fees based on current redemption demand. We show that an effective pol-

icy must be forward-looking in the sense that the fee depends on anticipated future market

conditions. As a result, and different from Zeng (2017), the policy we identify can eliminate

shareholder runs even with active fund liquidity management.

Finally, our paper is related to the empirical literature on mutual fund runs and patterns

of redemptions. For example, Li et al. (2021) shows that the existence of a threshold for

redemption fees and gates contributed to the run on money market mutual funds in March

2020, while Lewrick and Schanz (2017a) and Jin et al. (2022) document the effectiveness of

swing pricing in removing the first-mover advantage in open-end mutual funds. We provide

a unified theoretical framework that aims to help explain this evidence and points to more

effective regulatory approaches. In particular, our results highlight a clear difference in

effectiveness between redemption fees based on a fund’s current liquid asset holdings (which

reflect past redemption demand) and fees based on current redemption demand.

4 For settings where the best direct mechanism does not prevent runs, see Peck and Shell (2003), Ennis and
Keister (2009b) and Sultanum (2014), among others.
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2 The model

Our model builds on Engineer (1989), which added an additional time period to the classic

framework of Diamond and Dybvig (1983). We introduce a portfolio choice and fundamental

uncertainty into this setting, and we modify the information structure to reflect the oper-

ation of a mutual fund rather than a bank. In this section, we describe the details of our

environment and show that, despite these changes, the efficient allocation of resources is

equivalent to that in the standard Diamond-Dybvig model. All proofs are in the appendix.

2.1 The environment

There are four time periods, t = 0, 1, 2, 3, and a single consumption good in each period.

There are two technologies for transforming goods across periods, storage and investment.

One unit of the good placed in storage in period 0 earns a gross return of 1 in any of the

following periods. One unit invested in period 0 yields a return of R > 1 if held to maturity

in period 3, but rt ≤ 1 if liquidated in period t ∈ {1, 2}. The value of r1 is known, but r2 is

initially uncertain. We assume r2 ∈ {r̄, r}, where r̄ ≥ r1 > r and P (r2 = r̄) = q ≥ 0.

Each of a continuum of investors, indexed by i ∈ [0, 1], is endowed with 1 unit of the

good at t = 0 and has preferences:

ui(c1, c2, c3;ωi) =


u(c1) if ωi = 1

u(c1 + c2) if ωi = 2

u(c1 + c2 + c3) if ωi = 3,

where ct is her consumption in period t and ωi is her liquidity-preference type. Both type-1

and type-2 investors are “impatient” in the sense that they need to consume before in-

vestment matures, while type-3 investors are “patient”. We assume that a known fraction

π ∈ (0, 1) of investors will be impatient, but the distribution of these investors between

type 1 and type 2 is random. In other words, there is no aggregate uncertainty about total

early consumption demand, but there is uncertainty about its timing.5 Let π1 denote the

fraction of investors who are type-1 and let f(π1) denote its probability density function for

π1 ∈ [0, π]. The fraction of type 2 investors is then π−π1. Investors’ types are private infor-

mation, and each investor learns her own type gradually. In period 1, an investor discovers

5 One interpretation of this assumption is that, based on historical data, the fund has a pretty good estimate
of the daily liquidity needs among investors, but the actual timing of those liquidity needs, i.e., whether
they occur in the morning or the afternoon, are less predictable.
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only whether she is type 1 or not. In period 2, the remaining investors each discover whether

they are type-2 or type-3.

In period 0, investors are able to pool their endowments in an arrangement that we call

a fund. The fund uses these endowments to form a portfolio of storage and investment. Let

s denote the fraction of the initial endowment the fund places in storage; then 1− s denotes

the fraction invested. After this point, investors are isolated from each other and can only

interact with the fund.6 In periods 1 and 2, investors receive updated information about

their own type and may have an opportunity to submit a redemption request to the fund.

We assume all type 1 investors can contact the fund in period 1, but only a fraction δ ∈ (0, 1]

of non-type-1 investors can do so. The remaining fraction 1− δ are inattentive or otherwise

unable to contact the fund in period 1. All investors who have not yet redeemed can contact

the fund in periods 2 and 3.

The fund collects all redemption requests in a period and then allocates consumption to

the redeeming investors. The operation of the fund is thus characterized by three functions.

In period 1, the fund pays an amount c1(m1) to each redeeming investor, where m1 denotes

the number of redemption requests. In period 2, the fund observes the number of new

redemption requests m2 and the realized liquidation value r2, then pays c2(m1,m2, r2) to

these investors. Once an investor redeems her share in the fund, she immediately consumes

and exits the economy. Each investor remaining in the fund in period 3 receives a pro-rata

share of the fund’s matured assets, which we denote c3(m1,m2, r2).
7

2.2 The efficient allocation

Suppose the fund were operated by a planner who could observe investors’ preference types

and choose when they redeem. This planner would clearly direct type t investors to redeem

only in period t, which implies redemption requests will satisfy m1 = π1 and m2 = π − π1.

We can then write the payments {c1(π1), c2(π1), c3(π1)} directly as functions of the state π1.

The planner would choose the fund’s portfolio (s, 1 − s) and these functions {c1, c2, c3} to

6 As in Wallace (1988) and others, this isolation assumption implies investors are unable to trade shares in
the fund or other claims with each other in period 1.

7 In practice, mutual funds and money market funds in particular often have sponsor supports, which have
important implications for financial fragility as shown in Parlatore (2016). In our setup, we assume there
is no sponsor support for the fund so that we can focus on the optimal design of the fund’s payment
schedule to eliminate financial fragility.
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maximize investors’ expected utility∫ π

0

[π1u(c1(π1)) + (π − π1)u(c2(π1)) + (1− π)u(c3(π1))]f(π1)dπ1

subject to the feasibility constraints

π1c1(π1) + (π − π1)c2(π1) = s for all π1, and

(1− π)c3(π1) = R(1− s) for all π1.

The constraints say that payments to impatient investors in both periods 1 and 2 will be

made using goods placed in storage, while payments to patient investors in period 3 will

be made using matured investment. Note that this plan is feasible because there is no

uncertainty about the total number of impatient investors, and it implies that the efficient

allocation is independent of the liquidation values r1 and r2.

The first-order conditions for c1 and c2 imply

u′(c∗1(π1)) = u′(c∗2(π1)) ⇒ c∗1(π1) = c∗2(π1) for all π1,

that is, the planner always gives the same consumption to type 1 and type 2 investors. The

feasibility constraints associated with a given π1 can then be combined and simplified to

πc∗1(π1) + (1− π)
c∗3(π1)

R
= 1. (1)

Using the first-order condition for c3, we also have

u′(c∗1(π1)) = Ru′(c∗3(π1)). (2)

Note that equations (1) and (2) are the same for all π1 ∈ [0, π], meaning the efficient

allocation is the same in all states. Let (c∗E, c
∗
L) denote the consumption given to impatient

(type 1 and type 2) investors and to patient (type 3) investors in this allocation, respectively.

Note that equation (2) and R > 1 imply c∗L > c∗E, meaning patient investors receive higher

consumption. The planner’s portfolio choice puts πc∗E in storage and invests (1 − π)c∗L/R.

The following result summarizes this discussion.

Proposition 1. Let (c∗E, c
∗
L) denote the unique solution to equations (1) and (2). Then the

first-best allocation gives c∗E to each type 1 consumer at t = 1 and to each type 2 consumer

at t = 2, and it gives c∗L to each type 3 consumer at t = 3.
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Equations (1) and (2) also characterize the efficient allocation in a standard Diamond-

Dybvig model with only two consumption periods. In other words, having an extra time

period and uncertainty about the timing of early consumption demand do not change the

efficient allocation of resources in our setting. The planner wants all impatient investors

to consume c∗E, regardless of whether they redeem in period 1 or 2, and wants all patient

investors to consume c∗L.

2.3 Discussion

Sequential service. Unlike the usual banking arrangement studied in Diamond and Dy-

bvig (1983), Engineer (1989), and many others, the fund in our model does not need to

serve redeeming investors one-at-a-time. Instead, it collects all redemption requests in a

period before making any payments. The assumption matches the operation of an open-end

mutual fund that pays redeeming investors only at the end of a pricing period, which often

corresponds to the business day. In a standard three-period model, the optimal contract

when there is no sequential service rules out bank runs under very general conditions (see

Green and Lin, 2003, Section 3).8 We show below that this result does not extend to the

four-period model we study here. A key feature of this model is that investors redeeming

in period 1 must be served by the end of that period, before the fund observes what will

happen in period 2. In other words, even though investors are not paid one-at-a-time, a

form of sequential service across periods arises naturally in any longer-horizon model, and

this fact potentially opens the door to self-fulfilling runs.

Liquidation costs. Money market funds hold assets that are fairly liquid most of the time

but may become less liquid in periods of financial stress. It is probably no coincidence

that the runs observed in 2008 and 2020 both occurred during periods of significant stress

and lower market liquidity. In the analysis below, we consider scenarios where the fund’s

investment is liquid (r1 ≈ 1) and where it is illiquid (r1 < 1). In both cases, we show

that investors’ expectations about the future liquidation value (r2) play an important role

in shaping redemption behavior. We allow r2 to be random to capture situations where

investors are concerned that market conditions may deteriorate in the intermediate period.

Throughout the analysis, we assume the liquidation values rt are independent of the

fund’s liquidation choices. In other words, we assume the fund is a relatively small player

in the market for those securities. It may be interesting to extend our analysis to situations

8 See also the discussion in Andolfatto and Nosal (2020).
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where the fund recognizes that its own sale of assets may drive down the market price.9

Partial runs. Our assumption that only a fraction δ of non-type-1 investors can redeem

at t = 1 captures the idea that a run does not typically take place within a single day or

pricing period.10 Instead, a run is typically spread over time, which makes identifying a run

difficult in the early stages. If δ = 1, a run will involve all of the fund’s investors requesting

redemption in the first period and, hence, is easily identified before the fund makes any

payments to investors. When δ is below 1, in contrast, a run at t = 1 is partial, with only

some investors participating. In that situation, the fund may initially be unsure whether

the observed redemption demand is fundamental (with a large realization of π1) or instead

reflects a run. We show below such uncertainty is necessary for self-fulfilling runs to be

possible in this setting. For now, we assume δ is a known constant. In Section 5.1, we

extend the model to introduce uncertainty about the size of δ.

3 Preemptive runs

We now return to the setting where investors’ types are private information. In this section,

we study equilibrium when the fund aims to implement the first-best allocation described

in Proposition 1. We first describe the payment functions {c1, c2, c3} used by the fund and

argue they match key features of the rules for MMFs adopted in the U.S. in 2014. We then

study the resulting withdrawal game played by investors. This game implements the first-

best allocation by design, but we show that a run equilibrium often also exists. The runs

that occur are preemptive in the sense that non-type 1 investors are withdrawing in period

1 because they worry that (i) a fee will be imposed in period 2 and (ii) they may need to

redeem in period 2. Their best response is then to redeem in period 1 in an attempt to exit

the fund before the fee is imposed.

3.1 Contracts and the redemption game

Because investors’ types are private information, the fund allows investors to choose when to

redeem their shares. In general, a contract specifies a portfolio choice as well as payments to

redeeming investors in each period as functions of the information available to the fund. In

this section and the next, we assume the fund follows the planner’s portfolio choice, s = πc∗E.

