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Abstract

How fast can a �at money become valueless? In a continuous-time monetary economy with trading
frictions and CRRA preferences, a �at money under speculative hyperin�ation dies in �nite time. Its
lifespan shrinks as distrust (measured by the distance to the highest equilibrium) increases and as liquidity
needs become more frequent. Contrarily, high seller�s market power, intense specialization, and active
�scal policies slow down the demise of money. If currencies compete, the times it takes for a speculative
hyperin�ation to trigger a dollarization, and for the full dollarization to be completed, vary with currency
substitutability and rates of return.
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��The masses of the people began to falter in their faith; and suspicion or doubt once started,

once under headway against paper credit, or any other system of credit, is like an avalanche. You

must control it, or you are buried beneath its waves.��

Stephen Dillaye, The Money and the Finances of the French Revolution of 1789.

1 Introduction

How fast can a �at money become valueless? The assignat introduced in France at the onset of the French

Revolution, in December 1789, and described by Levasseur (1894, p.179) as �the biggest experiment with

paper money ever tried�provides one answer to this question. While the assignat was initially backed by

land and subject to legal restrictions, it became a full-�edged �at currency after the Reign of Terror ended in

1795 (Sargent and Velde, 1995, p.508). As the assignat lost its backing, �it went on depreciating and falling

in value until it approached so near to worthless that a beggar in the street would hardly deign to accept

one�(Dillaye, 1877, p.39). By the middle of 1796, as shown in Figure 1, �the assignats were nothing more

than waste paper, repudiated by the State as they were rejected by commerce�(Levasseur, 1894, p.193).1
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Figure 1: Plain curve: Real value of assignats per 100 livres measured according to the Caron index. See
Footnote 35 in Sargent and Velde (1995). Dashed curve: Total quantity of assignats in circulation in real
terms. Source: Aubin (1991), constructed from Tables A1 and A2.

The French example of the death of a �at money is not unique.2 The German Papiermark experienced

hyperin�ation in 1922-1923 with the monthly in�ation rate peaking at 30,000 percent.3 It was replaced with

1While the steep increase in the quantity of assignats in circulation was undoubtfully the main contributing factor of the
demise of the assignat, other factors include widespread counterfeiting and speculation. See, e.g., Sargent and Velde (1995,
p.508) and Stanziani (2011).

2The episode of the French assignat parallels the Continental currency introduced in 1775 to fund the U.S. revolutionary
war. By the end of the war, in 1781, the real value of the Continental had been divided by a factor of 100. This episode gave
rise to the idiom �not worth a Continental,�which refers to anything worthless. See https://curiosity.lib.harvard.edu/american-
currency/feature/continental-currency.

3For a description of the German hyperin�ation, see Fergusson (1975).
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the Rentenmark at the end of 1923. More recently, hyperin�ation occurred in Zimbabwe, from March 2007

to November 2008, with a monthly in�ation rate culminating at one hundred billion percent (Hanke and

Kwok, 2009). In 2009, the Zimbabwe dollar was demonetized and the use of foreign currencies was legalized.

These examples illustrate how a �at money can disappear due to hyperin�ation in a matter of months.

Models of �at money provide laboratories to study hyperin�ations. Typically, such models feature a

continuum of equilibria where the value of money is positive at the initial date but converges to zero as

time goes to in�nity � a dire outcome called speculative hyperin�ation. Despite the catastrophic welfare

consequences associated with such equilibria, the literature studying them is narrow. When attention is

given to speculative hyperin�ations, it is primarily to eliminate such outcomes with equilibrium re�nements,

e.g., Wallace, (1981), Obstfeld and Rogo¤ (1983, 2021), Farmer (1984), and Nicolini (1996).

In this paper, I take the view that speculative hyperin�ation equilibria are worthy objects of study as

they embody the singularity of �at money, i.e., speculative hyperin�ations do not exist under a commodity-

based monetary system. They capture the notion that expectations about the value of a �at money can

become unanchored from the "monetarist" value determined by the time-path of the money supply. As a

result, the study of such equilibria can deepen our understanding of the real-world dynamics of in�ations

and hyperin�ations.4 This paper characterizes speculative hyperin�ation equilibria analytically under dif-

ferent assumptions on market structure, trading mechanisms, and monetary and �scal policy. It addresses

topics such as the duration of a currency under speculative hyperin�ation, the impact of market power on

in�ationary dynamics, the role of �scal and monetary policy regimes, and the possibility for the economy to

adopt a competing means of payment and dollarize.

Hyperin�ations require high-frequency observations, e.g., at the peak of Hungary�s hyperin�ation in

1945-46, the daily in�ation rate exceeded 200% (Bomberger and Makinen, 1983). Therefore, following the

tradition of Cagan (1956) and Friedman (1971), I study economies where the demand for money is expressed

in continuous time.5 Relative to this earlier work, I consider environments where the role of money, and

hence its demand, is microfounded. In order to establish some core results, I adopt �rst the search-theoretic

model of Shi (1995) and Trejos and Wright (1995) �STW thereafter �which features indivisible money and

a unit upper bound on individual money holdings. Later in the paper, I relax these restrictive assumptions.

I will show that under CRRA preferences and no bargaining power to sellers, the di¤erential equation

that governs the value of money, i.e., the amount of output that an indivisible unit of money can purchase,

is an autonomous Bernoulli equation � analogous to the ODE of the Solow growth model � that admits

closed-form solutions. The set of solutions includes a range of speculative hyperin�ations indexed by the

initial value of money within some open interval. Along these equilibria, money becomes worthless in �nite

time. The time it takes for money to lose its value is the product of two terms, the initial departure from the

4 In Obsfeld and Rogo¤�s (2021) words: ��Although apparently a narrow issue, studying these extreme economies turns out
to be quite illuminating in understanding the fundamentals of price level determination.��

5For a description of the Hungarian hyperin�ation of 1945-1946, see Bomberger and Makinen (1983).
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monetary steady state, which is interpreted as a measure of the distrust in the future value of �at money,

and a duration term that is inversely related to the velocity of money and the rate of time preference. The

velocity itself is endogenous and depends on trading frictions, the severity of the double-coincidence-of-wants

problem, and the supply of money.

The result that �at monies can have a �nite horizon seems at odds with the following backward induction

logic: in a deterministic equilibrium of a discrete-time economy, if money has no value at some date T then it

cannot have a positive value at date T�1. Despite the apparent contradiction, I show that the equilibrium in

continuous time is the limit of a sequence of equilibria in discrete time, where each of the equilibrium agrees

with the backward induction logic above. I also show how to relate this result to a little-known property of

the textbook Solow growth model regarding the convergence of the economy in backward time to its origin.

While the STW is highly tractable, it is limited in its ability to apprehend the monetary or �scal views of

hyperin�ation. Therefore, I generalize the model to allow for divisible money, arbitrary paths for the money

supply, and di¤erent trading mechanisms. It is done along the lines of Choi and Rocheteau (2021b), by

adding a good that is traded competitively and enters preferences linearly, making the model a continuous-

time version of the Lagos and Wright (2005) environment. The time-paths for aggregate real balances

along all equilibria can be characterized in closed form. At the highest equilibrium, in accordance with

the monetarist doctrine, the value of money is tied to the path of the money supply and remains bounded

away from zero. In contrast, along speculative equilibria, �at money loses its value in �nite time and, for

given initial conditions, the rate of divergence from the nonspeculative equilibrium increases with the money

growth rate. Under a calibration that targets the semi-elasticity of US money demand, it takes between 70

and 115 years, depending on the frequency of liquidity needs, for �at money to become valueless if it departs

from its steady-state value by a mere one percent. If the monthly money growth rate exceeds 50 percent so

that the economy enters an hyperin�ation regime, it takes about 6 years for money to lose all its value if

liquidity needs occur at a monthly frequency.

I explore the robustness of the results to several extensions, e.g., preferences with bounded marginal

utility, trading mechanisms where sellers have bargaining power. I consider an extension where domestic

currency competes with an alternative asset (e.g., foreign currencies or precious metals) for the role of means

of payment. The theory determines how long an economy can remain undollarized and how long it takes for

the economy to be fully dollarized. I also consider the case where money creation is endogenous and �nances

a constant �ow of government purchases, as in Sargent and Wallace (1973).

Finally, I conclude the paper by showing that the phenomenon of speculative hyperin�ation is not speci�c

to pure currency economies. I describe an economy with pure credit under limited commitment, along the

lines of Kehoe and Levine (1993), and show the existence of equilibria where debt limits in real terms converge

to zero in �nite time.
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1.1 Literature review

This paper revisits an old question in monetary economics going back to Cagan (1956) �the dynamics of

hyperin�ations. The novelty consists in explaining how fast a �at money dies along a speculative hyperin�a-

tion equilibrium depending on market structure and monetary policy. The methodology builds on the New

Monetarist literature, surveyed in Lagos, Rocheteau, and Wright (2017), that provides microfoundations for

the role of money by formalizing decentralized markets with trading frictions. The existence of speculative

hyperin�ation equilibria has been established in the context of continuous-time search-theoretic models by

Trejos and Wright (1995, Section 6), Coles and Wright (1998), Trejos and Wright (2016), and Choi and

Rocheteau (2021a,b), among others, and in discrete-time models by Lagos and Wright (2003) and Rocheteau

and Wright (2013).6 Speculative hyperin�ations, however, are not the focus of these papers. To the best of

my knowledge, my paper is the �rst to solve the entire time-paths of speculative hyperin�ations for di¤erent

trading mechanisms, di¤erent policy regimes, and di¤erent payment systems, and to establish that, under

standard preferences, �at money becomes valueless in �nite time along a deterministic equilibrium.