9 See section 6 for more detailed discussion.
10Chen et al. (2010) and Zeng (2017) use similar assumptions to capture the possibility of some investors
being inactive.
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A contract is then summarized by a collection of payment functions c1(m1), c2(m1,m2, r2),

and c3(m1,m2, r2). As the notation indicates, the payment c1 made to redeeming investors

in period 1 must be made before the fund observes m2 (the number of withdrawal requests

in period 2) or r2 (the liquidation value of investment in that period).

Feasibility. A set of payment functions is feasible if the fund can generate these payments

from its given asset portfolio. In period 1, the payment c1(m1) must satisfy

m1c1 + e1 = s+ r1ℓ1 for all m1, (3)

where e1 ∈ [0, s] is the amount of storage held until period 2 (“excess liquidity”) and ℓ1 ∈
[0, 1− s] is the amount of investment liquidated in period 1. In period 2, feasibility requires

that the function c2(m1,m2, r2) satisfy

m2c2 + e2 = e1 + r2ℓ2 for all (m1,m2, r2), (4)

where e2 ∈ [0, s− e1] is the amount of storage held until period 3 and ℓ2 ∈ [0, 1− s− ℓ1] is

the amount of investment liquidated in period 2. Finally, feasibility in period 3 requires

(1−m1 −m2)c3 = R (1− s− ℓ1 − ℓ2) + e2 for all (m1,m2, r2). (5)

Taken together, the payment functions {c1, c2, c3} are feasible if, for every (m1,m2, r2), there

exist portfolio management choices {e1, ℓ1, e2, ℓ2} such that equations (3) - (5) are satisfied.

First best. In this section, we assume the fund chooses the payment functions with the ob-

jective of implementing the efficient allocation characterized in Proposition 1. Implementing

this allocation requires that the contract satisfies

c1(m1) = c∗E for all m1 ≤ π, (6)

c2(m1,m2, r2) = c∗E for all m1 +m2 ≤ π, and (7)

c3(m1,m2, r2) = c∗L for all m1 +m2 ≤ π. (8)

These payments are feasible when the fund sets

e1 = (π −m1)c
∗
E and ℓ1 = 0 for m1 ≤ π

e2 = 0 and ℓ2 = 0 for m1 +m2 ≤ π.
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In other words, as long as total redemption demand does not exceed the fraction of impatient

investors (π), the fund uses its portfolio to make payments exactly as the planner would. In

particular, each redeeming investor is paid c∗E out of goods in storage and no investment is

liquidated.

It is straightforward to show that the withdrawal game generated by any contract {c1, c2, c3}
satisfying equations (6) - (8) has an equilibrium that implements the first-best allocation.

In this equilibrium, only type 1 investors redeem in period 1, so m1 = π1, and only type 2

investors redeem in period 2, so m2 = π− π1. Investment is never liquidated and, therefore,

the values of (r1, r2) do not affect the allocation. The fact that c∗L > c∗E implies that, in

this equilibrium, non-type-1 investors have a strict incentive to wait in period 1 and type-3

investors have a strict incentive to wait in period 2. Because investors are small, unilateral

deviations from equilibrium play do not change the fractions (m1,m2). As a result, the pay-

ments in the contract associated with redemption demand greater than π have no effect on

individual investors’ incentives, and this no-run equilibrium exists regardless of how those

payments are specified.

Time consistency. Our interest is in studying whether the fund is fragile in the sense

that another equilibrium exists in which investors rush to redeem at the first opportunity.

The answer to this question depends crucially on the payments in the contract associated

with levels of redemption demand greater than π. Diamond and Dybvig (1983) and others

have shown that promising a “tough” response to high withdrawal demand can prevent a

bank run equilibrium from existing in a three-period model. A similar result can be shown

to hold here, although the form of the “tough” response is different. Consider a contract

that, for all m1 > π, sets c1 = 0 and e1 = s. In other words, if the fund detects a run is

underway in period 1, all investors who have redeemed their shares will receive nothing in

return. If m1 ≤ π but m1+m2 > π, meaning that the fund detects a run is underway only in

period 2, the contract allocates the funds remaining resources so that c2 and c3 are strictly

positive and satisfy c2 < c3. If a non-type-1 investor expects some other investors to run, she

knows that m1 will be greater than π with positive probability. As long as consuming zero

is sufficiently unattractive, she will strictly prefer to wait, so there cannot be an equilibrium

where investors run in period 1. The fact that the contract sets c2 < c3 for all (m1,m2)

implies there cannot be an equilibrium where investors run in period 2. Therefore, this type

of contract implements the first-best allocation without introducing the possibility of a run
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on the fund.11

However, the threat to give investors nothing in exchange for their shares in period 1

would clearly not be time-consistent. Once the redemption requests have been submitted,

the fund would have a strong incentive to change course and offer positive consumption to

all investors.12 Our goal in this analysis is to provide policy advice for reforming MMFs,

and we do not want such advice to rely on non-credible threats to punish investors in the

event a run is detected. For this reason, we require that the contract offered by the fund

be time consistent in the following sense: whenever total redemption demand exceeds π,

making it clear that a run is underway, the fund must choose payments that maximize the

sum of investors’ utilities conditional on the given redemption demand, that is,

m1u(c1) + E [m2u(c2) + (1−m1 −m2)u(c3) | m1] . (9)

In other words, the fund must always act in the best interests of its investors, even when

a run is underway. Formally, we require that the payment functions {c1, c2, c3} satisfy the

following two conditions.

(TC1) For m1 ≤ π and m1 +m2 > π, {c2, c3} must maximize equation (9) subject to

the constraints in equations (4) - (5) with c1 = c∗E, e1 = s−m1c
∗
E, and ℓ1 = 0.

(TC2) For m1 > π, {c1, c2, c3} must maximize equation (9) subject to constraints in

equations (3) - (5) with m2 = π + δ(1− π)−m1.

Condition (TC1) applies to the scenario where it becomes apparent that a run is underway

only in period 2. In this case, the m1 investors who redeemed in period 1 have already each

been paid c∗E out of goods held in storage. Time consistency requires that the remaining

asset portfolio be used efficiently to make payments to the m2 investors redeeming in the

current period and the 1 − m1 − m2 investors who will redeem in the final period. If the

solution to this maximization problem sets c2 < c∗E, we will say the fund applies a redemption

fee of c∗E − c2 in period 2.

11Note that the “tough” policy here is very different from suspending convertibility of shares, which Engineer
(1989) showed is ineffective at preventing runs in a four-period model. When convertibility is suspended,
investors who are unable to redeem in period 1 are able to try again in period 2. A rush to redeem in
period 1 thus creates a backlog of redemption requests, which implies period-2 requests will be large as
well. The contract we describe here, in contrast, honors all redemption requests in period 1 but may set
the redemption price to zero. This policy is effective because it punishes redemption requests more heavily
during a run in period 1, while always making future redemption more attractive.

12Alternatively, one could imagine investors who receive zero for their redeemed share might take legal
action against the fund. The court system might then intervene to overrule the tough response to a run,
as discussed by Ennis and Keister (2009a) in the banking context.
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Condition (TC2) applies to the scenario where redemption demand in the first period is

large enough to indicate a run is underway. In this case, the fund may choose to impose

a redemption fee in both periods 1 and 2. Choosing the redemption fee for period 1 to

maximize investors’ expected utilities requires forecasting redemption demand in period 2.

It is straightforward to show that, in this setting, an investor who turns out to be type 3 will

never have an incentive to redeem in period 2. The fund will, therefore, accurately forecast

that only those investors who were inattentive in period 1 and turn out to be type 2 will

redeem in period 2, that is, m2 = (1 − δ)(π − π1) = π + δ(1 − π) −m1. Time consistency

requires that the fund act to maximize investors’ utilities given the observed redemption

demand m1 and this forecast for m2.

Interpretation. Taken together, the requirement that the fund (i) follows the planner’s

allocation when redemption demand is below π [equations (6) - (8)] and (ii) satisfies the time-

consistency constraints (TC1) - (TC2) when redemption demand is above π fully determine

the payment functions {c1, c2, c3}. In other words, there is a unique contract that both

implements the first-best allocation as an equilibrium and satisfies time consistency. We

interpret this contract as capturing some key features of the reforms to prime MMFs that

were adopted in the U.S. in 2014.13 Under those rules, funds would redeem shares at par

unless high redemption demand pushed the fund’s liquid assets below a threshold level. Once

this threshold was passed, a fund had the ability to impose a redemption fee of up to 2%

and was directed to do so if it was deemed to be in the best interests of shareholders.14 The

threshold was set so that it would be hit only in extraordinary circumstances, not in normal

times. We interpret this policy as attempting to rule out runs by imposing redemption

fees that lie off the path of play in the no-run equilibrium, as required of our contract in

equations (6) - (8). We interpret our time consistency constraints as capturing the spirit of

the directive that the fund act in its shareholders’ best interests in setting the fees. In the

next subsection, we investigate whether these rules are successful in preventing runs in our

model. We show the answer is ‘no’.

13The full text of the 2014 rules is available at https://www.sec.gov/files/rules/final/2014/33-9616.pdf.
14The 2014 rules also allowed funds to impose redemption gates (that is, to suspend convertibility) once the
threshold was passed. The approach in Engineer (1989) can be adapted to show that such a suspension
policy is ineffective at preventing runs in our setting. For this reason, we focus our analysis on the more
promising part of the 2014 rules: allowing redemption fees.
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3.2 Equilibrium runs

We now show that a run equilibrium can exist when the fund attempts to implement the

first-best allocation. To simplify the analysis, we specialize to log utility, u(c) = ln(c), in

which case the the planner’s allocation satisfies

c∗1(π1) = c∗2(π1) = 1, c∗3(π1) = R, and s∗ = π.

We also assume r1 = r̄ ≤ 1. In other words, we assume the liquidation value of investment

will not improve but may worsen. The parameters r and q then summarize investors’ period-

1 expectations about liquidation costs in period 2. If r = r1 or q = 1, liquidity conditions are

expected to remain unchanged. If q < 1 and r < 1, however, there is concern that investment

will be more illiquid in the following period. In addition to simplifying calculations, these

assumptions facilitate the interpretation of the model as the planner pays each impatient

investor at “par” and gives each patient investor the return of the long-term investment.

Time consistent payments. We begin by deriving properties of the time-consistent pay-

ment schedules under these simplifying assumptions.

Proposition 2. Condition (TC1) requires that, when m1 ≤ π and m1 +m2 > π, the fund

sets e2 = 0 and sets

c2(m1,m2, r2) = max

{
π −m1

m2

,
r2(1− π) + π −m1

1−m1

}
c3(m1,m2, r2) = min

{
R(1− π)

1−m1 −m2

,
R(1− π) + R

r2
(π −m1)

1−m1

}

Depending on redemption demand and the realized liquidation value of investment, the

fund may choose to meet period 2 redemption requests only using goods in storage or it

may choose to liquidate some investment. Either way, the time-consistent policy imposes a

redemption fee (c2 < 1) unless there is no cost of liquidating investment (r2 = 1).

Next, we derive the implications of (TC2), which deals with the scenario where redemp-

tion demand in period 1 indicates that a run is underway. Given any portfolio at the

beginning of period 2, the proof of Proposition 2 (in the appendix) shows the fund will

choose c3(m1,m2, r2) ≥ c2(m1,m2, r2). Therefore, there is no run in period 2, and only

type-2 investors will choose to redeem in that period.15 Furthermore, when m1 > π, the

15To simplify the presentation, we assume investors wait to redeem in cases where they are indifferent
between redeeming and waiting.

15



fund knows that a run is underway, but forecasting redemption demand in future periods

requires having a theory of what fraction of investors have participated in the run. We

assume the fund believes that a run involves all attentive investors, which is correct in the

equilibrium we study. Since π and δ are known, the fund can infer from m1 what redemp-

tion demand will be in the subsequent periods. Specifically, redemption demand in period

2 will come only from the type 2 investors who were inattentive in period 1, which implies

m2 = π + δ(1 − π) −m1. Redemption demand in period 3 will come from type 3 investors

who were inattentive in period 1, so m3 = (1 − δ)(1 − π).16 In other words, the fund is

forward-looking and accurately forecasts future redemption demand (m2,m3) using the ob-

served current redemption demand m1 and the assumption of equilibrium behavior. The

following proposition characterizes the fund’s optimal reaction to this situation.

Proposition 3. Condition (TC2) requires that, when m1 > π, the fund sets e2(r2) = ℓ2(r2) =

0 and sets

c1 = c2 = r1(1− π) + π

c3 = R(1− π) +
R

r1
π for any r2.

When redemption demand in period 1 indicates that a run is underway and the fund

anticipates the liquidation value of investment may be lower in the future, it actively re-

balances its portfolio and liquidates investment in period 1 to avoid the possibility of more

costly liquidation in period 2. With no liquidation in period 2, the optimal payment in

period 2 is independent of r2 and the fund equalizes the payments in both middle periods.17

With these properties of the time-consistent contract in hand, we are ready to study

equilibrium withdrawal behavior.

The redemption game. The payment functions {c1, c2, c3} induce a redemption game

played by investors. Our interest is in whether there exists a run equilibrium in this redemp-

tion game.18 As discussed above, type 3 investors who remain in period 2 will never have an

incentive to redeem early. If a run occurs, therefore, it will be preemptive in the sense that

it takes place only in period 1.

16 In section 5.1, we show how this analysis changes when the fund is uncertain about the size of δ.
17This portfolio rebalancing is reminiscent of the results in Zeng (2017), but reflects a very different motive.
In that setting, the fund may preemptively liquidate investment even though doing so is costly because it
wants to maintain a particular ratio of liquid to illiquid assets. Here, in contrast, the fund is preemptively
liquidating investment because it recognizes it will need more liquid assets next period and worries that
liquidation costs may increase in the meantime.

18We use perfect Bayesian equilibrium as the solution concept throughout the analysis.
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To see if such an equilibrium exists, consider a non-type-1 investor who can redeem in

period 1. Suppose she expects all other attentive non-type-1 investors to redeem in period 1,

meaning redemption demand will be m1 = π1+δ(1−π1). There are two distinct possibilities.

If π1 is sufficiently small

π1 ≤
π − δ

1− δ
, (10)

then m1 < π will hold. In this case, the run will initially be undetected and the fund will

pay redeeming investors at par in period 1. However, the early redemptions by non-type-1

investors imply that the fund will experience higher than expected redemption demand in

period 2, with m2 = (1−δ)(π−π1). The fund will then realize a run is underway and impose

redemption fees in line with Proposition 2. Denote the payments in periods 2 and 3 in this

case by c2(π1, δ; r2) and c3(π1, δ; r2), respectively.

The second possibility is that the inequality in (10) is reversed, in which case m1 will be

larger than π. The fund will then detect the run right away and impose redemption fees in

line with Proposition 3. Combining these two cases, we can write a non-type-1 investor’s

expected payoff of redeeming and waiting as

Redeem:

∫ π−δ
1−δ

0

u(1)fn(π1)dπ1 +

∫ π

π−δ
1−δ

u (r1(1− π) + π) fn(π1)dπ1

Wait:

∫ π−δ
1−δ

0

{pπ1 [qu(c2(π1, δ; r̄)) + (1− q)u(c2(π1, δ; r))]

+ (1− pπ1)[qu(c3(π1, δ; r̄)) + (1− q)u(c3(π1, δ; r))]}fn(π1)dπ1

+

∫ π

π−δ
1−δ

[
pπ1u (r1(1− π) + π) + (1− pπ1)u

(
R(1− π) +

R

r1
π

)]
fn(π1)dπ1.

Here, for each π1, pπ1 = π−π1

1−π1
is the probability of investor i being type 2 in period 2

conditional on him being non-type-1 in period 1. The function fn represents the density of

π1 conditional on depositor i being non-type-1. Using

Fn(x) = P (π1 ≤ x| Non-type-1 ) =
P (Non-type-1, π1 ≤ x)

P ( Non-type-1 )
=

∫ x

0
(π − π1)f(π1)dπ1∫ π

0
(π − π1)f(π1)dπ1

,

this conditional density function is given by

fn(x) =
(π − x)f(x)∫ π

0
(π − z)f(z)dz

.
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If the investor chooses to redeem, she will be paid at par if π1 is small enough to satisfy

(10) and will otherwise be charged a redemption fee based on the current liquidation value

r1.If she instead chooses to wait, there are several possibilities. If π1 is small, the run will

be detected only in period 2 and she will be charged a fee that depends on the period in

which she redeems and the realized period-2 liquidation value as determined in Proposition

2. If π1 is large, however, the run will be detected in period 1 and the fund will do whatever

liquidation is needed right away at r1.In this case, the investor’s consumption will be c2 or

c3 as given in Proposition 3.

If the investor knew π1 would be large enough to reveal the run in period 1, she would

strictly prefer to wait because the redemption fee is the same in periods 1 and 2 and waiting

gives higher consumption if she turns out to be type 3. In other words, if the fund could

always detect a run right away, there would be no incentive to join the run since the time-

consistent redemption fees take account of the liquidation costs imposed by early redemptions

and, as a result, always give more consumption to investors who wait.

The potential incentive to join a run comes from the case where π1 is small enough

that the inequality in (10) holds. In this case, the run will go undetected in period 1 and

redeeming investors are paid at par. This fact places the fund in a worse position in period

2, when redemption demand reveals the run and the fund imposes a redemption fee. If the

liquidation value of investment in period 2 turns out to be low, the fund will impose a higher

redemption fee in response, which makes it worse to be type 2. Furthermore, the liquidation

of investment in period 2 also makes it worse to be type 3. Therefore, a non-type-1 investor

may have an incentive to preemptively redeem in period 1. To illustrate this point, we

present a series of examples that show how a preemptive run equilibrium can exist for a

range of parameter values.

Example 1: Let π = 0.6, R = 1.03, r1 = r̄ = 1, r = 0.7, q = 0.5. We consider four

probability distributions for π1 ∈ [0, π]:

(a) A truncated normal distribution with mean µ = 0 and standard deviation σ = 0.3;

(b) A truncated normal distribution with mean µ = 0.3 and standard deviation σ = 0.3;

(c) A truncated normal distribution with mean µ = 0.5 and standard deviation σ = 0.3;

(d) A uniform distribution on [0, π].

In this example, there is no cost of liquidating investment in period 1. Figure 1 depicts

the expected payoffs of redeeming and of waiting for each of the four different probability
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distributions. Because r1 = 1, an investor who redeems in period 1 is always paid at par,

regardless of redemption demand in that period. This leads to a payoff of ln(1) = 0 as

indicated by the blue lines in each panel.

(a) Truncated normal with µ = 0 and σ = 0.3 (b) Truncated normal with µ = 0.3 and σ = 0.3

(c) Truncated normal with µ = 0.5 and σ = 0.3 (d) Uniform on [0, π]

Figure 1: Fragility region of redemption fees with different probability distribution for π1

An investor who waits to redeem, in contrast, receives a payoff that depends on when

the run is detected and whether she ends up being type 2 or type 3. If the run is detected

in period 1, the fund will preemptively liquidate enough investment to serve all investors

who redeem in both periods 1 and 2. In this case, no redemption fees are applied and the

investor will either receive 1 (in period 2) or R (in period 3). If the run is not detected until

period 2, however, redemption fees will be imposed if the realized liquidation value r2 is low.

In this case, the investor will receive less than 1 if she ends up being type 2, which may be

costly in utility terms.
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The red curves in the figure depict the expected value of waiting as a function of the

parameter δ, which measures the size of the run. If δ is large, a run is very likely to be

detected in period 1 and waiting is better. If δ is small, a run is small in size and will

lead to little liquidation of investment, so waiting is again better. The danger area for an

investor who waits is when δ is in the intermediate region: small enough that a run might go

undetected in period 1, but large enough to lead to a substantial redemption fee in period

2 if r2 is low. In each panel of the figure, the investor’s best response is to redeem early –

meaning a run equilibrium exists – for a range of values of δ.

In moving from panel (a) to panel (c) in the figure, the expected value of π1 increases,

which means a run is more likely to be detected in the first period. The figure shows

that the set of δ for which the run equilibrium exists becomes smaller. In this sense, a

run equilibrium is most likely to exist when there is more uncertainty about the timing of

fundamental withdrawal demand. Panel (d) is based on a uniform distribution for π and

illustrates that the results do not depend on the particular functional form chosen for π1.

Example 2: Let r1 = r̄ = 1. π1 follows a truncated normal distribution with mean µ = 0

and standard deviation σ = 0.3. We consider the following four cases:

(a) π = 0.6, R = 1.03, r = 0.8, q = 0.5;

(b) π = 0.6, R = 1.03, r = 0.5, q = 0.8;

(c) π = 0.7, R = 1.03, r = 0.8, q = 0.5;

(d) π = 0.6, R = 1.01, r = 0.8, q = 0.5;

This second example investigates how the probability distribution over the future liquidation

value of investment (r2) affects the existence of a run equilibrium. The results are depicted

in Figure 2.

Moving from panel (a) to panel (b) in this figure, the downside risk is larger (that is, r

is much smaller), but the set of δ for which the fund is fragile is essentially unchanged. In

other words, a worse downside in period 2 does not necessarily make the fund more fragile.

Comparing panel (a) to panels (c) and (d) shows the fragility set tends to increase as there

are more impatient investors or the interest rate of the long-term asset is smaller, at least in

the context of this example.

Example 3: Let π = 0.6 and R = 1.01. π1 follows a truncated normal distribution with

mean µ = 0 and standard deviation σ = 0.3. In this example, we focus on the scenario where
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(a) π = 0.6, R = 1.03, r = 0.8, q = 0.5 (b) π = 0.6, R = 1.03, r = 0.5, q = 0.8

(c) π = 0.7, R = 1.03, r = 0.8, q = 0.5 (d) π = 0.6, R = 1.01, r = 0.8, q = 0.5

Figure 2: Fragility region of redemption fees with different set of parameters

r1 = r̄ < 1 and q = 1, i.e., liquidation value of investment is low in period 1 and will be

unchanged in period 2. We consider two cases: r1 = 0.9 and r1 = 0.7. Figure 3 depicts the

expected payoff of redeeming and waiting for each case. Because liquidation is now costly

in period 1, a redemption fee will be imposed if redemption demand is larger than π in this

period. As a result, the payoff from redeeming in period 1 is now a decreasing function of

δ, as shown in both panels of the figure. In both cases, it is again the case that the fund is

fragile for a range of intermediate values of δ. This range is larger for the case where the

liquidation value of investment is lower.

3.3 Discussion

Engineer (1989) and Cipriani et al. (2014) have shown that a policy of restricting withdrawals
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(a) r1 = 0.9 (b) r1 = 0.7

Figure 3: Fragility region of redemption fees with different liquidation values

once demand is unusually high may be ineffective at preventing runs. Our environment

with redemption fees and no sequential service gives the fund more flexibility to shape

incentives in the redemption game. One might have hoped that such flexibility would allow

the fund to implement the efficient allocation without also introducing a run equilibrium.