From a methodology standpoint, the model has two key ingredients. First, the environment is written in

continuous time, as in Shi (1995) and Trejos and Wright (1995), which is instrumental to obtain the (�nite)

duration of a �at money. Second, money is perfectly divisible and individual asset holdings are unrestricted,

as in Lagos and Wright (2003, 2005), which is necessary to analyze the role of monetary and �scal policies for

the dynamics of speculative hyperin�ations. Relative to most of the literature, I study arbitrary time-paths

for the money growth rate (and not simply constant money growth rates) and I endogenize these paths by

linking them to the �scal needs of the government.7

In this paper, I only consider deterministic, perfect foresight equilibria, which makes the disappearance

of �at money in �nite time even more puzzling. Stochastic, sunspot equilibria are studied in Lagos and

Wright (2003) and Rocheteau and Wang (2023) in a discrete-time and continuous-time environments, re-

spectively. While there exist sunspot equilibria where �at money becomes valueless with the realization of a

sunspot state, those equilibria are qualitatively di¤erent from speculative hyperin�ations. Along a sunspot

equilibrium, the probability that money is alive at any time horizon is positive. Moreover, the probability

of occurrence of the sunspot state that coordinates agents on the nonmonetary equilibrium is independent

of fundamentals and policies. Finally, average in�ation in stationary sunspot equilibria is determined solely

by the (constant) money growth rate.

I study speculative hyperin�ations under di¤erent policy regimes: when �scal policy is passive and

accommodates an exogenous time-path for the money supply and when �scal policy is dominant and sets

the size of the revenue from money creation in order to �nance a constant �ow of government purchases, as

in Sargent and Wallace (1973). The seminal paper on the role of the coordination between monetary and

6Outside of the search literature, Brock (1975) provides the �rst study of perfect foresight equilibria, including speculative
hyperin�ation equilibria, for a dynamic, competitive economy with money in the utility function. A treatment of dynamic
equilibria in overlapping generation economies is provided by Azariadis (1993).

7A noticeable exception is Gu, Han, and Wright (2020) who study news about monetary policy in a New Monetarist model.
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�scal policies for the dynamics of in�ation is Sargent and Wallace (1981). Sargent (1982) emphasized the

role of �scal policy to explain the end of hyperin�ation episodes. A thorough review of the �scal theory of

in�ation is provided by Cochrane (2023). Relative to this literature, I focus on speculative hyperin�ations,

and not fundamental hyperin�ations, and I discuss the links between the two.

I follow Sargent and Wallace (1973) by studying hyperin�ation under rational expectations (more pre-

cisely, under perfect foresight). Alternatively, adaptive learning provides a realistic description of in�ation

expectations and can be used to re�ne the equilibrium set. Marcet and Sargent (1989) show that the high-

in�ation steady state in a model where the government uses money creation to �nance government purchases

is unstable under least-squares learning. Adam, Evans, Honkapohja (2006) reconsider this result under dif-

ferent informational assumptions and show that speculative paths are stable under least-squares learning if

agents can utilize contemporaneous data.

The version of the model with a domestic currency and a competing asset or currency is related to Lester,

Postlewaite and Wright (2012), Zhang (2014), and Gomis-Porqueras, Kam, and Waller (2017), among many

other papers on dual currency economies. Altermatt, Iwasaki, and Wright (2023) study the sunspot and

nonstationary equilibria of a discrete-time New Monetarist economy with multiple liquid assets.

The existence of speculative equilibria in the context of pure credit economies with limited commitment

and endogenous debt limits is discussed in Bloise, Reichlin, and Tirelli (2013), Gu, Mattesini, Monnet, and

Wright (2013), and Bethune, Hu, and Rocheteau (2018). In the last section of the paper, I solve these

equilibria in closed form in a continuous-time environment and show that debt limits can converge to zero

in �nite time.

2 Hyperin�ations in the STW model

Some results in this section will likely appear at odds with the common wisdom. Therefore, I derive them

�rst in a textbook, microfounded model of a pure currency economy due to Shi (1995) and Trejos and Wright

(1995). The environment builds on Diamond (1982) where all trades take place in pairwise meetings formed

at random in continuous time, and on Rubinstein and Wolinsky (1985) where terms of trade are determined

according to extensive-form bargaining games. Relative to Diamond (1982), agents are specialized in terms

of production and consumption, which generates a double-coincidence-of-wants problem and, in the absence

of a public record technology (Kocherlakota, 1998), a role for money. In Section 3, I will show the results

hold in a generalized version of STW that is more suitable to discuss the link between hyperin�ation and

money growth and will consider applications and extensions.
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2.1 The environment

Time is continuous. There is a unit measure of agents divided evenly into N � 3 types and N divisible

commodities. An agent of type n 2 f1; :::; Ng produces good n and consumes good n+1 (modulo N).8 The

utility of consuming y 2 R+ units of a desired good is u(y), with u(0) = 0, u0 > 0, and u00 < 0. The disutility

of producing y units of a commodity is simply y.9 The rate of time preference is � > 0. Agents meet

pairwise and at random according to a Poisson process with arrival rate � > 0. Conditional on a meeting,

an agent likes the good produced by her partner with probability � = 1=N . The specialization in terms of

production and tastes rules out the double coincidence of wants whereby the two agents in a match like each

other�s output. There is a quantity M 2 (0; 1) of �at money, an intrinsically useless but durable object. For

tractability (to reduce the state space), money is indivisible and agents can hold at most one unit.10 Hence,

the set of individual money holdings is simply f0; 1g. I will relax this assumption later. The terms of trade

in pairwise meetings are determined by take-it-or-leave-it o¤ers by buyers. I consider alternative bargaining

solutions in a later section, in the generalized version of the model.

2.2 De�nition of equilibrium

An equilibrium is composed of a pair of value functions solving Bellman equations and the solution to a

bargaining problem. I start by characterizing agents�lifetime expected utilities. The value of an agent with

one unit of money at time t, denoted by V1;t, solves

�V1;t = ��(1�M) [u(yt) + V0;t � V1;t] + _V1;t; (1)

where V0;t is the lifetime expected utility of an agent with zero unit of money. According to the right side of

(1), the agent meets a producer of her consumption good at rate ��. This producer does not possess a unit

of money, and hence can accumulate one unit if a trade takes place, with probability 1�M . In that event,

the buyer enjoys the utility from consuming yt units of goods, u(yt), in exchange for one unit of money,

which corresponds to a loss in terms of lifetime expected utility equal to V1;t � V0;t. The last term on the

right side is the change in the agents�lifetime utility over time. The value of an agent without money solves

�V0;t = ��M (�yt + V1;t � V0;t) + _V0;t: (2)

The interpretation is similar to the one of (1).

The output produced in exchange for one unit of money, yt, is determined by take-it-or-leave-it o¤ers by

buyers. Hence, the buyer extends an o¤er that makes the seller indi¤erent between accepting or rejecting,

which leads to

yt = V1;t � V0;t: (3)

8This pattern of specialization was formalized, e.g., in Kiyotaki and Wright (1989).
9 In the STW model, there is no loss in generality in adopting a linear disutility of production, i.e., it is akin to a normalization

consisting in choosing a unit for y.
10A version of the model with unrestricted money holdings is studied numerically by Molico (2006).
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The left side is the disutility of production while the right side is the gain in terms of lifetime expected utility

from receiving one unit of money. Substitute V1;t � V0;t from (1)-(2) into the bargaining solution, (3), to

obtain:

_yt = [�+ �� (1�M)] yt � ��(1�M)u(yt): (4)

An equilibrium is a bounded solution, yt, to the ODE (4). It says that the rate of appreciation of the value

of money on the left side of (4) is equal to the opportunity cost of holding money, �y, net of a liquidity

premium, ��(1�M) [u(y)� y].

For future use, I de�ne the velocity of money, #, as the aggregate value of all transactions per unit of

time, ��(1�M)M , divided by the stock of money. Hence, it is equal to

# = ��(1�M): (5)

It increases with the rate at which agents meet, �, and it decreases with specialization, N , and with the

share of agents endowed with money, M .

2.3 CRRA preferences

The objective of this section is to characterize speculative hyperin�ation equilibria in closed form. For this,

I focus for now on constant-relative-risk-aversion (CRRA) utility functions, u(y) = y1�� with � 2 (0; 1).11

The ODE (4) takes the form of a Bernoulli equation

_yt = [�+ �� (1�M)] yt � ��(1�M)y1��t ; (6)

with a positive steady state given by

ys =

�
#

�+ #

� 1
�

: (7)

There is also a nonmonetary steady state such that yt = 0 for all t. The phase diagram of (6) is represented

in the left panel of Figure 2. The monetary and nonmonetary steady states are determined at the intersection

of the phase line and the horizontal line. For all y0 2 (0; ys), there is a speculative hyperin�ation trajectory

starting at y0 and converging to 0. The term speculative refers to the observation that along those equilibria,

the change in the value of money is driven purely by self-ful�lling belief as the money supply and fundamentals

are constant over time. By contrast to these speculative equilibria, I will refer to the highest monetary

equilibrium, ys, as the nonspeculative equilibrium.

We will encounter Bernoulli equations multiple times in this paper. Therefore, I solve (6) step by step.

On any time interval, T , such that yt > 0, I adopt the change in variable xt = y�t . Hence, _xt = �y
��1
t _yt. I

substitute _yt = _xty
1��
t =� into (6) to obtain:

_xt = [�+ ��(1�M)] �xt � ��(1�M)�; 8t 2 T : (8)

11The coe¢ cient � is restricted to be less than one in order to guarantee that the utility is bounded below, u(0) = 0, so that
the surplus from trade is �nite. I generalize the utility function later in Section 4.1.
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This linear, �rst-order di¤erential equation admits a positive steady state, xs = (ys)
�. Given an initial

condition, x0 2 (0; xs), the solution to (8) is

xt = (x0 � xs) e[�+��(1�M)]�t + xs; 8t 2 T : (9)

Using that yt = x
1
�

t , I recover the time-path for yt. I compute the time at which money becomes valueless,

T , by solving xT = 0, which implies yT = 0. Note from (6) that yt is di¤erentiable at t = T with _yT = 0.

The results are summarized in the following proposition.