Indeed, our reading of the 2014 reforms is that they were based on precisely this type of

reasoning. Policymakers emphasized, for example, that a redemption fee can correct the

negative externality that arises when current redemptions leave the fund with a less liquid

portfolio.

The examples above show that, in many cases, this approach does not work. The problem

arises when (i) investors believe a run is starting but will be small enough that it is not

detected by the fund in the current period, and (ii) liquidating investment in future periods

may be costly. An attentive investor will then recognize that redemption fees are likely to

be larger in the future, creating the incentive to redeem preemptively. This type of incentive

appears to have played an important role in the runs on money market funds in March

2020.19 Put differently, this type of policy corrects the negative externality associated with

early redemptions only if redemption demand is large enough to immediately indicate a run

is underway, which is not always the case.

What should policymakers do? In the next section, we show that redemption fee policies

can be effective at preventing runs if the fees are imposed more aggressively. In particular,

a fee must be applied for at least some levels of fundamental withdrawal demand.

19 For example, the SEC stated in its MMF reform proposal of in February 2022 that “the possibility of an
imposition of a fee ... appears to have contributed to incentives for investors to redeem.” Also, see Li
et al. (2021) for more empirical evidence of this effect.
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4 Preventing runs

In this section, we study redemption fee policies that deviate from the first-best allocation

rule with the goal of eliminating the run equilibrium. We first formulate the problem of

finding the best run-proof fee policy. We characterize the solution to this problem and show

that it can have surprising features. We then evaluate the 2023 MMF reforms using our

framework and show how they differ from the optimal policy. Finally, we discuss the role of

portfolio restrictions in the optimal design of run-proof arrangements.

4.1 The best run-proof contract

In situations where the policy in Section 3 admits a run equilibrium, preventing runs requires

the fund to impose a fee in at least some circumstances where withdrawal demand is in the

normal range. It is always possible to prevent runs by setting the fees aggressively enough. If,

for example, c1(m1) is set to the lowest possible liquidation value of investment in any period,

for all m1, then early redemptions by some investors will always increase the payments to

investors in subsequent periods, removing the incentive to run. While such a policy prevents

runs, it also gives low consumption to type-1 investors in the no-run equilibrium, sharply

reducing the fund’s attractivess. Our goal in this section is to find the least costly way for

the fund to rule out a preemptive run.

We allow the fund to choose any feasible payment function c1(m1) in period 1 when

redemption demand is consistent with fundamentals, that is, when m1 is in [0, π].20 We

continue to focus on the log utility case, which implies the fund will set c1(m1) ≤ 1 for all

m1. When c1 is strictly less than 1, meaning a fee is imposed in period 1, the proceeds

are divided efficiently among the remaining investors in periods 2 and 3. Other parts of

the analysis, including the time-consistency constraints when redemption demand is greater

than π, remain the same as in Section 3. It is straightforward to show that any such policy

will again generate a no-run equilibrium in the redemption game. We want to identify the

welfare maximizing policy subhec to the constraint that no run equilibrium exists.

When a fee is imposed in period 1, the fund will have extra liquid assets available in

period 2. If the fee is relatively small, the fund will find it optimal to use all of those assets

to increase the consumption of type 2 investors, since the efficient allocation has c2 < c3. If

the fee imposed in period 1 is sufficiently large, however, the fund will divide the proceed in

20 Since π is known, the total redemption demand in period 2 m1 + m2 is at least π. Therefore, this new
flexibility is only relevant in period 1.
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such a way that the consumption of type 2 and type 3 investors is equalized. In other words,

for any m1 ≤ π and c1(m1) ≤ 1 the fund’s optimal payments in periods 2 and 3 are given by

c2(m1; c(m1)) = min{cn2 (m1; c(m1)), c
e
2(m1; c(m1))} = min{π −m1c(m1)

π −m1

,
R(1− π) + π −m1c(m1)

1−m1

};

c3(m1; c(m1)) = max{cn3 (m1; c(m1)), c
e
3(m1; c(m1))} = max{R,

R(1− π) + π −m1c(m1)

1−m1

}.

The superscript n in these expressions represents the case where the fund uses all of its liquid

assets in period 2 (holding no excess liquidity), while e represents the case where the fund

holds some liquid assets until period 3 as a way to equalize the consumption of type 2 and

3 investors. Using this notation, the expected utility of investors in the no-run equilibrium

for a given policy c1(m1) can be written as∫ π

0

[m1u(c(m1)) + (π −m1)u(c2(m1; c(m1))) + (1− π)u(c3(m1; c(m1)))]f(m1)dm1, (11)

where m1 = π1. Note that if c(m1) = 1 for all m1, we would have c2(m1) = 1, c3(m1) = R,

and the first-best level of welfare would obtain.

To prevent runs, the fund must set the function c(m1) so that waiting to redeem becomes

a dominant strategy for an attentive non-type-1 investor in period 1. In other wrods, a non-

type-1 investor who expects all other attentive investors to redeem in period 1 must be

willing to wait. This run-proof condition can be written as

∫ π−δ
1−δ

0

u(c(m1))fn(π1)dπ1 +

∫ π

π−δ
1−δ

u(r1(1− π) + π)fn(π1)dπ1

≤
∫ π−δ

1−δ

0

{pπ1 [qu(c
l
2(m1,m2; c(m1), r̄)) + (1− q)u(cl2(m1,m2; c(m1), r))]

+ (1− pπ1)[qu(c
l
3(m1,m2; c(m1), r̄)) + (1− q)u(cl3(m1,m2; c(m1), r))]}fn(π1)dπ1

+

∫ π

π−δ
1−δ

[pπ1u(r1(1− π) + π) + (1− pπ1)u(R(1− π) +
R

r1
π)]fn(π1)dπ1,

where

cl2(m1,m2; c(m1), r2) =
r2(1− π) + π −m1c(m1)

1−m1

,

cl3(m1,m2; c(m1), r2) =
R(1− π) + R

r2
[π −m1c(m1)]

1−m1

,
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with m1 = π1 + δ(1 − π1) and m2 = (1 − δ)(π − π1). The first line of the expression above

is the expected utility from redeeming. If π1 is small enough that the run is not detected in

period 1, m1 will be less than pi and redeeming investors will be paid according to the chosen

policy c1(m1). If π1 is larger, the run will be detected right away and redeeming investors

will receive an even share of the liquidation value of the fund’s assets. If the investor instead

decides to wait, there are several possibilities to consider, as shown on the remaining lines. If

π1 is small, the investor’s consumption depends on whether she ends up redeeming in period

2 or 3 and on the realized liquidation value of investment in period 2. If π1 is large and the

fund detects the run right away, the fund will do whatever liquidation is needed in period 1

and the investor’s consumption will be c2 or c3 as given in Proposition 3.

The run-proof condition can be simplified to the following:

B(δ) ≥
∫ π−δ

1−δ

0

{u(c(m1))− pπ1 [qu(c
l
2(m1,m2; c(m1), 1)) + (1− q)u(cl2(m1,m2; c(m1), r))]

− (1− pπ1)[qu(c
l
3(m1,m2; c(m1), 1)) + (1− q)u(cl3(m1,m2; c(m1), r))]}fn(π1)dπ1,

where

B(δ) ≡ ln(
R

r1
)

∫ π

π−δ
1−δ

(1− pπ1)fn(π1)dπ1.

Note that B(δ) is a constant, independent of the choice of contract c1(m1) . By change of

variables (m1 = π1 + δ(1− π1)), we can write the run-proof condition as

(1− δ)B(δ) ≥
∫ π

δ

{u(c(m1))− pm1−δ
1−δ

[qu(cl2(m1,m2; c(m1), r̄)) + (1− q)u(cl2(m1,m2; c(m1), r))]

− (1− pm1−δ
1−δ

)[qu(cl3(m1,m2; c(m1), r̄)) + (1− q)u(cl3(m1,m2; c(m1), r))]}fn(
m1 − δ

1− δ
)dm1.

Note that the run-proof condition is only relevant for m1 ∈ [δ, π]. Therefore, the fund can

keep paying investors at par when the redemption demand in period 1 is relatively small,

i.e., m1 ∈ [0, δ). This feature is in line with the mandatory fees in the final rule for money

market reform announced by SEC in July 2023, whereby a fee becomes mandatory only

when current redemptions exceed 5% of the fund’s assets. When the redemption demand

m1 exceeds δ, the fund needs to compute the optimal c(m1) that maximizes (11) subject to

the run-proof condition. We allow the fund to choose any continuous c(m1) for m1 ∈ [δ, π].
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Furthermore, we focus on the following two sets of c(m1):

CN = {c(m1) :
π −R(π −m1)

m1

≤ c(m1) ≤ 1 for each m1 ∈ [δ, π]},

CE = {c(m1) :
π(1− δ)(1− r) + r(δ +m1)

(1− δ)m1

< c(m1) <
π −R(π −m1)

m1

for each m1 ∈ [δ, π]}.

Note that, if c(m1) ∈ CN , the fund chooses the no liquidation payments (cn2 (m1; c(m1)), c
n
3 (m1; c(m1)))

in the no-run equilibrium and theproblem becomes

max
{c(m1)∈CN}

∫ π

δ

[m1u(c(m1)) + (π −m1)u(
π −m1c(m1)

π −m1

) + (1− π)u(R)]f(m1)dm1

s.t. c(m1) satisfies the run-proof condition.

Denote this problem as [PN ]. If c(m1) ∈ CE, the fund chooses the excess liquidity payments

(ce2(m1; c(m1)), c
e
3(m1; c(m1))) in the no-run equilibrium. Therefore, the fund’s problem be-

comes

max
{c(m1)∈CE}

∫ π

δ

[m1u(c(m1)) + (1−m1)u(
R(1− π) + π −m1c(m1)

1−m1

)]f(m1)dm1

s.t. c(m1) satisfies the run-proof condition.

Denote this problem as [PE]. Note that, if there exists a solution c∗(m1) to the problem [PN ],

c∗(m1) is the optimal run-proof payment rule. However, if problem [PN ] has no solution,

i.e., the run-proof condition is violated for any c(m1) ∈ CN , the optimal run-proof payment

rule instead sovles problem [PE].

To being, note that for any c(m1) ∈ CN , we have c(m1) ≥ π−R(π−m1)
m1

≥ π−R(π−δ)
δ

. When

R ≈ 1 as in examples 1 and 2, π−R(π−δ)
δ

≈ 1. Therefore, for any c(m1) ∈ CN , c(m1) ≈ 1,

which violates the run-proof condition since c(m1) = 1 is not run-proof for the given δ. As a

result, we can focus on problem [PE]. Let µ ≥ 0 be the multiplier for the run-proof condition.

Then the optimality condition (Euler-Lagrangian equation) is that for each m1 ∈ [δ, π]:

[
m1

c
− m1(1−m1)

R(1− π) + π −m1c
]f(m1)︸ ︷︷ ︸

Marginal cost of reducing welfare

= µ [
1

c
+ q

m1

r̄(1− π) + π −m1c
+ (1− q)

m1

r(1− π) + π −m1c
]fn(

m1 − δ

1− δ
)︸ ︷︷ ︸

Marginal benefit of preventing preemptive runs

.