Proposition 1 (Speculative hyperin�ations in the STW model.) Suppose u(y) = y1�� with � 2

(0; 1). There exists a continuum of speculative, hyperin�ation equilibria indexed by y0 2 (0; ys). For given

y0 < y
s, the time-path for the value of money is

yt = y
s

�
1�

�
(ys)� � y�0
(ys)�

�
e(�+#)�t

� 1
�

I[0;T ](t), (10)

where I[0;T ](t) is an indicator variable, # = ��(1�M), and the time it takes for �at money to lose its value

is

T =
ln [1� (y0=ys)�]

�1
�

�+ #
< +1. (11)

Proposition 1 characterizes the time-paths for the value of money along all speculative, hyperin�ation

equilibria in closed form. Each path depends on the initial value of money, y0, preferences, � and �, idiosyn-

cratic risk, �, specialization, �, and the quantity of money, M .

The speculative component in (10) is

initial gapz }| {�
(ys)� � y�0
(ys)�

�speed of divergencez }| {
e(�+#)�t :

It is the product of two terms. The �rst one is the initial departure of the value of money from the steady

state. The ratio, y0=ys, can be interpreted as a measure of agents�trust in �at money. The second component

is a growth factor that captures the rate at which the value of money drifts away from its nonspeculative

value. This divergence rate is equal to (�+ #) �.

In order to perform some comparative dynamics, I rewrite (10) as

~yt =
h
1� (1� ~y�0 ) e(�+#)�t

i 1
� I[0;T ](t): (12)

where ~yt � yt=ys. Consider the e¤ects of reducing the trading frictions, i.e., �� increases, taking ~y0 as given.

The speed of divergence, [�+ ��(1�M)] �, increases. Hence, ~yt is lower for all t > 0. So while a reduction

in trading frictions makes �at money more valuable at the steady state, it makes it less valuable (relative to

the steady state) along a speculative hyperin�ation. I illustrate this result in the bottom panel of Figure 3

where the top horizontal line represents yt=ys = 1. The trajectory for ~yt is steeper at ~y0 when �� increases.
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In the STW model, the quantity of money determines the composition of the market between buyers

(agents with a positive payment capacity) and sellers (agents who are willing to produce). An increase in M

reduces the share of sellers and hence the velocity of money. As a result, it reduces the speed of divergence

along a speculative hyperin�ation, as illustrated in the bottom panel of Figure 3.

1 1

The ShiTrejosWright model The Solow growth model

< < < ty
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Figure 2: Phase diagrams of the Shi-Trejos-Wright and Solow growth models

So far, the speculative hyperin�ation equilibria have been indexed by the initial value of money, y0.

Alternatively, they can be indexed by the time at which money becomes valueless.

Corollary 1 (Equilibria indexed by T .) There exists a continuum of monetary equilibria indexed by

T 2 (0;+1) where

yt = y
s
h
1� e�(�+#)�(T�t)

i 1
� I[0;T ](t).

Corollary 1 shows that the STW model admits a continuum of monetary equilibria indexed by the time

at which the value of �at money vanishes. This result goes against two common wisdoms. First, there is

the common wisdom in monetary theory that if �at money is valued at any point in time along a perfect

foresight equilibrium, then it should be valued at all dates. This wisdom is based on a simple backward

induction logic. If money loses its value at time T , then it should not be accepted at time T � 1 and hence

its value should be zero at T �1. Why does this logic fail in continuous time? Because there is not one single

instant before T , i.e., there is a continuum of dates between T � " and T for all " > 0. So the backward

induction logic cannot be invoked to argue that if yT = 0 then yt = 0 for all t < T . For any T � ", agents are

willing to hold onto their unit of money because there is a small time interval of length " over which money

can be spent, and the marginal utility of spending a unit of real balances is unbounded as yT�" approaches

zero.

The second common wisdom is that an out-of-steady-state solution to a dynamic system cannot converge

to a steady state in �nite time. If that were the case, the system would admit multiple solutions for the

9



Monetary steady state

Speculative
hyperinflation

Nonmonetary steady state
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s
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0≡ty
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↑ασ
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''T

Figure 3: Top panel: Time-path solutions of the Shi-Trejos-Wright model. Bottom panel: E¤ects of an
increase in �� or M .

some initial conditions. (Recall that solutions are de�ned on the entire real line, R, so that time can move

forward or backward.) The multiplicity of solutions of the ODE of the STW model manifests itself when

yT = 0. As shown in the top panel of Figure 3, if t > T and one moves backward in time, then there is a

time path where y� = 0 for all � < t and there is another time path where y� > 0 for all � < T . By the

theorem of Cauchy-Lipschitz, a su¢ cient condition for uniqueness of a solution to an autonomous ODE is

that _yt as a function of yt is locally Lipschitz.12 This condition is not satis�ed in the neighborhood of 0 for

CRRA utility functions since the marginal utility of consumption is unbounded.

12Consider an autonomous, di¤erential equation _xt = f(xt) where xt : R 7! R. The function f is locally Lipschitz if there
exists a constant L > 0 such that jf(y)� f(z)j � L jy � zj for all y and z in a neighborhood of x, for all x. While this condition
might seem complicated, it su¢ ces that f is C1.
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2.4 Speculative hyperin�ations in discrete time

The result that money can become valueless in �nite time is counter-intuitive as it seems to violate a simple

backward induction logic. I now show that the logic holds in the following sense: equilibria in continuous are

the limits of equilibria in discrete time, for which backward induction holds, when the length of the period

approaches zero. I derive in Appendix B the de�nition of an equilibrium of the STW model in discrete time

as a sequence, fyn�g+1n=0, solution to

yn� = ��
�
���(1�M)

�
u(y(n+1)�)� y(n+1)�

�
+ y(n+1)�

	
: (13)

The length of a period corresponds to �, which a¤ects both the discount factor, �� = e
���, and the arrival

rate of meetings, �� = 1 � e���. It can be checked that the di¤erence equation (13) converges to the

di¤erential equation (4) as � approaches zero. To see this, denote t = n�, and rearrange (13) as follows:�
1� ��
��

�
yt = ���(1�M) [u(yt+�)� yt+�] + yt+� � yt.

Divide by � and take the limit as �! 0 to obtain (4). In Figure 4, I plot equilibria for di¤erent values of

�.

Figure 4: Comparison of equilibria in discrete time and the equilibrium in continuous time. u(y) =
p
y,

� = 0:01, � = 5, � = 0:2, M = 0:5, and y0 = 0:85.

One can see from Figure 4 that the equilibrium time-paths in discrete time converge to the equilibrium

time-path in continuous time as � becomes small. Even though the solution to (13) is such that yn� > 0

for all n, the limit of this solution as � goes to zero is such that lim�!0,�n!t yn� = 0 for all t > T .

2.5 A detour via the Solow growth model

The representation of the equilibrium of a macroeconomic model by a Bernoulli equation is not unique to the

STW model. Indeed, the equilibrium of the textbook model of economic growth from Solow (1956) can also

be represented by a Bernoulli equation. In the following, I show the analogy between the two equilibrium

11



conditions and I establish a little-known result for the Solow growth model that mirrors the result from the

STW model according to which money loses its value in �nite time.

Under a Cobb-Douglas production function, the capital stock per worker obeys the following di¤erential

equation,

_kt = sk
a
t � �kt; (14)

where s 2 (0; 1) is the savings rate, � > 0 is the rate of depreciation. (Without loss, I omit technological

progress and population growth.) The ODE is represented by a phase diagram in the right panel of Figure

2. The phase line is the mirror image of the phase line of the STW model relative to the horizontal axis.

There is an active and an inactive steady state, the active steady state is dynamically stable. By the same

logic as above, using the change of variable x = k1�a, the closed form solution is

kt =
h�
k1�a0 � s

�

�
e��(1�a)t +

s

�

i 1
1�a

:

As time goes to in�nity, kt approaches its steady state, (s=�)1=(1�a), asymptotically.13 Given any k0 <

(s=�)1=(1�a), we can compute the �nite time at which the economy started to grow:

T =
�1

�(1� a) ln
�

s

s� �k1�a0

�
> �1. (15)

So, just like the steady state nonmonetary equilibrium is reached in �nite time in the STW model, the

inactive steady state is reached in �nite �backward time�in the Solow model.

Active steady state

Transitional
growth

Inactive steady state

T
0≡tk

*kkt ≡

tk

0k

Figure 5: Solutions to the Solow growth model

Corollary 2 Consider the Solow growth model and suppose k0 = 0. There exists a continuum of equi-

libria indexed by T 2 R+ such that the economy takes o¤ at time T and reaches the active steady state

asymptotically.
13Sato (1963) is the �rst to identify the ODE of the Solow growth model under Cobb-Douglas production function as a

Bernoulli equation and to provide a closed-form solution.
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The solution to the equilibrium ODE of the Solow growth model is not unique when k0 = 0. There is a

solution where the capital stock remains at zero forever. But there are also a continuum of solutions indexed

by the time at which the economy takes o¤.

How can the economy take o¤ without capital? In the discrete-time Solow growth model, if k0 > 0, then

kn� > 0 for all n 2 Z where � represents the length of a period. However, by the same reasoning as the

one in Section 2.4, for all n < T=�, where T is de�ned by (15), kn� approaches 0 as � tends to 0. Capital

is positive but in�nitely small far away in the past. This in�nitesimal capital combined with an in�nite

marginal product allows the economy to take o¤ at some date T .14

3 The generalized model

The STW model adopts stark assumptions to remain analytically tractable, e.g., money is indivisible and

there is a unit upper bound on individual money holdings. As a result, the model cannot study the main

culprit for hyperin�ation, namely money growth. In order to overcome this limitation, I generalize the STW

model along the lines of Choi and Rocheteau (2021b) to have divisible money and arbitrary time-paths for

the money growth rate.15

3.1 The environment

I now separate agents into two groups: a unit measure of buyers and a unit measure of sellers. As in STW,

agents consume good y infrequently, at times Tn, n = 1::: +1, following a Poisson process with arrival

rate �� > 0. In addition, there is a perishable good that agents can consume and produce continuously

through time and that can be traded competitively. I take this good as the numéraire. Buyers�preferences

are represented by the following lifetime expected discounted utility:

Ub = E

8>>>><>>>>:
STW preferencesz }| {

+1X
n=1

e��Tnu [y(Tn)]�
Z 1

0

e��tdH(t)

9>>>>=>>>>; ; (16)

where H(t) is the cumulative production of the numéraire. (If dH(t) < 0, buyers consume the numéraire

good).16 Sellers�preferences are represented by

Us = E

8>>><>>>:
Z 1

0

e��tdC(t)�

STW preferencesz }| {Z +1

0

e��tdY (t)

9>>>=>>>; ; (17)

14There is a parallel with the Friedmann equations in physical cosmological physics that govern the expansion of
space. These equations show that the universe is of �nite age, and had its origin in a mathematical singularity. See
https://ned.ipac.caltech.edu/level5/Peacock/Peacock3_2.html
15This model can also be viewed as a continuous-time version of the model by Lagos and Wright (2005) and Rocheteau and

Wright (2005) where centralized and decentralized markets open concurrently.
16 In Rocheteau, Weill, and Wong (2018), H(t) admits a density h(t) with h(t) � �h < +1 for all t. In that case, all equilibria

feature a nondegenerate distribution of money holdings. In order to obtain a degenerate distribution, I assume here that H(t)
can have a countable number of discontinuities.
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where C(t) is the cumulative consumption of the numéraire. The second integral represents the disutility of

producing y where Y (t) is the cumulative production.

Critically, at times fTng+1n=1, the buyer does not have access to the technology to produce the numéraire.

Hence, she cannot pay for y with the numéraire good, which creates a need for money. The money growth

rate is �t � _Mt=Mt and the new money created is rebated to buyers lump-sum. These transfers (or taxes

if � < 0), expressed in terms of the numéraire, are denoted �t. For now, �t is exogenous but I will consider

later the case where �t is endogenous and determined by the �scal needs of the government. The price of

money in terms of the numéraire is denoted �t. The rate of return of money is rt = _�t=�t.

3.2 De�nition of equilibrium

Consider a buyer with real asset holdings equal to m (expressed in the numéraire). The value function of a

buyer at time t is linear in m, V bt (m) = m+ V
b
t , where V

b
t solves the following HJB equation:

�V bt = max
m�0

n
�(�� rt)m+ ���(m) + �t + _V bt

o
; (18)

where

�(m) = max
y�0

fu(y)� p(y) s.t. p(y) � mg ; (19)

is the buyer�s surplus from a bilateral trade, and where p(y) is the total payment in terms of numéraire for

y units of goods.17 The payment function, p(y), can take di¤erent forms corresponding to di¤erent pricing

mechanisms. I consider mechanisms such that the buyer�s surplus, u(y)�p(y), is nondecreasing and concave.

This restriction is satis�ed, e.g., by the proportional bargaining solution.18 At every point in time, the buyer

chooses her (real) money holdings to maximize the right side of (18). The �rst term is the �ow cost of

holding money. It is the di¤erence between the rate of time preference, �, and the expected rate of return

of money, rt, multiplied by the real money holdings, m. The second term is the expected surplus from a

bilateral trade which, from (19), is equal to the di¤erence between the utility of consumption, u(y), and the

payment, p(y), subject to the feasibility condition that the payment does not exceed the buyer�s real money

balances, m. Finally, the last term is the change of the value function over time conditional on the state.

The �rst-order condition for the choice of asset holdings, assuming interiority, is

�� rt = ��
_�t
�t
= ��

�
u0(yt)

p0(yt)
� 1
�
: (20)

The left side of (20) is the cost of holding money. The right side of (20) is the expected liquidity value of a

unit of real balances in terms of the buyer�s surplus in pairwise meetings. From market clearing, mt = �tMt.

Hence, _mt=mt = �t + _�t=�t. After substituting rt = _mt=mt � �t into (20), I obtain the following ODE,

�+ �t �
_mt

mt
= ��L(mt); (21)

17Details about the derivation of this HJB equation are provided in Choi and Rocheteau (2021b).
18For a similar approach adopting a general description of pricing mechanisms in monetary economies, see Gu and Wright

(1996).
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where L(m) � u0 [y(m)] =p0 [y(m)] � 1 is the marginal value to the buyer of one unit of real balances in a

match and y(m) is the solution to (19). An equilibrium is a bounded time path, mt, that solves the ODE,

(21).

3.3 Hyperin�ation and money growth

I now show that the money growth rate plays an important role for the dynamics of speculative hyperin-

�ations. For this, I solve for the entire set of perfect-foresight equilibria under a general time-path for the

money growth rate, �t. I adopt a simple pricing mechanism, p(y) = y, that leaves no surplus to sellers.19

Preferences are of the CRRA form, u(y) = y1��=(1� �), where � 2 (0; 1). (I discuss in Section 4.1 the case

� � 1:)

tm

tm

'πρ +

1

sm< < <

Figure 6: Phase diagrams when u(y) = y1��=(1� �) with � 2 (0; 1).

I consider equilibria where the liquidity constraint binds at all dates, mt < y�. From (21), where

L(mt) = m
��
t � 1, an equilibrium is a solution to

_mt = (�� + �+ �t)mt � ��m1��
t : (22)

If the money growth rate is constant, �t � �, then the monetary steady state is

ms =

�
��

�� + �+ �

� 1
�

: (23)

From (23), ms > 0 for all � > 0, i.e., money can be valued even at very high in�ation rates. Real balances

vanish, ms ! 0, only if � ! +1. The ODE, (22), is represented in Figure 6 by a phase line that intersects

the horizontal axis at the nonmonetary, m = 0, and monetary, m = ms, steady states. There are a continuum
19This pricing function is consistent with competitive trades, e.g., as in overlapping generation models of �at money (Wallace,

1980), or bilaterally trades with buyers possessing all the bargaining power. If the market for good y is competitive, the
opportunities to consume good y at times Tn are interpreted as preference shocks.
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of equilibria indexed by m0 2 (0;ms) such that mt converges to 0 at t ! +1. As the money growth rate

increases, the phase line shifts upwards, which lowers ms.

I turn to the general case where �t is an arbitrary function of time. As before, (22) is solved by operating

the change of variable, xt = m
�
t . The resulting ODE is linear in xt but it is not autonomous because �t is

allowed to vary over time. It is solved by using the method of the integrating factor.

Proposition 2 (Hyperin�ations in competitive economies under CRRA preferences.) Suppose

p(y) = y and u(y) = y1��=(1 � �) with � 2 (0; 1). The time-path of the money growth rate is �t 2 (��; ��),

with �� < +1, and �(t) =
R t
0
�sds is the cumulative money growth rate. There exists a continuum of

equilibria indexed by T 2 (0;+1] such that

mt =

"
���

Z T

t

e��f(��+�)(s�t)+[�(s)��(t)]gds

# 1
�

I[0;T ](t). (24)

If T < +1, money becomes valueless in �nite time. If T = +1, the value of money is bounded away from

zero at all times.

Proposition 2 derives the time-paths of aggregate real balances for all perfect-foresight equilibria where

each equilibrium is indexed by the time at which money becomes valueless, T .20 The nonspeculative equi-

librium is de�ned as the equilibrium with the highest real balances at all points in time, which corresponds

to T = +1. It is denoted �mt = limT!1mt(T ) for all t. From (24),

�mt =

�
���

Z +1

t

e����(s�t)e��[�(s�t)+�(s)��(t)]ds

� 1
�

for all t � 0: (25)

In accordance with the monetarist doctrine, the value of money at time t depends negatively on the future

cumulative growth of the money supply, �(s)� �(t), at di¤erent time horizons, s � t. It is independent of

past money growth rates. As a result, episodes of high in�ation end when money growth rates are brought

down. If the money growth rate is constant, �(t) = �t, then �mt � ms.

For all T < +1, there exists a speculative hyperin�ation equilibrium such that money becomes valueless

at time T . The solution (24) shows that the value of money depends on �t for all t < T . However, money

growth rates beyond T do not a¤ect the value of money, even if the government commits to stop in�ating

the money supply.

The next corollary o¤ers an alternative characterization of the equilibrium set, analogous to the one in

Proposition 1, where each equilibrium is indexed by the value of real money balances at time t = 0, m0.

Corollary 3 For all m0 2 (0; �m0), there exists a speculative hyperin�ation equilibrium. It is such that:

mt =
n
( �mt)

� � e�[(��+�)t+�(t)] [( �m0)
� � (m0)

�
]
o 1

� I[0;T ](t); (26)

where T solves
20One can interpret �(t) as a policy announcement of the path of future money growth rates. For a study of policy announce-

ments in the context of the Lagos-Wright model, see Gu, Han, Wright (2020).
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(�� + �)T +�(T ) = ln

�
( �m0)

� � (m0)
�

( �mT )
�

��1
�

: (27)

From (26), (mt)
� can be decomposed into a nonspeculative component, ( �mt)

�, and a speculative compo-

nent,

( �mt)
� � (mt)

� = [( �m0)
� � (m0)

�
] e�[(��+�)t+�(t)]: (28)

The �rst term, ( �m0)
� � (m0)

�, represents the initial unanchoring of real balances from their fundamental

(nonspeculative) value. This speculative bias grows exponentially over time, where the growth rate is given

by the velocity of money, ��, the rate of time preference, �, and the money growth rate, �t. The role of the

money supply is explained as follows. Dividing (26) by Mt, the value of money at time t is given by

�t =
n�
��t
�� � e�(��+�)t ����0�� � (�0)��o 1

� I[0;T ](t);

where ��t is the value along the nonspeculative equilibrium. So, each unit of money carries a negative bubble

component, (�t)
� �

�
��t
��
, that keeps growing over time at rate � (�� + �). Since all units of money have

the same price and the money supply grows at rate �t, the aggregate speculative bubble grows at rate

� (�� + �+ �t).