(12)

Denote c∗(m1, µ) as the solution to (12). If there exists a µ̂ > 0 such that the run-proof

condition is binding with c(m1) = c∗(m1, µ̂) and c∗(m1, µ̂) ∈ CE, c∗(m1, µ̂) is the solution to
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problem PE.

Note that (12) highlights the trade-off between welfare maximizing and preventing pre-

emptive runs. In particular, for any m1 ∈ [δ, π], when changing the payment c contributes

more to the marginal cost of reducing welfare than the marginal benefit of preventing pre-

emptive runs, it is optimal for the fund to impose a smaller redemption fee. To better

illustrate this point, we consider those examples studied in section 3 again and choose a δ

that makes the earlier policy subject to a preemptive run. Also, since R ≈ 1, the solution

to problem [PE] is the optimal run-proof policy. The following examples show that this

payment rule can be an increasing function or a nonmonotone function. This pattern con-

trasts with the usual intuition that the payment rule should be a decreasing function of the

redemption demand to prevent runs.

Example 1 revisited: Let π = 0.6, R = 1.03, r = 0.7, q = 0.5. Again, we consider those

four different probability distributions for π1. As shown in example 1, when δ = 0.4, there

exists a preemptive run under the original policy for all four probability distributions. Figure

4 depicts the optimal run-proof payment rule for each probability distribution with δ = 0.4.

As shown in those figures, the run-proof payment can be an increasing function or a U-shape

function of redemption demand.

Example 3 revisited: Let π = 0.6, r1 = r̄ = r, q = 1, and R = 1.01. π1 follows a truncated

normal distribution with mean µ = 0 and standard deviation σ = 0.3. We consider two

cases: r = 0.9 and r = 0.7. As shown in example 3, when δ = 0.3, there exists a preemptive

run under the original policy for both cases. Figure 5 depicts the optimal run-proof payment

rule for both cases with δ = 0.3. As shown in those figures, the run-proof payment is an

increasing function of redemption demand.

4.2 Evaluating the 2023 reforms

In July 2023, the SEC adopted a new set of rules for prime institutional MMFs.21 The new

rules remove funds’ ability to impose redemption gates and also eliminate the link between

a fund’s remaining liquid assets and its ability to impose a redemption fee. Instead, funds

are now required to impose a redemption fee in any period in which redemptions exceed 5%

of the fund’s assets. This threshold is low enough that it is expected to be met with some

regularity in normal times. In periods where this threshold is met, a fund is required to

impose a redemption fee equal to the cost it would face if it were to sell a pro-rata share

21The full text of the 2023 rules is available at https://www.sec.gov/files/rules/final/2023/33-11211.pdf.
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(a) Truncated normal with µ = 0 and σ = 0.3 (b) Truncated normal with µ = 0.3 and σ = 0.3

(c) Truncated normal with µ = 0.5 and σ = 0.3 (d) Uniform on [0, π]

Figure 4: Run-proof payments with different probability distributions for π1 and δ = 0.4

of each security in its portfolio. In other words, redeeming investors will receive the current

liquidation value of a “vertical slice” of the fund’s portfolio.

The new rules are designed to “reduce potential first-mover advantage” in share re-

demption and thereby prevent runs. However, our analysis above indicates that redemption

incentives are complex and forward-looking. We examine the effectiveness of these new rules

in our model under two distinct scenarios. In one scenario, investment is currently illiquid

(r1 < 1) and market conditions are expected to remain unchanged (r2 = r1). In the second

scenario, market conditions are currently normal (r1 = 1), but investors believe conditions

may deteriorate (r < 1 and q < 1). We show that the new rules successfully prevent runs in

the first scenario but not in the second.
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(a) r = 0.9 (b) r = 0.7

Figure 5: Run-proof payments with different different liquidation values and δ = 0.3

Secenario 1: r1 = r2 = r < 1. In scenario 1, the vertical slice rule implies that the fund

should set c1(m1) = r(1− π) + π for m1 ∈ [0, π]. Furthermore, given c1(m1) = r(1− π) + π

for m1 ∈ [0, π], condition (TC1) requires that, when m1 ≤ π and m1+m2 > π, the fund sets

c2(m1,m2, r) = max{π −m1[r(1− π) + π]]

π + δ(1− π)−m1

, r(1− π) + π}.

Therefore, we have c2(m1,m2, r) ≥ r(1 − π) + π = c1(m1). In other words, even when the

fund does not detect the run in period 1, its optimal payment in period 2 is no less than the

payment in period 1. As a result, there is no preemptive run under the vertical slice rule.

Figure 6 depicts the optimal run-proof payment rule in example 3 and the corresponding

vertical slice rules.

Secenario 2: r1 = 1; r2 potentially < 1. [Refer back to example 1. When r1 = 1, the

vertical slice rule imposes no redemption feel while redemption demand is less than π. So

that example shows the new SEC rules are not effective.]

Our results earlier in this section showed that the best run-proof contract has a forward-

looking redemption fee: the consumption of type-1 investors in some states depends on the

probability distribution for the next-period liquidation value r2. In practice, it may not

be straightforward to determine this probability distribution and integrate it into the re-

demption fee. One might hope to design a simpler redemption fee rule that avoids this

complication but is nevertheless run proof. Our example in scenario 2 highlights the prob-

lem with this approach. A redemption fee based only on the current liquidation value of

investment may not prevent runs in situations when investors fear that market conditions
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(a) r = 0.9 and δ = 0.3 (b) r = 0.7 and δ = 0.3

Figure 6: Optimal run-proof payments and the vertical slice rule in example 3

may rapidly worsen.

4.3 Redemption fees vs. portfolio restrictions

So far, we have fixed the fund’s initial portfolio to (π, 1−π) and focused on using redemption

fees to eliminate the run equilibrium. In this section, we take the funds’ initial portfolio choice

into consideration. Suppose that the fund’s initial portfolio is (s, 1 − s) with s ≥ π. First,

let us consider the case with no redemption fees in normal times, i.e., c(m1) = 1 for all

m1 ∈ [0, π]. For a given δ, we want to find the smallest s̄ such that there is no preemptive

run when the fund is not using fees in normal times. In other words, (s̄ − π) is the least

amount of excess liquidity the fund needs to hold in period 0 to prevent preemptive runs in

period 1. To find s̄, we first derive the time-consistent payment schedules for any s ∈ [π, 1].

Proposition 4. Condition (TC2) requires that, when m1 > π, the fund’s optimal payment

adjustment is divided into three regions in terms of s:

1. Liquidation region: If s ∈ [π, s̄D1 ), the fund sets c1 = c2(r2) = r1(1 − s) + s, and

c3(r2) = R(1− s) + R
r1
s for any r2, where s̄D1 = r1[π+δ(1−π)]

r1[π+δ(1−π)+(1−π)(1−δ)]
;

2. No liquidation region: If s ∈ [s̄D1 , s̄
D
2 ], the fund sets c1 = c2(r2) = s

π+δ(1−π)
, and

c3(r2) =
R(1−s)

(1−π)(1−δ)
for any r2, where s̄D2 = R[π+δ(1−π)]

R[π+δ(1−π)+(1−π)(1−δ)]
;

3. Excess liquidity region: If s ∈ (s̄D2 , 1], the fund sets c1 = c2(r2) = c3(r2) = R(1− s) + s

for any r2.
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Therefore, as the fund holds more and more excess liquidity in period 0, it optimally

chooses not to liquidate the long-term asset when s is in the middle range and eventually

holds excess liquidity until period 3 when s is large enough. The same logic also applies to

time-consistent payment schedules under condition (TC1).

Proposition 5. Condition (TC1) requires that, when m1 ≤ π and m1 +m2 > π, the fund’s

optimal payment adjustment in period 2 given r2 is divided into three regions in terms of s:

1. Liquidation region: If s ∈ [π, s̄U1 (m1,m2; r2)),

c2(m1,m2; r2) =
r2(1− s) + s−m1

1−m1

, c3(m1,m2; r2) =
R(1− s) + R

r2
(s−m1)

1−m1

,

where s̄U1 (m1,m2; r2) =
r2m2+(1−m1−m2)m1

r2m2+1−m1−m2
;

2. No liquidation region: If s ∈ [s̄U1 (m1,m2; r2), s̄
U
2 (m1,m2)],

c2(m1,m2; r2) =
s−m1

m2

, c3(m1,m2; r2) =
R(1− s)

1−m1 −m2

,

where s̄U2 (m1,m2) =
Rm2+(1−m1−m2)m1

Rm2+1−m1−m2
;

3. Excess liquidity region: If s ∈ (s̄U2 (m1,m2), 1], c2(m1,m2; r2) = c3(m1,m2; r2) =
R(1−s)+s−m1

1−m1
.

With Proposition 4 and 5, the next proposition shows the existence of s̄ and further

characterizes it under some conditions.

Proposition 6. When c(m1) = 1 for m1 ∈ [0, π], there exists a s̄ ∈ [π, 1] such that there is no

preemptive run. Furthermore, if there is no preemptive run when s = ŝ = s1(0, π+δ(1−π); r),

s̄ ∈ [π, ŝ) and makes the run-proof condition binding, i.e.,

∫ π

δ
[u(1)− px−δ

1−δ
E[u(

r2(1− s̄) + s̄− x

1− x
)]− (1− px−δ

1−δ
)E[u(

R(1− s̄) + R
r2
(s̄− x)

1− x
)]]fn(

x− δ

1− δ
)dx = (1− δ)B(δ).

By Proposition 6, if s̄ ∈ [π, ŝ) and makes the run-proof condition binding, we know

that there exists a preemptive run for all s ∈ [π, s̄) with no redemption fees in normal times.

Therefore, we can follow the same steps in section 4.1 to solve the optimal run-proof payment

rule c∗(m1, s) for each s ∈ [π, s̄). Let W (s) denote the highest welfare achieved in the no-run

equilibrium given that the fund holds s amount of liquid assets in period 0 and adopts the
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corresponding optimal run-proof payment rule c∗(m1, s) in period 1, which is given by

W (s) =

∫ δ

0

[π1u(1) + (π − π1)u(c2(π1; 1, s)) + (1− π)u(c3(π1; 1, s))]f(π1)dπ1

+

∫ π

δ

[π1u(c
∗(π1, s)) + (π − π1)u(c2(π1; c

∗(π1, s), s)) + (1− π)u(c3(π1; c
∗(π1, s), s))]f(π1)dπ1,

where

c2(π1; c, s) = min{s− π1c

π − π1

,
R(1− s) + s− π1c

1− π1

};

c3(π1; c, s) = max{R(1− s)

1− π
,
R(1− s) + s− π1c

1− π1

}.

Note that, as s increases from π to s̄, c∗(m1, s) increases for each m1 since having more

liquidity in period 0 reduces the redemption fee in period 1, which benefits type-1 investors.

However, as s increases from π to s̄, c3(π1; c, s) decreases for each π1 and c, since holding

more liquidity in period 0 means less investment matured in period 3, which makes type-3

investors worse off. The next example illustrates that, under some parameter values, the

cost of holding excess liquidity in period 0 outweighs the benefit.

Example 4: Let π = 0.6, R = 1.03, r1 = r̄ = 1, r = 0.8, and q = 0.5. Furthermore, π1

follows the truncated normal distribution in [0, π] with the mean equal to 0 and standard

deviation σ = 0.3. As shown in example 2, we pick δ = 0.4 so that there exists a preemptive

run under redemption fees. Given those parameter values, we solve s̄ = 0.69 and Figure

7 depicts W (s) for s ∈ [π, s̄), which is a strictly decreasing function. Therefore, in this

example, holding excess liquidity reduces social welfare.