Monetary steady state

Speculative
hyperinflation

Nonmonetary steady state

T

0=Tm

↑π

s
t mm /

1

smm /0

Figure 7: Time paths for aggregate real balances when p(y) = y and u(y) = y1��=(1� �) with � < 1.

The time-paths for real balances are illustrated in Figure 7 for the case where �t � �. The red horizontal

line corresponds to the monetary steady state while the blue horizontal line is the nonmonetary steady state.

Speculative hyperin�ation equilibria are between these two horizontal lines. I represent by an orange curve an

equilibrium where the initial value of real balances normalized by the steady-state value is m0=m
s 2 (0; 1).

As t tends to �1, mt=m
s approaches one asymptotically. In contrast, moving forward in time, mt=m

s

reaches 0 at time

T =
ln [1� (m0=m

s)
�
]
�1

(�+ �� + �) �
< +1: (29)
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As � increases, the time-path for the speculative hyperin�ation becomes steeper when going through the

same (normalized) initial condition, m0=m
s, and it reaches the nonmonetary steady state at T 0 < T .

3.4 Quantitative implications

I now provide a quantitative answer to the question that motivated this paper: How fast can a �at money

become valueless? I calibrate the model to the US economy following Lagos and Wright (2005). From (26),

the key parameters for the dynamics of hyperin�ation are �, �, �, and �. The unit of time is a year so that

the rate of time preference is set to � = 0:04. The annual rate of growth of the money supply is constant and

equal to the average in�ation rate, 4 percent. From (23), the semi-elasticity of money demand with respect

to the nominal interest rate, i � �+ �, is����@ lnms

@i

���� = 1

� (�� + �+ �)
: (30)

In the calibration of Lagos and Wright (2005), j@ lnms=@ij � 10, which is also the value used by Friedman

(1971, p.851).21 The same elasticity can be obtained from di¤erent combinations of � and ��, i.e., for any

pair, (�; �), there is an � that generates the elasticity of money demand observed in the data. Hence, the

model is under-identi�ed. In the following, I consider three di¤erent values for ��, f1; 10; 100g, corresponding

to di¤erent frequencies of liquidity needs. If �� = 1, then liquidity needs occur once a year on average. If

�� = 10, the frequency is close to a month. And if �� = 100, the frequency is bi-weekly. For each of these

values, I set � so as to generate j@ lnms=@ij = 10. It can be seen in the table below that the curvature of

u(y) decreases as �� increases.

Frequency of liquidity needs Coe¢ cient of RRA
�� = 1 � = 0:093
�� = 10 � = 0:01
�� = 100 � = 0:001

Figure 8 plots the value of T for these calibrated parameter values. In the top left panel, if m0 is 99

percent of its steady-state value, it takes about 70 years for money to be valueless when �� = 1. If m0 is

90 percent of ms, then T falls to 46 years. So, the trust in the value of �at money, as measured by m0=m
s,

plays an important role for the duration of �at money. If the frequency of liquidity needs is higher, �� = 10

or �� = 100, then T = 91 and T = 115 years, respectively when m0=m
s = 0:99. So, keeping the elasticity

of money demand constant, �at money is longer lived when the frequency of liquidity needs increases.

In the bottom panel, I plot T as a function of the monthly money growth rate for the di¤erent values of

��. I set m0=m
s to 99%. The frequency of liquidity needs plays a critical role to explain the life expectancy

of a �at money in an hyperin�ation regime, i.e., when � is larger 50% monthly. If �� = 1 and the monthly

money growth rate is 50%, then T = 0:6, i.e., it takes 7 months for money to die. If �� = 10, then T = 6:6

21 In the Lagos-Wright model, an agent is a buyer with probability �, a seller with probability �, and neither with probability
1 � 2�. Hence, � � 1=2. In the calibration, � is set at its highest value, 1/2. The meeting probability is set to � = 1. The
coe¢ cient of RRA is chosen to minimize the distance between the model money demand and the money demand in the data.
The value from this calibration is � = 0:16.
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Figure 8: Time for �at money to become valueless. Baseline parameter values: � = 0:04, � = 0:04,
�� 2 f1; 10; 100g, � is chosen such that j@ lnms=@ij = 10, and m0=m

s = 0:99
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years. If �� = 100, then T = 50 years. The duration of �at money falls rapidly as the money growth rate

increases. For instance, if the monthly money growth rate is 100% and �� = 10, then T is less than 3

months.

4 Extensions

I now discuss the role of some key assumptions. First, I will study utility functions that feature bounded mar-

ginal utility, e.g., modi�ed CRRA preferences and quadratic preferences. Second, I will introduce bargaining

solutions that give seller�s market power.

4.1 When marginal utility is bounded

A key feature of the CRRA utility function is that the marginal utility of consumption is unbounded as

consumption vanishes, u0(0) = +1. I now explore the dynamics of speculative hyperin�ations when the

marginal utility is bounded, u0(0) < +1. We will see how standard theorems for the existence and uniqueness

of the solution to an ODE with initial condition can be applied. I will also show how CRRA preferences

can be modi�ed slightly in order to obtain speculative hyperin�ations when the coe¢ cient of relative risk

aversion is greater than one.

Proposition 3 (Hyperin�ations when marginal utility is bounded.) Assume �t � � and p(y) = y.

The utility function, u : Y ! R, where Y � R+ is an open and connected set, is C1. If u0(0) > (�� + � +

�)=��, then there exists a unique positive steady state, ms, solution to

u0(ms) = 1 +
�+ �

��
: (31)

There exist a continuum of speculative, hyperin�ation equilibria indexed by m0 2 (0;ms) featuring mt > 0

and _mt < 0 for all t > 0 with mt ! 0 as time goes to +1. Moreover,

mt = ms � (ms �m0) e
(��+�+�)�(ms)t if mt � ms and t � 0; (32)

mt = m0e
�[��u0(0)�(�+�+��)]t if m0 � 0; (33)

where �(m) � �mu00(m)=u0(m).

In Proposition 3, I assume u is de�ned on an interval that includes a neighborhood of 0 and it is in�nitely

di¤erentiable. In particular, u0(0) < +1 and u00(0) > �1. Along a speculative hyperin�ation equilibrium,

when the marginal utility is bounded, �at money has a positive value at all dates. The value of money

approaches zero only at the limit when t ! +1. The expressions for mt in (32) and (33) come from the

linearization of the ODE in the neighborhood of mt = 0 and mt = m
s. When real balances are close to ms,

the rate of divergence from the steady-state monetary equilibrium is equal to the inverse of the semi-elasticity

of money demand with respect to the rate of return of money,

�(ms) � @ms=ms

@r
=

1

��u0(ms)�(ms)
; (34)
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where, from (31), ��u0(ms) = ��+�+�. When mt is close to 0, the rate of convergence to the nonmonetary

steady state, ��u0(0)� (�+ � + ��) > 0, increases with u0(0) and grows unbounded as u0(0) tends to +1.

Generalized CRRA preferences A class of utility functions that satisfy the requirements in Proposition

3 while generalizing CRRA preferences is

u(y) =
(y + b)1�� � b1��

1� � with b � 0: (35)

When b = 0, the utility function corresponds to CRRA preferences. If b = 0 and � � 1, there is no speculative

hyperin�ation equilibrium. I �rst explain this non-existence result and then show it is not robust to small

perturbations of b. The non-existence is more easily seen in the discrete-time model (e.g., Lagos and Wright,

2003) where, under CRRA preferences, real balances solve the following di¤erence equation:

mt = e
�� �(1� ��)mt+1 + ��(mt+1)

1��� :
It says that the value of money at time t, mt, is equal to the discounted value at time t + 1, e��mt+1,

multiplied by a liquidity premium factor, 1 + �� [(mt+1)
�� � 1]. A sequence, fmtg+1t=0 , converges to 0 if as

mt+1 ! 0 the solution mt to the equation above also converges to 0. However, if � > 1, the right side goes

to +1 as mt+1 ! 0. In continuous time, the nonexistence of speculative hyperin�ation equilibria manifests

itself as follows: from (22), _mT� < 0 while _mT+ = 0, and hence mt is not di¤erentiable at T .

I show in the next corollary that speculative hyperin�ations exist when � � 1 provided b is positive and

small. I will consider the limit as b approaches zero and show the speculative hyperin�ations converge to

the ones described in Corollary 3.

Corollary 4 (Generalized CRRA preferences.) Consider a sequence of utility functions, fung+1n=0,

de�ned by

un(y) =
(y + bn)

1�� � (bn)1��
1� � ;

with � � 1 and bn 2
�
0; [��=(�� + �+ �)]

1
�

�
for all n 2 N0. Moreover, fbng+1n=0 is decreasing with

limn!+1 bn = 0.

1. For all n 2 N0, there is a unique positive steady state,

ms
n =

�
��

�+ � + ��

� 1
�

� bn: (36)

2. For all n 2 N0 and all m0 2 (0;ms
0), there exists a unique solution to (22), mt;n : R ! [0;ms

n]. It is

such that mt;n > 0 and _mt;n < 0 for all t 2 R with limt!�1mt;n = m
s
n and limt!+1mt;n = 0.

3. As n! +1, mt;n : [0; T ]! [0;ms
n] converges pointwise to

~mt =
n
(ms

1)
� � e�(��+��)t [(ms

1)
� � (m0)

�
]
o 1

�

for all t 2 [0; T ] ; (37)

where ms
1 = [��= (�+ � + ��)]

1
� and
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T =
1

�� + �+ �
ln

�
(ms

1)
� � (m0)

�

(ms
1)

�

��1
�

: (38)

Corollary 4 shows that even though a speculative hyperin�ation does not exists when b = 0 and � � 1,

i.e., RRA is greater than one, it does exist for b arbitrarily small and it approaches the solution derived in

Section 3 for � < 1. This convergence result is illustrated in Figure 9 by plotting the numerical solution

to (78) when m0 = 0:8 for � = 2 and b 2 f0:01; 0:05; 0:1g and the solution at the limit when b = 0 given

by (37). The lowest red plain line, when b = 0, is not di¤erentiable at mt = 0. All the other upper lines

corresponding to b > 0 are di¤erentiable at mt = 0 with _mt = 0.

Figure 9: Generalized CRRA preferences with � = 2 and b 2 f0; 0:001; 0:005; 0:1g.

Quadratic preferences Finally, I study a class of utility functions with bounded marginal utility for

which the time-path for mt can be solved in closed form. It will allow me to establish some similarities with

the case of CRRA preferences studied earlier.

Proposition 4 (Speculative hyperin�ations under quadratic preferences.) Assume u(y) = Ay �

"y2=2, A > 0, and " > 0. If

A > 1 +
�+ �

��
; (39)

there exists a steady-state monetary equilibrium with

ms =
��(A� 1)� �� �

��"
: (40)

There also exists a continuum of speculative hyperin�ation equilibria indexed by m0 2 (0;ms) such that

mt =
ms

1 +

�
ms �m0

m0

�
e[��(A�1)����]t| {z }

speculative component

for all t > 0. (41)
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The speculative component in the expression for mt in (41) appears at the denominator of mt. When

the condition (39) for the existence of a steady-state monetary equilibrium holds, the argument of the

exponential function, ��(A� 1)� �� �, is positive. So, as t goes to +1, the speculative component grows

unbounded and mt approaches zero asymptotically. For a given ratio, ms=m0, the speculative component

at the denominator of (41) increases at a faster pace when liquidity needs, ��(A� 1), are higher.

A higher money growth rate, �, reduces the rate at which mt diverges from its nonspeculative value, ms.

This result can be explained as follows. As established by (32), the rate of divergence from the positive steady

state is given by the inverse of the elasticity of money demand. In the neighborhood of ms, the relative risk

aversion under quadratic preferences is �(ms) = "ms=(A� "ms) and the semi-elasticity of money demand is

�(ms) = [��(A� 1)� �� �]�1. Money demand is more elastic at higher in�ation rates reduces the rate at

which mt diverges from ms.

4.2 Sellers�market power

I now illustrate the role of sellers�market power for the dynamics of hyperin�ations by considering two

alternatives bargaining solutions that generate variable markups.

Proportional bargaining The �rst bargaining solution, commonly used in the literature, is the Kalai

proportional solution according to which the buyer�s surplus in a pairwise meeting, u(y)�p(y), is a constant

share, � 2 (0; 1), of the whole match surplus, u(y)� y, i.e.,

p(y) = �y + (1� �)u(y); (42)

At the margin, the price of a unit of output is p0(y) = 1 + (1 � �) [u0(y)� 1] where the second term is a

markup over the marginal cost. If u0(0) = +1, e.g., under CRRA preferences, as y tends to zero, p0(y)

becomes unbounded.22

Proposition 5 (Speculative hyperin�ations and market power: Proportional bargaining.) Sup-

pose u(y) = y1��=(1 � �) for � 2 (0; 1), �t � �, and p(y) is given by (42). If �� > (�+ � + ��) (1 � �),

then there exists a unique, positive steady state,

ms =

�
�� � (�+ � + ��) (1� �)

(�+ � + ��) �

� 1
�

; (43)

and a continuum of equilibria, indexed by m0 2 (0;ms), such that mt > 0 for all t > 0 with mt ! 0 as time

goes to +1. If m0 is in the positive neighborhood of 0, then

mt = m0e
�[���1���(�+�)]t: (44)

22A thorough discussion of the properties of the Kalai bargaining solution in the context of monetary models is provided by
Aruoba et al. (2007). Strategic foundations are given by Hu and Rocheteau (2020).
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If � < 1, then, for all equilibria such that m0 2 (0;ms), the value of money is positive for all t � 0.

It converges to 0 only asymptotically. Indeed, even though u0(y) grows unbounded as yt goes to zero, so

does p0(yt), and the ratio of the two stays �nite. From (44), the rate at which the economy converges to

the nonmonetary equilibrium, ���=(1� �)� (�+ �), increases with �. So, sellers�market power reduces the

pace of speculative hyperin�ations.

Gradual Nash bargaining The Nash solution is the most well-known axiomatic solution. However, in

the context of models with liquidity constraints, it has undesirable properties (see Aruoba, Rocheteau, and

Waller, 2007). So, I consider here a variant called the gradual (or ordinal) Nash solution. According to this

solution, agents bargain sequentially over the output price of each unit of money held by the buyer. This

approach is in spirit with the STW model where agents bargain over the amount of output a unit of money

can buy. Heuristically, at the margin, the buyer and the seller negotiate the @y units of output and the

payment, @p, subject to the constraint that @p � @m, where @m is small.23 According to the generalized

Nash solution,

(@y; @p) = argmax [u0(y)@y � @p]� [@p� @y]1�� s.t. @p � @m;

where u0(y) is the marginal utility of consumption given that the buyer has already purchased y in the

previous rounds of the negotiation. From the �rst-order condition, the price of one unit of output is

p0(y) � @p

@y
=

u0(y)

�u0(y) + 1� � for all y < y�. (45)

The di¤erence relative to the proportional solution is that the price of a marginal unit of output is now

bounded, p0(0) = 1=� < +1. Substituting p0(y) from (45) into (21), the ODE for mt is identical to (22)

where �� has been replaced with ���.

Corollary 5 (Speculative hyperin�ations and market power: Gradual Nash bargaining.) Sup-

pose u(y) = y1��=(1 � �) for � 2 (0; 1), �t � �, and p0(y) is given by (45). There exist a unique positive

steady state,

ms =

�
���

�+ � + ���

� 1
�

; (46)

and a continuum of speculative, hyperin�ation equilibria indexed by m0 2 (0;ms). The time-path for real

balances is

mt =
n
( �mt)

� � e�(���+�+�)t [( �m0)
� � (m0)

�
]
o 1

� I[0;T ](t); (47)

where T solves

T =
1

��� + �+ �
ln
h
1�

�m0

ms

��i�1�
: (48)

An increase in sellers�bargaining power is mathematically identical to an increase in the search frictions.

From (48), money loses its value in �nite time irrespective of seller�s bargaining power. This result, which

23A rigorous treatment of the gradual Nash solution and its strategic foundations are presented in Rocheteau et al. (2021).
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Figure 10: Time for �at money to become valueless as a function of buyers�bargaining power. Parameter
values: � = 0:04, �� = 10, � = 0:02, � = 0:04, and m0=m

s = 0:99.

di¤ers from the one obtained under proportional bargaining, is explained by the observation that the marginal

value of liquidity,

L(y) � u0(y)

p0(y)
� 1 = � [u0(y)� 1] ;

grows unbounded as y tends to zero. From (47), the rate at which the economy diverges from the monetary

steady state is (���+ �+�)�. So, a higher seller�s bargaining power reduces the rate of divergence from the

nonspeculative equilibrium.

Figure 10 plots T as a function of � for parameter values consistent with the calibration strategy used

earlier. I set �� = 10 so that the frequency of liquidity needs is approximately monthly and � = 0:5 so that

the negotiation is symmetric. I target j@ lnms=@ij = 10 which implies � = 0:02. I set m0 to 99 percent of

the steady-state value. When the negotiation is symmetric, � = 0:5, it takes about 80 years for �at money

to become valueless. For the same parameter values, if sellers have no bargaining power, � = 1, then T is

divided by two. In contrast, if � = 0:1, then T is almost 400 years.

5 A �scal approach to speculative hyperin�ations

So far, I assumed that �scal policy was accommodating monetary policy by adjusting lump-sum transfers or

taxes in order to implement an exogenous money growth rate, �t. There is a large literature arguing that

for most hyperin�ation episodes, monetary policy is governed by the �scal needs of the government.24 As a

result, the money growth rate is endogenous and reacts to changes in the value of money in order to achieve

a desired seigniorage revenue. I now formalize this view.

24According to Sargent and Wallace (1973),

��(...) to explain the hyperin�ations it is not adequate to regard money creation as exogenous with respect to
in�ation. Instead, the monetary authorities seemed to make money creation respond directly and systematically
to in�ation, which was probably an important reason that the hyperin�ations developed.��
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Following Sargent and Wallace (1973), suppose that the government must �nance a �ow, gt > 0, of

numéraire good with money creation. The dynamics of the money supply is given by

_Mt�t = gt , �tmt = gt:

The revenue from money creation is equal to the change in the money supply, _Mt, multiplied by the value

of money, �t, or, equivalently, to the money growth rate, �t, times aggregate real balances, mt. Substitute

�t = g=mt into the equilibrium ODE, (21),

_mt

mt
= �+

gt
mt

� ��L(mt): (49)

mm )(1 αρα η +−−

lm
lm

hm hm
< < < <

Figure 11: Government purchases, g, �nanced with money creation. Utility is u(y) = y1��=(1 � �) with
� 2 (0; 1). Left panel: Determination of steady rate. Right panel: Phase diagram with speculative hyperin-
�ations.

The case of CRRA preferences I consider �rst the generalized CRRA preferences given by (35). As

we saw in Section 4.1, this formulation allows us to consider speculative hyperin�ations when the coe¢ cient

of RRA is greater than one by taking the limit as b tends to zero. For simplicity, p(y) = y. In this case, the

law of motion for real balances are given by

_mt = (�+ ��)mt + gt � ��mt(mt + b)
��: (50)

Suppose �rst that b = 0, � < 1, and gt is proportional to the aggregate production of good y expressed in

the numéraire, i.e., gt = ��mt. The path for aggregate real balances is obtained by applying Proposition

2 where �t = ��. In a speculative hyperin�ation, an increase in  raises the rate at which real balances

diverge from their steady-state value.

In the next proposition, I assume gt is constant and I distinguish two cases, � < 1 and � = 1.