5 Extensions

The analysis above assumes the fund knows the parameter δ, which measures how many

non-type-1 investors would participate if a run were to occur in period 1. In this section,

we present two extensions to the analysis that weaken this assumption. First, we allow for

δ to be a random variable with a known distribution. We then consider a robust control

approach in which the fund believes that, given its choice of contract, nature will select δ in

a way that maximizes investors’ incentive to run. We derive the form of the best run-proof

contract in both cases. While the details of the results vary across specifications, the analysis

shows how our general approach can be applied for different assumptions about the fund’s
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Figure 7: Welfare function W (s)

information about the size of a potential run.

5.1 Random δ

In this section, we study the optimal run-proof payment rule when δ is random. More

specifically, we assume that δ takes values in {δL, δH}, and p(δ = δL) = q̂. Furthermore,

we assume that δ and π1 are stochastically independent. For simplicity, let r2 be known

and r1 = r2 = r, where r ∈ ( π(1−δL)
π+δL(1−π)

, 1]. Note that δ being random does not change the

efficient allocation and condition (TC1). However, with δ being random, the time consistency

condition when m1 > π is more complicated and needs to be divided into two conditions:

(TC2H) For m1 > π + δL(1 − π), {c1, c2, c3} must maximize equation (9) subject to

constraints in equations (3) - (5) with m2 = π + δH(1− π)−m1.

(TC2L) For m1 ∈ (π, π + δL(1 − π)], {c1, c2, c3} must maximize equation (9) with

expectation over δ subject to constraints in equations (3) - (5) for m2 =

π + δH(1− π)−m1 and m2 = π + δL(1− π)−m1, respectively.

Here, since δ is random, the fund is uncertain about the exact scale of the run when m1

is possible under both values of δ, i.e., m1 ∈ (π, π + δL(1 − π)]. If m1 > π + δL(1 − π), a
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redemption demand that is higher than the largest possible redemption demand with δL, the

fund knows for sure that it is experiencing a bigger scale run in period 1, i.e., δ = δH .

Redemption fees. First, note that the time consistent payment schedule at t = 2 when

m1 ≤ π andm1+m2 > π stays the same as in 3.2. Following the same analysis in Proposition

3, condition (TC2H) requires that the fund sets c1 = c2 = r(1− π) + π since r > π(1−δL)
π+δL(1−π)

,

i.e., r(1 − π) + π > π
π+δL(1−π)

. Similarly, condition (TC2L) requires that the fund sets

c1 = c2(δ) = r(1− π) + π for each δ.

Next, we study whether a preemptive run exists under redemption fees that implement

the first-best allocation when δ is random. Same as in section 3.2, we compare a non-type-1

investor’s expected payoff of redeeming and waiting, given that all other attentive non-type-1

investors choose to redeem:

Redeem: q̂{
∫ π−δL

1−δL

0

u(1)fn(π1)dπ1 +

∫ π

π−δL
1−δL

u(r(1− π) + π)fn(π1)dπ1}

+ (1− q̂){
∫ π−δH

1−δH

0

u(1)fn(π1)dπ1 +

∫ π

π−δH
1−δH

u(r(1− π) + π)fn(π1)dπ1}

Wait: q̂{
∫ π−δL

1−δL

0

[pπ1u(c2(π1, δL)) + (1− pπ1)u(c3(π1, δL))]fn(π1)dπ1

+

∫ π

π−δL
1−δL

[pπ1u(r(1− π) + π) + (1− pπ1)u(R(1− π) +
R

r
π)]fn(π1)dπ1}

+ (1− q̂){
∫ π−δH

1−δH

0

[pπ1u(c2(π1, δH)) + (1− pπ1)u(c3(π1, δH))]fn(π1)dπ1

+

∫ π

π−δH
1−δH

[pπ1u(r(1− π) + π) + (1− pπ1)u(R(1− π) +
R

r
π)]fn(π1)dπ1},

where

c2(π1, δ) = max{π − π1 − δ(1− π1)

(π − π1)(1− δ)
,
r(1− π) + π − π1 − δ(1− π1)

(1− π1)(1− δ)
};

c3(π1, δ) = min{ R

1− δ
,
R

r

r(1− π) + π − π1 − δ(1− π1)

(1− π1)(1− δ)
}.

Similar to examples 1 and 2, the next example illustrates that there exists a preemptive run

under the redemption fee payment rule for some intermediate values of δL and δH .

Example 5: Let π = 0.6, r = 0.7, δH = 0.45, δL = 0.3, and q = 0.5. Furthermore, π1 follows

the truncated normal distribution in [0, π] with the mean equal to 0 and standard deviation
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σ = 0.3. Then it is easy to check that the expected payoff of redeeming is larger than that

of waiting.

Optimal policy. When δ is random, the objective function, i.e., the welfare in the no-run

equilibrium, stays the same. However, the run-proof condition becomes more complicated.

Following the same procedure in section 4.1, the run-proof condition can be simplified to the

following:

B ≥ q̂

∫ π

δL

G(m1, c(m1); δL)dm1 + (1− q̂)

∫ π

δH

G(m1, c(m1); δH)dm1

=

∫ δH

δL

q̂G(m1, c(m1); δL)dm1 +

∫ π

δH

[q̂G(m1, c(m1); δL) + (1− q̂)G(m1, c(m1); δH)]dm1,

where

G(m1, c; δ) = {u(c)− pm1−δ
1−δ

u(
r(1− π) + π −m1c

1−m1

)− (1− pm1−δ
1−δ

)u(
R(1− π) + R

r
(π −m1c)

1−m1

)}H(δ),

H(δ) = fn(
x− δ

1− δ
)

1

1− δ
,

and the constant B is

B = ln(
R

r
)[q̂

∫ π

π−δL
1−δL

(1− pπ1)fn(π1)dπ1 + (1− q̂)

∫ π

π−δH
1−δH

(1− pπ1)fn(π1)dπ1].

Therefore, the optimal run-proof payment rule satisfies that, for x ∈ [δL, δH ],

[
m1

c
− m1(1−m1)

R(1− π) + π −m1c
]f(m1) = µq̂[

1

c
+

m1

r(1− π) + π −m1c
]H(δL),

and, for x ∈ (δH , π],

[
m1

c
− m1(1−m1)

R(1− π) + π −m1c
]f(m1) = µ[

1

c
+

m1

r(1− π) + π −m1c
][q̂H(δL) + (1− q̂)H(δH)].

Denote c∗(m1, µ) as the solution to the above equations. If there exists a µ̂ > 0 such that

the run-proof condition is binding with c(m1) = c∗(m1, µ̂) and c∗(m1, µ̂) ∈ CE, c∗(m1, µ̂) is

the optimal run-proof payment rule.

The following example shows the graph of the optimal run-proof payment rule c(m1)

when m1 ∈ [δL, π]. As shown in figure 8, the optimal rule is now a step-wise increasing

function in [δ, π] since the fund’s concern about a potential scale of a run is different in
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different regions. In particular, as m1 gets larger than δH , the fund needs to worry about the

possibility of a larger run in period 1 and, therefore, the optimal payment for m1 ∈ (δH , π]

is much smaller than that for m1 ∈ [δL, δH ]. However, the key trade-off between maximizing

welfare and preventing runs stays unchanged.

Example 5 revisited. Let π = 0.6, r = 0.7, δH = 0.45, δL = 0.3, and q̂ = 0.5. Furthermore,

π1 follows the truncated normal distribution in [0, π] with the mean equal to 0 and standard

deviation σ = 0.3. Figure 8 depicts the optimal run-proof payment rule in [δL, π].

Figure 8: Best run-proof payment rule with random δ

5.2 Robust control

So far, we have assumed that the fund has some prior information regarding π1, δ, and r2,

which allows us to characterize the optimal policy. In this section, we take an adversar-

ial/robust approach to the optimal design of the payment rule. More specifically, we assume

that the fund has no information regarding π1 and δ when choosing the payment rule in

period 1.22 Furthermore, we assume that Nature will always move against the fund and

22Note that the fund’s period 2 payment is chosen ex-post efficiently and does not need any information
regarding π1 and δ. Furthermore, the fund’s period 2 payment rule guarantees that there is no run in
period 2.
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choose the worst possible distribution over (π1, δ, r2) to maximize the fund’s exposure to a

preemptive run. For simplicity, let the fund’s initial portfolio be (π, 1− π).

Definition 1. A payment rule c1(m1) for all m1 ∈ [0, 1] is robust run-proof if it is run-

proof for any distribution over π1, δ, and r2.

For any given distribution over π1, F (π1), and any payment rule c1(m1), we can define

the following welfare function:

W (c1(m1), F (π1)) =

∫ π

0

[π1u(c1(π1)) + (π − π1)u(c2(π1, π − π1; c1(π1)))

+ (1− π)u(c3(π1, π − π1; c1(π1)))]dF (π1).

Definition 2. A payment rule c∗1(m1) for all m1 ∈ [0, 1] is an optimal robust run-proof

payment rule if there does not exist a robust run-proof payment rule c′1(m1) and a distribution

F (π1) such that

W (c′1(m1), F (π1)) > W (c∗1(m1), F (π1)).

To solve the optimal robust run-proof payment rule, let us first consider the following

payment rule:

c1(m1) =

c if m1 = m̂1 ∈ [0, 1]

0 otherwise .
(13)

To maximize the fund’s exposure to a preemptive run, Nature wants to maximize a non-

type-1 investor’s incentive to run by choosing π1 and δ such that

π1 + δ(1− π1) = m̂1 ⇒ π1 =
m̂1 − δ

1− δ
.

Otherwise, by (13), c1(π1 + δ(1 − π1)) = 0. Therefore, for any (π1, δ) pair, a non-type-1

investor’s incentive to run given that other attentive non-type-1 investors choose to redeem

is

u(c)− pπ1u(c2(m̂1, π + δ(1− π)− m̂1; c, r2))− (1− pπ1)u(c3(m̂1, π + δ(1− π)− m̂1; c, r2)). (14)

The next proposition states that, to maximize a non-type-1 investor’s incentive to run,

Nature chooses π1 = 0 and δ = m̂1, i.e., all withdrawals in period 1 are made by non-type-1
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investors, and r2 = r.

Proposition 7. For any c, π1 = 0, δ = m̂1, and r2 = r maximizes (14).

Therefore, it follows from Proposition 7 that a non-type-1 investor’s highest incentive to

run is

u(c)− πu(c2(m̂1, (1− m̂1)π; c, r))− (1− π)u(c3(m̂1, (1− m̂1)π; c, r)). (15)

Pick c∗ such that (15) = 0, i.e.,

u(c∗)− πu(c2(m̂1, (1− m̂1)π; c
∗, r))− (1− π)u(c3(m̂1, (1− m̂1)π; c

∗, r)) = 0. (16)

Note that, for any c ≤ c∗, the following payment rule is a robust run-proof policy.

c1(m1) =

c if m1 = m̂1 ∈ [0, 1]

0 otherwise.

The next proposition states that we can construct the optimal robust run-proof payment

rule using (16).

Proposition 8. Define, for each m1 ∈ [0, 1],

c∗1(m1) = min{c∗(m1), 1},

where c∗(m1) is the solution to equation (16) given m1. Then c∗1(m1) for all m1 ∈ [0, 1] is

an optimal robust run-proof payment rule.

The following numerical example illustrates that c∗1(m1) is a decreasing function after m1

is larger than a certain threshold.