Proposition 6 (Dominant �scal policy under CRRA preferences.) Suppose preferences are given

by (35). The government �nances a constant �ow of consumption, g > 0, with money creation.
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1. Low risk aversion. If b = 0, � < 1; and

g < �g �
�
�� (1� �)
�+ ��

� 1
� � (�+ ��)

(1� �) ; (51)

then there are two steady-state monetary equilibria, 0 < ms
` < ms

h, that satisfy @m
s
`=@g > 0 and

@ms
h=@g < 0. For all m0 2 (ms

` ;m
s
h), there is an equilibrium such that mt ! ms

` as t ! +1.

Moreover,

mt = ms
h � (ms

h �m0)e
[�+���(1��)��(ms

h)
��]t; if m0 � ms

h and t � 0, (52)

mt = ms
` + (m0 �ms

`)e
�[(1��)��(ms

`)
���(�+��)]t, if m0 � ms

` : (53)

2. Logarithmic preferences. Suppose u(y) = ln(y + bn) � ln(bn) where fbng+1n=0 2 (0; 1)
N0 is a decreasing

sequence such that bn ! 0. Assume g < ��. There exists a N � 0 such that for all n � N , there are

two monetary steady states, 0 < ms
`;n < m

s
h;n. As n! +1, ms

`;n ! 0 and

ms
h;n ! ms � �� � g

�+ ��
> 0: (54)

For all m0 2 (0;ms), the solution to (49) converges pointwise to

~mt =
h
(m0 �ms) e(�+��)t +ms

i
I[0;T ](t); (55)

where

T =
1

�+ ��
ln

�
ms

ms �m0

�
< +1: (56)

When � is less than one, the revenue from money creation corresponds to a La¤er curve. If g is lower

than some threshold �g de�ned in (51), then there are two steady-state monetary equilibria corresponding to

two distinct in�ation rates. If g is larger than �g, there is no monetary equilibrium with enough seigniorage

revenue to �nance g.

Speculative hyperin�ations correspond to time-paths where the economy converges to the low steady

state with low aggregate real balances and high in�ation rate. The convergence is only asymptotic as the

marginal utility of consumption is �nite at the low steady state. From (53), the speed of convergence to the

low steady state decreases with ms
` , and hence decreases with g. Similarly, from (52), the speed of divergence

from the high steady state increases with ms
h, which itself decreases with g.

In the left panel of Figure 12, I illustrate these �ndings by plotting the time-path of a speculative

hyperin�ation where g=ms
h = 0:04, i.e., the in�ation rate at the high steady state is 4%. The parameter

values are the same as in the previous calibrated examples, i.e., �� = 1, � = 0:093, and m0=m
s
h = 99%. I

compare this time-path (represented with a plain blue line) with the one of an economy under a constant

money growth rate, � = 0:04 (represented by a red dashed line). Aggregate real balances are higher for all

t > 0 under the regime with a dominant �scal policy. At T = 70 years, money has lost all its value under a
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Figure 12: Left: Comparison of speculative hyperin�ations under active (blue curve) and passive (red dashed
curve) �scal policy. Right: speculative hyperin�ations under general CRRA preferences and active �scal
policy.

passive �scal policy that implements a constant money growth rate whereas it has kept more than 50% of

its steady-state value under an active �scal policy.

The second part of Proposition 6 analyzes the case where preferences are logarithmic. If b > 0 is small,

then there are two steady states, ms
` and m

s
h. As b tends to 0, the low steady state converges to 0. Aggregate

real money balances under a speculative hyperin�ation converge to a time-path, ~mt, that reaches 0 in some

�nite time T . For given m0, T decreases as g increases whereas for given m0=m
s, T is independent of g.

While I cannot solve analytically the case with g > 0 and � > 1, it is qualitatively similar to the

logarithmic case. For b positive and small, there are two steady-state monetary equilibria. As b goes to 0,

speculative hyperin�ation equilibria converge to a time-path where money loses its value in �nite time. I

illustrate this result in the right panel of Figure 12 with an example where � = 2 and b 2 f0:5; 0:75; 0:85g.

The case of quadratic preferences Finally, there is a functional form for u(y) allowing for closed-

form solutions to speculative hyperin�ations under a constant seigniorage rule. Indeed, under quadratic

preferences, the ODE (49) becomes a Ricatti equation that can be solved analytically.

Proposition 7 (Dominant �scal policy under quadratic preferences). Suppose u(y) = Ay � "y2=2.

If ��(A� 1)� � > 0 and

g < �g � [��(A� 1)� �]2

4��"
; (57)

then there are two steady-states monetary equilibria, ms
` < m

s
h, and a continuum of speculative hyperin�ation

equilibria indexed by m0 2 (ms
` ;m

s
h) such that

mt = m
s
` +

ms
h �ms

`

1 +
�
ms
h�m0

m0�ms
`

�
ef��(A�1)���2��"ms

`gt
for all t � 0: (58)

The speculative term in the denominator of (58) measures how far m0 is to ms
h relative to how close it is

to ms
` . The argument of the exponential term decreases with ms

` , which itself increases with g. So, a higher
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g slows down the pace of the hyperin�ation. These results are consistent with those obtained under CRRA

preferences.

6 Time to dollarize

So far I considered a pure currency economy where �at money is the only means of payment. In reality,

individuals switch to alternative forms of payment (e.g., foreign currencies, precious metals...) when the

in�ation rate is high. In order to capture this observation, suppose there is an additional asset, called dollar,

that can be used as means of payment in a fraction of the transactions. Think of the �at money as the

domestic currency of a small, non-US economy. The real rate of return of the dollar, ra 2 (��; �), is constant

through time. The government imposes the exclusive use of its currency in a fraction of the transactions.

The share of meetings where only domestic �at money is accepted is equal to �m 2 [0; 1] while the share of

meetings where both money and dollars are accepted is �2 � 1� �m.25 The pricing mechanism is such that

p(y) = y.

The value function of a buyer solves

�V bt = max
m;a�0

n
�(�� rt)m� (�� ra)a+ �� [�m�(m) + �2�(m+ a)] + �t + _V bt

o
: (59)

The buyer chooses a portfolio of currencies composed of domestic money, m, and dollars, a, both expressed in

the numéraire. The opportunity cost of holding dollars is equal to �� ra. Dollars serve as means of payment

in the fraction �2 of matches where both assets are acceptable. The indirect utility in those matches is

�(m+ a). The �rst-order conditions, assuming the choice for m is interior, are

� (�� rt) + �� [�m�0(mt) + �2�
0(mt + at)] = 0 (60)

�(�� ra) + ���2�0(mt + at) � 0 �= �if at > 0: (61)

From (60)-(61), a necessary condition for at > 0 is ra > rt. Substituting �0(mt + at) by its expression given

by (61) into (60), using that rt = _mt=mt� �, and assuming CRRA preferences, the equilibrium condition is

_mt

mt
= (���m + �+ �)� ���m(mt)

�� �min
�
���2

�
(mt)

�� � 1
�
; �� ra

	
: (62)

From the last term on the right side, if the domestic currency is the only means of payment, i.e., at = 0,

then its liquidity value in type-2 meetings cannot be greater than the holding cost of dollars. An equilibrium

is a time-path, (mt; at), where mt solves (62) and, given mt, at solves (61).

Proposition 8 (Time to dollarize.) The steady-state monetary equilibrium is such thatms = minfms
0;m

s
1g

25For a similar formalization of a dual currency economy, see, e.g., Zhang (2014). For earlier formalizations of the role of the
government in the acceptability of �at money, see, e.g., Aiyagari and Wallace (1997) and Li and Wright (1998).
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and as +ms = maxfms
0; !

s
1g where

ms
0 �

�
��

�� + �+ �

� 1
�

(63)

ms
1 �

�
���m

���m + ra + �

� 1
�

(64)

!s1 �
�

���2
�� ra + ���2

� 1
�

: (65)

There exists a continuum of speculative hyper�ation equilibria indexed by m0 2 (0;ms). Along a speculative

hyperin�ation equilibrium, the time at which the economy starts dollarizing, T0 � infft 2 R+ : at > 0g, is

T0 =
1

�(�� + �+ �)
ln

�
(ms

0)
� � (!s1)�

(ms
0)
� � (m0)

�

�
if !s1 < m0 < m

s
0 (66)

= 0 otherwise.

The time at which the economy is fully dollarized is T0 + T1 � supft 2 R+ : mt > 0g where

T1 =
ln [1� (mT0=m

s
1)
�
]
�1

(���m + ra + �) �
: (67)

The time-path for real balances is

mt =
n
(ms

0)
� � e�(��+�+�)t [(ms

0)
� � (m0)

�
]
o 1

� I[0;T0](t)

+
n
(ms

1)
� � e�(���m+ra+�)(t�T0) [(ms

1)
� � (mT0)

�
]
o 1

� I[T0;T0+T1](t):

The time-path for real holdings of dollars is

at = (!
s
1 �mt) I[T0;+1)(t): (68)

In any steady-state equilibrium, real money balances are positive and given by either (63) or (64).

Holdings of dollars are positive if the economy features partial dollarization, which occurs if and only if

ra > �m�� �2�, i.e., the rate of return of dollars is greater than a weighted average of the rate of return of

an illiquid bond, �, and the rate of return of the domestic currency, ��, where the weights are given by the

acceptability parameters, �m and �2. From (64) and (65), a measure of dollarization is

dollarization � as

as +ms
= 1�

�
�m (�� ra) + ���2�m
�2 (ra + �) + ���2�m

� 1
�

: (69)

It increases with ra, �, and �2. If ra is not large enough relative to ��, then there is no dollarization at

the nonspeculative, steady-state monetary equilibrium and, from (63), the steady-state real balances are the

same as the ones in a pure currency economy.