Example 6: Let π = 0.6, R = 1.03, and r = 0.8. Figure 9 depicts the optimal robust run-

proof payment rule c∗1(m1), which pays at par when m1 is relatively small and then decreases

as m1 increases.

6 Concluding remarks

This paper studies a mutual fund’s optimal design of time-consistent payment rules to prevent

preemptive runs. In situations where a run is initially undetected by the fund, we show that
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Figure 9: Optimal robust run-proof payment rule

an appropriately designed payment rule can eliminate the first mover advantage while mostly

preserving the liquidity function of the fund. In the current setup, an expected deterioration

of liquidation value in period 2, i.e., E[r2] < 1, is crucial for the existence of a preemptive

run, and the optimal redemption fees can avoid costly liquidation (in period 2) by preventing

such a run. If r2 ≈ 1, the fund does not need to impose the optimal redemption fees.

One interesting direction for future research is to consider the strategic adoption of the

optimal redemption fees among many funds. In particular, suppose that the liquidation value

is determined by all funds’ liquidation choices. Then, the fund’s adoption of the optimal

redemption fees can exhibit the property of strategic substitutes. More specifically, if more

funds adopt the optimal redemption fees, there will be less costly liquidations in period 2,

which will result in a higher liquidation value. Therefore, each fund is less likely to experience

a preemptive run and has a weaker incentive to adopt the optimal redemption fees. Such

property of strategic substitutes could lead to interesting patterns of the equilibrium adoption

of the optimal fees at the market level.
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Appendices

Proof of Proposition 2. When m1 ≤ π and m1 + m2 > π, condition (TC1) states that the

fund’s reoptimization problem in period 2 is

max m2u(c2) + (1−m1 −m2)u(c3)

s.t. m2c2 + e2 = π −m1 + ℓ2r2

(1−m1 −m2)c3 = R(1− π − ℓ2) + e2

e2 ≥ 0

ℓ2 ≥ 0.

Let µ1, µ2, ν1, ν2 be the corresponding multipliers. Then, the optimality conditions are

u′(c2) = µ1; (17)

u′(c3) = µ2; (18)

µ2 + ν1 = µ1; (19)

r2µ1 + ν2 = Rµ2; (20)

ν1e2 = 0; (21)

ν2ℓ2 = 0. (22)

The following lemma states that the optimal solution always has the fund holding no excess

liquidity in period 2, i.e., e2 = 0.

Lemma 1. For any r2, e2 > 0 cannot be optimal.

Proof. Choose any r2. First, consider the case when e2 > 0 and ℓ2 > 0, i.e., excess liquidity

and extra liquidation in period 2. It follows from (21) and (22) that ν1 = ν2 = 0. By (19) and

(20), we have µ2 = µ1 and r2µ1 = Rµ2, which cannot be satisfied since r2 < R. Therefore,

there is no optimal solution in this case.

Next, consider the case when e2 > 0 and ℓ2 = 0, i.e., excess liquidity but no extra

liquidation. It follows from (21) that ν1 = 0. By (19), we have µ1 = µ2. Then (17) and (18)

imply that u′(c2) = u′(c3), i.e., c2 = c3. As a result, we get

c2 = c3 =
R(1− π) + π −m1

1−m1

.
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Then, we know that e2 = π −m1 −m2c2 > 0 if and only if

R(1− π) + π −m1

1−m1

<
π −m1

m2

. (23)

Since R > 1 and m1 +m2 > π, (23) never holds. Therefore, there is no optimal solution in

this case as well.

Therefore, by Lemma 1, we can focus on the optimization problem with e2 = 0. Then,

given r2, we only need to study two cases: ℓ2 = 0 and ℓ2 > 0. First, consider the case with

ℓ2 = 0, i.e., no liquidation of the long-term asset in period 2. The solution, in this case, is

straightforward and given by

cn2 (m1,m2) =
π −m1

m2

, cn3 (m1,m2) =
R(1− π)

1−m1 −m2

,

where the superscript n represents the case with no liquidation. Next, consider the case with

ℓ2 > 0, i.e., there is liquidation in period 2. Then we have the following first order condition:

r2u
′(c2) = Ru′(c3) ⇒ c3 =

R

r2
c2. (24)

It follows from the feasibility conditions and (24) that

cl2(m1,m2; r2) =
r2(1− π) + π −m1

1−m1

, cl3(m1,m2; r2) =
R(1− π) + R

r2
(π −m1)

1−m1

.

Note that ℓ2 =
1
r
[m2c

ℓ
2(m1,m2; r2)− π +m1] > 0 if and only if

cℓ2(m1,m2; r2) >
π −m1

m2

= cn2 (m1,m2).

Therefore, the optimal solution to the fund’s problem at t = 2 whenm1 ≤ π andm1+m2 > π

is the following:

c2(m1,m2; r2) = max{cn2 (m1,m2), c
l
2(m1,m2; r2)},

c3(m1,m2; r2) = min{cn3 (m1,m2), c
l
3(m1,m2; r2)},

which completes the proof.

Proof of Proposition 3. when m1 > π, condition (TC2) states that the fund’s problem in
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period 1 is

max m1u(c1) + [π + δ(1− π)−m1]E[u(c2(r2))] + (1− π)(1− δ)E[u(c3(r2))]

s.t. m1c1 + e1 = π + r1ℓ1

[π + δ(1− π)−m1]c2(r2) + e2(r2) = e1 + r2ℓ2(r2) for each r2

(1− π)(1− δ)c3(r2) = R(1− π − ℓ1 − ℓ2(r2)) + e2(r2) for each r2

e1 ≥ 0

e2(r2) ≥ 0 for each r2

ℓ1 ≥ 0

ℓ2(r2) ≥ 0 for each r2.

Let µ1, µ2(r2), µ3(r2), ν1, ν2(r2), w1, w2(r2) be the corresponding multipliers, which need to

be nonnegative. Then, we have the following first-order necessary conditions:

u′(c1) = µ1 [c1]

qu′(c2(r̄)) = µ2(r̄) [c2(r̄)]

(1− q)u′(c2(r)) = µ2(r) [c2(r)]

qu′(c3(r̄)) = µ3(r̄) [c3(r̄)]

(1− q)u′(c3(r)) = µ3(r) [c3(r)]

µ2(r̄) + µ2(r) + ν1 = µ1 [e1]

µ3(r̄) + ν2(r̄) = µ2(r̄) [e2(r̄)]

µ3(r) + ν2(r) = µ2(r) [e2(r)]

r1µ1 + w1 = R[µ3(r̄) + µ3(r)] [ℓ1]

r̄µ2(r̄) + w2(r̄) = Rµ3(r̄) [ℓ2(r̄)]

rµ2(r) + w2(r) = Rµ3(r) [ℓ2(r)]

Furthermore, we have the following complementarity slackness [CS] conditions:

ν1e1 = 0, ν2(r̄)e2(r̄) = 0, ν2(r)e2(r) = 0;

w1ℓ1 = 0, w2(r̄)ℓ2(r̄) = 0, w2(r)ℓ2(r) = 0.

To solve this optimization problem, we first establish the following lemmas. The first lemma

states that it is never optimal for the fund to hold excess liquidity in period 2.

42



Lemma 2. For any r2, e2(r2) > 0 cannot be optimal.

Proof. First, for any r2, e2(r2) > 0 and ℓ2(r2) > 0 cannot be optimal. To see this, if

e2(r2) > 0 and ℓ2(r2) > 0, it follows from the [CS] conditions and the first order conditions

for e2(r2) and ℓ2(r2) that µ2(r2) = µ3(r2) and r2µ2(r2) = Rµ3(r2), which cannot hold at the

same time. Therefore, if e1 = 0, e2(r̄) > 0 and e2(r) > 0 cannot be optimal since ℓ2(r̄) > 0

and ℓ2(r) > 0 when e1 = 0.

Next, consider the case when e2(r̄) > 0 and e2(r) = 0. Since e2(r̄) > 0, we have ℓ2(r̄) = 0.

It follows from the budget constraints that c2(r̄) < c2(r) and c3(r̄) > c3(r). By the first order

condition for e2(r̄), we have µ2(r̄) = µ3(r̄), implying that c2(r̄) = c3(r̄). Therefore, it follows

that c2(r) > c3(r), which makes ν2(r) < 0. The same argument applies to the case when

e2(r) > 0 and e2(r̄) = 0.

Lastly, consider the case when e1 > 0, e2(r̄) > 0, e2(r) > 0, and ℓ2(r̄) = ℓ2(r) = 0. By the

[CS] conditions and the first order conditions, we have

µ1 = µ2(r̄) + µ2(r) = µ3(r̄) + µ3(r),

r1µ1 + w1 = R[µ3(r̄) + µ3(r)].

It follows that r1µ1 + w1 = Rµ1, implying ℓ1 > 0 cannot be optimal in this case. Therefore,

we have ℓ1 = ℓ2(r̄) = ℓ2(r) = 0. Together with the budget constraints, we get c1 = c2(r̄) =

c2(r) = c3(r̄) = c3(r) = R(1 − π) + π > 1, which contradicts with e1 > 0, e2(r̄) > 0 and

e2(r) > 0. Therefore, this case cannot be optimal.

The next lemma states that it is always optimal for the fund to hold excess liquidity in

period 1.

Lemma 3. e1 = 0 cannot be optimal.

Proof. By Lemma 2, e2(r2) = 0 for any r2. Then we are left to check two cases: ℓ1 > 0 and

ℓ1 = 0. If ℓ1 > 0, it follows from the [CS] conditions and ℓ2(r2) > 0 that w1 = w2(r̄) =

w2(r) = 0. By the first order conditions for ℓ1, ℓ2(r̄) and ℓ2(r), we have

r1µ1 = R[µ3(r̄) + µ3(r)] = r̄µ2(r̄) + rµ2(r). (25)

It follows from the first order condition for e1 and (25) that

µ1 = ν1 + µ2(r̄) + µ2(r)
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⇒ r̄

r1
µ2(r̄) +

r

r1
µ2(r) = v1 + µ2(r̄) + µ2(r)

⇒r1v1 = (r̄ − r1)µ2(r̄) + (r − r1)µ2(r).

Since r̄ > r and ℓ2(r2) > 0 for any r2, it follows from the budget constraints that c2(r̄) > c2(r),

which implies that

r1v1 = (r̄ − r1)µ2(r̄) + (r − r1)µ2(r)

= (r̄ − r1)q
1

c2(r̄)
+ (r − r1)(1− q)

1

c2(r)

< (E[r2]− r1)
1

c2(r)

≤ 0.

The last inequality follows from the assumption that r1 ≥ E[r2]. Therefore, this case cannot

be optimal.

Next, consider the case when ℓ1 = 0. Similarly, it follows from the [CS] conditions and

the first order conditions that

µ1 = ν1 + µ2(r̄) + µ2(r),

r1µ1 + w1 = r̄µ2(r̄) + rµ2(r).

Therefore, we have

r1ν1 + w1 = (r̄ − r1)µ2(r̄) + (r − r1)µ2(r)

= (r̄ − r1)q
1

c2(r̄)
+ (r − r1)(1− q)

1

c2(r)

< (E[r2]− r1)
1

c2(r)

≤ 0.

Therefore, this case also cannot be optimal.

By Lemma 2 and 3, we can focus on cases with e1 > 0 and e2(r̄) = e2(r) = 0. In those

cases, the next lemma states that it is never optimal for the fund to liquidate in period 2.

Lemma 4. If e1 > 0 and e2(r̄) = e2(r) = 0, ℓ2(r̄) > 0 or ℓ2(r) > 0 cannot be optimal.

Proof. First, consider the case when ℓ1 > 0, ℓ2(r̄) > 0 and ℓ2(r) > 0. It follows from the
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[CS] conditions that ν1 = w1 = w2(r̄) = w2(r) = 0. By the first order conditions, we have

µ1 = µ2(r̄) + µ2(r), r1µ1 = r̄µ2(r̄) + rµ2(r).

Since r̄ ̸= r1 ̸= r, the above two equations cannot hold at the same time, meaning this case

cannot be optimal.

Next, consider the case when ℓ1 = 0, ℓ2(r̄) > 0 and ℓ2(r) > 0. It follows from the [CS]

conditions and the first order conditions that

w1 = (r̄ − r1)µ2(r̄) + (r − r1)µ2(r).

Since r̄ > r and ℓ2(r2) > 0 for any r2, we have c2(r̄) > c2(r), which implies that

w1 = (r̄ − r1)q
1

c2(r̄)
+ (r − r1)(1− q)

1

c2(r)

< (E[r2]− r1)
1

c2(r)

≤ 0.

The last inequality follows from the assumption that r1 ≥ E[r2]. Therefore, this case cannot

be optimal.

Next, consider the case when ℓ2(r̄) = 0 and ℓ2(r) > 0. Since e2(r̄) = e2(r) = 0, we have

c2(r̄) < c2(r) and c3(r̄) > c3(r). It follows from the first order condition for ℓ2(r̄) that

w2(r̄) = Rµ2(r̄)− r̄µ2(r̄)

= Rq
1

c3(r̄)
− r̄q

1

c2(r̄)

< Rq
1

c3(r)
− r̄q

1

c2(r)
= 0.

The last equality follows from the first order condition for ℓ2(r). Therefore, this case cannot

be optimal.

Next, consider the case with ℓ1 > 0, ℓ2(r̄) > 0, and ℓ2(r) = 0. By the [CS] conditions and

the first order conditions, we have

q
r1

c2(r̄)
+ (1− q)

r1
c2(r)

= q
r̄

c2(r̄)
+ (1− q)

R

c3(r)
.
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Suppose that r̄ = r1. Then, it follows that

q
r1

c2(r̄)
+ (1− q)

r1
c2(r)

= q
r1

c2(r̄)
+ (1− q)

R

c3(r)
⇒ c3(r) =

R

r1
c2(r).

Furthermore, we have c3(r̄) =
R
r̄
c2(r̄) =

R
r1
c2(r̄). The budget constraints for r̄ = r1 are

[π + δ(1− π)−m1]c2(r̄) = π + r1ℓ1 + r1ℓ2(r̄)−m1c1,

(1− π)(1− δ)c2(r̄) = r1(1− π)− r1ℓ1 − r1ℓ2(r̄),

which gives us

(1−m1)c2(r̄) = r1(1− π) + π −m1c1.

The budget constraints from r are

[π + δ(1− π)−m1]c2(r) = π + r1ℓ1 −m1c1,

(1− π)(1− δ)c2(r) = r1(1− π)− r1ℓ1,

which gives us

(1−m1)c2(r) = r1(1− π) + π −m1c1.

Therefore, we have c2(r̄) = c2(r), implying ℓ2(r̄) = 0 and therefore a contradiction. In other

words, when r̄ = r1, the case with ℓ1 > 0, ℓ2(r̄) > 0, and ℓ2(r) = 0 cannot be optimal.

Lastly, consider the case with ℓ1 = 0, ℓ2(r̄) > 0, and ℓ2(r) = 0. By the [CS] conditions,

we have ν1 = 0 and w2(r̄) = 0. It follows from the first order conditions for e1 and ℓ2(r̄) that

µ1 = µ2(r̄) + µ2(r), r̄µ2(r̄) = Rµ3(r̄).

Since e1 > 0 and ℓ2(r̄) > 0, we have c2(r̄) > c2(r) and c3(r̄) < c3(r). Therefore, by the first

order condition for ℓ2(r), we have

w2(r) = Rµ3(r)− rµ2(r)

= (1− q)[
R

c3(r)
− r

c2(r)
]

< (1− q)[
R

c3(r̄)
− r

c3(r̄)
]
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= (1− q)
r̄ − r

c2(r̄)

< (1− q)
r̄ − r

c2(r)

= (r̄ − r)µ2(r).

Then, it follows from the first order condition for ℓ1 that

w1 = R[µ3(r̄) + µ3(r)]− r1µ1

= r̄µ2(r̄) + rµ2(r) + w2(r)− r1µ2(r̄)− r1µ2(r)

< (r̄ − r1)µ2(r̄) + (r − r1)µ2(r) + (r̄ − r)µ2(r)

= (r̄ − r)[µ2(r̄) + µ2(r)].

If r̄ = r1, we have w1 < 0, meaning that this case cannot be optimal. In summary, ℓ2(r̄) > 0

or ℓ2(r) > 0 cannot be optimal when e1 > 0 and e2(r̄) = e2(r) = 0.

By Lemma 2-4, we have e1 > 0 and e2(r2) = ℓ2(r2) = 0 for any r2. Therefore, we only need

to focus on two cases: ℓ1 = 0 and ℓ1 > 0. When ℓ1 = 0, we have c1 = c2(r̄) = c2(r) =
π

π+δ(1−π)

and c3(r̄) = c3(r) = R
1−π

. When ℓ1 > 0, we have c1 = c2(r̄) = c2(r) = r1(1 − π) + π and

c3(r̄) = c3(r) = R(1− π) + R
r1
π.

Proof of Proposition 4. First, for any s, we still have the usual liquidation case and no

liquidation case. In the liquidation case, the fund chooses to pay c1 = c2(r2) = r1(1− s) + s

in both middle periods. In the no liquidation case, the fund chooses to pay c1 = c2(r2) =
s

π+δ(1−π)
. If r1(1 − s) + s > s

π+δ(1−π)
, i.e., s < r1[π+δ(1−π)]

(1−π)(1−δ)+r1[π+δ(1−π)]
, the liquidation case is

optimal.

Next, we need to consider another case with excess liquidity. In this case, the fund

chooses to pay c1 = c2(r2) = R(1 − s) + s. In order for this case to be necessary, we need

e1 > 0 and e2(r2) > 0, i.e.,

s− [π + δ(1− π)][R(1− s) + s] > 0 ⇔ s >
R[π + δ(1− π)]

(1− π)(1− δ) +R[π + δ(1− π)]
≡ s̄D2 .

Let W n(s) denote the welfare achieved in the no liquidation case and W e(s) in the excess

liquidity case, which are given by

W n(s) = [π + δ(1− π)]ln(
s

π + δ(1− π)
) + (1− π)(1− δ)ln(

R(1− s)

(1− π)(1− δ)
),
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W e(s) = ln(R(1− s) + s).

Note that both W n(s) and W e(s) are decreasing functions, and |dW
n(s)
ds

| > |dW
e(s)
ds

|. Since

W n(s̄D2 ) = W e(s̄D2 ), we have W n(s) < W e(s) for s > s̄D2 , meaning that the excess liquidity

case is optimal.

Proof of Proposition 6. Note that by Proposition 5, when s > s̄U2 (m1,m2), it is optimal for

the fund to hold excess liquidity, and ce2(m1,m2) = ce3(m1,m2) > 1 since R > 1. In particular,

for the existence of a preemptive run, we are interested in the case with m1 = π1 + δ(1− π1)

and m2 = (1− δ)(π − π1), which gives us the following cutoff

sU2 (m1) =
R[π + δ(1− π)−m1] + (1− π)(1− δ)m1

R[π + δ(1− π)−m1] + (1− π)(1− δ)
.

Since
dsU2 (m1)

dm1
< 0, we have sU2 (m1) ≥ sU2 (0) = R[π+δ(1−π)]

R[π+δ(1−π)]+(1−π)(1−δ)
. Therefore, when s ≥

sU2 (0), the fund always hold excess liquidity in period 2, and there does not exist a preemptive

run. Note that, as s increases in [π, sU2 (0)], a non-type-1 investor’s incentive to run decreases.

As a result, there exists a smallest s̄ ∈ [π, sU2 (0)] such that there is no preemptive run.

Furthermore, if there is no preemptive run when s = ŝ, we know that s̄ < ŝ. By Proposition

5, when s < ŝ, it is optimal for the fund to liquidate the long-term investment for any m1

and r2. Therefore, s̄ must make the run-proof condition binding.

Proof of Proposition 7. Note that π1 = m̂1−δ
1−δ

is decreasing in δ, and pπ1 = π−π1

1−π1
is also

decreasing in π1. Therefore, a larger δ means a larger probability for a non-type-1 investor

to be become type-2 in period 2. Furthermore, note that

ĉ2(m̂1, π + δ(1− π)− m̂1; c, r2) = max{ π − m̂1c

π + δ(1− π)− m̂1

,
r2(1− π) + π − m̂1c

1− m̂1

};

ĉ3(m̂1, π + δ(1− π)− m̂1; c, r2) = min{ R

1− δ
,
R(1− π) + R

r2
(π − m̂1c)

1− m̂1

}.

Therefore, to maximize (14), Nature chooses r2 = r. In the case with no liquidation in period

2, a non-type-1 investor’s expected payoff of waiting is given by

H(δ;m1) = pm1−δ
1−δ

ln(
π − m̂1c

π + δ(1− π)− m̂1

) + (1− pm1−δ
1−δ

)ln(
R

1− δ
)

=
π(1− δ)−m1 + δ

1−m1

ln(
π − m̂1c

π + δ(1− π)− m̂1

) +
(1− π)(1− δ)

1−m1

ln(
R

1− δ
).
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It follows that

∂H(δ;m1)

∂δ
=

1− π

1−m1

[ln(
π − m̂1c

π + δ(1− π)− m̂1

)− ln(
R

1− δ
)] +

1− π

1−m1

(
1

R
− 1) < 0.

Therefore, to maximize (14), Nature chooses δ = m̂1 and π1 = 0, i.e., all redemptions in

period 1 are made by non-type-1 investors.

Proof of Proposition 8. Given the payment rule c∗1(m1), Nature will choose π1 = 0 and δ = δ∗

to maximize a non-type-1 investor’s incentive to run, where

δ∗ ∈ argmax
δ

u(c∗1(δ))− πu(c2(δ, (1− δ)π; c∗1(δ), r))− (1− π)u(c3(δ, (1− δ)π; c∗1(δ), r)).

However, the way we set up c∗1(m1) guarantees that

u(c∗1(δ
∗))− πu(c2(δ

∗, (1− δ∗)π; c∗1(δ
∗), r))− (1− π)u(c3(δ

∗, (1− δ∗)π; c∗1(δ
∗), r)) ≤ 0.

Therefore, the payment rule c∗1(m1) is robust run-proof. Next, to show that the payment

rule c∗1(m1) is also optimal, consider any payment rule c̄1(m1) such that

W (c̄1(m1), F (π1)) > W (c∗1(m1), F (π1)) for some F (π1).

There must exist a m̂1 and k > 0 such that

c̄1(m̂1) = c∗1(m̂1) + k.

However, c̄1(m1) is not a robust run-proof payment rule since Nature can pick (π1, δ) =

(0, m̂1) and make this payment rule subject to a preemptive run. Therefore, the payment

rule c∗1(m1) is an optimal robust run-proof payment rule.
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