A speculative hyperin�ation has two stages.26 From t = 0 to T0, the real holdings of the domestic currency

shrink gradually but agents do not accumulate dollars, i.e., the economy remains undollarized. This �rst

26 I treat the case ���m + ra + � = 0 separately in the proof of the proposition.
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stage resembles the speculative hyperin�ation of a pure currency economy. From (66), the duration of

the �rst stage, T0, shrinks as ra increases. The second stage starts at time T0 where the economy begins

to dollarize. From T0 to T0 + T1 agents substitute their real units of domestic currency for dollars while

maintaining their liquid wealth at !s1. At time T0 + T1, the real holdings of domestic currency reach 0 at

which point the economy is fully dollarized, i.e., aT0+T1 > 0 and mT0+T1 = 0. So T1 is the duration of

the dollarization process. The speed at which real balances depart from ms
1 in the second phase is given

by �(���m + ra + �). It increases with �m, the share of transactions that can only be executed with the

domestic currency, and the rate of return of dollars, ra, and the money growth rate, �. So, economies with a

high ra + � are highly dollarized at the steady state and, if they are subject to a speculative hyperin�ation,

they complete the dollarization at a high pace. On the contrary, economies with high �m have a low level

of dollarization at the nonspeculative steady state, but they dollarize at a high speed along a speculative

hyperin�ation equilibrium. For a given (mT0=m
s
1), the time to dollarize the economy shrinks as ra or �

increases.

Figure 13: Time to dollarize. Dollarization starts at T0 and ends at T0 + T1. Parameter values: �� = 1,
� = 0:04, � = 0:093, �m = 0:8, � = 0:04, ra = 0. The ratio of m0=m

s is set to 0.99.

In Figure 13, I plot the time to dollarize during a speculative hyperin�ation and I show how it varies

with policy parameters and fundamentals. The parameter values are the same as in Section 3.4 with �� = 1,

� = 0:093, and � = 0:4. In terms of the new parameters, I set ra = 0, i.e., the competing asset has a rate

of return equal to zero (if it is a currency, it features zero in�ation), and �m = 0:8, i.e., the competing

assets is accepted in 20% of the meetings. I keep the ratio m0=m
s constant and equal to 0.99 across these

experiments.
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If �m = 1, the model is identical to the one in Section 3.4 and T0+T1 = 70 years. It can be seen from the

bottom left panel that the competition with another asset raises the time it takes for the domestic currency

to fully disappear. If �m falls to 50 percent, then T0 + T1 doubles to almost 140 years. If �m = 10%, i.e.,

the competition takes place in most meetings, then T0 + T1 is greater than 500 years. As �m decreases,

T0 decreases and the dollarization of the economy starts sooner. However, the duration of the dollarization

stage, T1, gets longer.

In the top left panel, the length of time during which the economy remains undollarized, T0, decreases

with the rate of return of the competing asset, ra. However, the duration of the dollarization stage, T1, and

the overall time it takes for the domestic currency to die, T0+T1, increases with ra as long as T0 > 0. When

ra is su¢ ciently large so that T0 = 0, then T1 starts decreasing with ra. This result is explained by the fact

that at t = 0, the economy is already partially dollarized and the extent of the dollarization at the steady

state increases with ra.

The top right panel describes how T0 and T1 depend on the money growth rate, �. The results are

qualitatively similar to the ones obtained for ra. As the rate of return of the domestic currency deteriorates,

i.e., � increases, the economy remains undollarized for a shorter period of time. While the duration of the

dollarization stage, T1, increases with � when the economy is undollarized initially, it decreases with � when

the economy is dollarized at the steady state. Finally, as shown in the bottom right panel, if the frequency

of meetings increases, dollarization starts earlier and the domestic currency dies sooner.

Figure 14: Time to dollarize. Parameter values: �� = 1, � = 0:04, � = 0:093, �m = 0:8, � = (1+50=100)
12�1

(i.e., monthly money growth rate is 50 percent), ra = 0. The ratio of m0=m
s is set to 0.99.

In Figure 14, I report the time for the economy to fully dollarize when the monthly money growth is in

the hyperin�ation range, i.e., 50 percent and above. As shown in the right panel, the degree of competition

between the domestic currency and the competing asset only has a marginal e¤ect on T1. The reason is that

at such levels of money growth, the economy is almost entirely dollarized at the steady state. It takes less

than a year for the residual amount of domestic real balances to fully disappear.
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7 When credit dies

So far I studied speculative hyperin�ation in economies with �at monies. As the use of �at money in developed

economies recedes, do speculative hyperin�ations become less relevant? I now describe a phenomenon similar

to speculative hyperin�ations in a pure credit economy with limited commitment, as in Kehoe and Levine

(1993).27

I maintain the assumption from the pure currency economy that there is no technology to enforce the

repayment of debts, i.e., repayment has to be self-enforcing. In order for credit arrangements to be incentive

feasible, there is a record-keeping technology that keeps track of transactions and repayments. In equilibrium,

buyers will have incentives to repay their debts in order to maintain their access to credit. I assume that the

record-keeping technology is imperfect in the following sense. A default event is recorded with probability

� 2 [0; 1]. Hence, there is a probability 1�� that an agent who defaulted is not reported publicly and hence

is not excluded from future credit.28

Credit transactions take place as follows. At times Tn, n 2 N, a buyer receives opportunities to consume

by being matched bilaterally with sellers. While she cannot produce in the match, she can promise to repay

her debt as soon as the meeting is over, at time T+n . The maximum amount a buyer can promise to repay

at time t expressed in the numéraire, called debt limit, is denoted dt. This real payment capacity, which is

analogous to mt in the monetary economy, is endogenous.

The expected lifetime utility of a buyer solves the following HJB equation:

�V bt = ���(dt) + _V bt : (70)

The interpretation is similar to (18) where mt is replaced with dt. The debt limit is de�ned as the highest

amount of debt that a buyer would repay willingly knowing that if she defaults she will be excluded from

future transactions with probability �, in which case her lifetime utility is 0 (under the assumption that

u(0) = 0). It solves

dt = �V
b
t : (71)

By defaulting, the buyer saves the cost of repayment, dt, but incurs the cost of being excluded from future

credit, V bt , with probability �. Substitute dt by its expression given by (71) into (70) to obtain

�dt = ����(dt) + _dt: (72)

An equilibrium is a time-path, dt, solution to (72).

In order to solve for equilibria in closed form, I make the following assumptions. Buyers make take-it-

or-leave-it o¤ers to sellers, i.e., p(y) = y, and preferences are of the type u(y) = y1�� with � 2 (0; 1). In

order to keep the analysis succinct, I focus on the region in the parameter space where the debt limit at the

27Such equilibria have been described in a discrete-time competitive economy by Bloise, Reichlin, and Tirelli (2013).
28A characterization of the perfect Bayesian equilibria of such a pure credit economy is provided in Bethune, Hu, and

Rocheteau (2018).
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steady state, ds, is less than y�, which requires �y� > ��� [u(y�)� y�]. This condition holds is agents are

su¢ ciently impatient. The ODE (72) can be rewritten as:

_dt = (�+ ���) dt � ���(dt)1��: (73)

This ODE is formally identical to the ODE in the STW model, (6), where 1�M has been replaced with �.

By the same logic as in Proposition 1, I obtain the following proposition.

Proposition 9 (Speculative debt limits.) Consider a pure credit economy under limited commitment.

The positive steady state is

ds =

�
���

�+ ���

� 1
�

: (74)

In addition, there are a continuum of nonstationary equilibria, indexed by d0 2 (0; ds), such that

dt =
n
(ds)� � [(ds)� � (d0)�] e�(�+���)t

o 1
� I[0;T ](t) (75)

where

T =
� ln [1� (d0=ds)�]
� (�+ ���)

: (76)

Along those speculative equilibria, the real borrowing capacity of buyers goes to zero in �nite time.

The rate at which dt diverges from its steady-state value, � (�+ ���), increases with the reliability of the

record-keeping technology.

8 Conclusion

I showed that a textbook model of a monetary economy in continuous time predicts that a �at money

experiencing a speculative hyperin�ation dies in �nite time. The duration of �at money depends on the initial

value agents coordinate on, fundamentals, such as the trading technology and preferences, and policies, such

as the money growth rate and the size of the government budget de�cit �nanced with money creation. For

parameter values consistent with the US money demand, money dies in 90 years if its initial value departs

from its steady state by a mere one percent and the annual money growth rate is constant and equal to

4 percent. If the monthly money growth is larger than 50 percent �which corresponds to hyperin�ation

territory �then the life expectancy of �at money drops to about 7 years. In the case of multiple, competing

means of payment, a speculative hyperin�ation generates a full dollarization of the economy in �nite time.

However, the currency competition allows the domestic currency to last longer. All these results shed some

light on the role of market structure, market power, and policies for the dynamics of hyperin�ation. These

insights are not speci�c to pure currency economies and also apply to credit economies when agents have

limited commitment.
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Appendix A: Proofs of propositions

Proof of Proposition 2. I solve the ODE (22) over a time interval, [0; T ), such that mt > 0 for all

t 2 [0; T ). I operate the change of variable, xt = m�
t , and I consider solutions such that mt < y� = 1 for

all t, i.e., xt 2 [0; 1) for all t. By di¤erentiating xt with respect to t, I obtain _xt = �m��1
t _mt. Substitute

_mt = _xtm
1��
t =� into (22) and rearrange to obtain the following nonautonomous, linear di¤erential equation:

_xt = (�� + �+ �t)�xt � ���:

I solve this ODE using the method of the integrating factor. Multiply both sides of the ODE by e��(��+�)t���(t),

where �(t) =
R t
0
�sds is the cumulative in�ation rate, and integrate forward from t to T :

xt =

Z T

t

e��[(��+�)(s�t)+�(s)��(t)]���ds+ e��[(��+�)(T�t)+�(T )��(t)]xT : (77)

Consider �rst the �nonspeculative� solution such that xt > 0 for all t. I take the limit as T goes to +1.

From the restriction to time-paths such that xt � 1 and the assumption �t + � > 0 for all t, the limit of the

second term on the right side of (77) is

lim
T!+1

e��[(��+�)(T�t)+�(T )��(t)]xT = 0:

Hence, from (77),

�xt � lim
T!+1

xt =

Z +1

t

e��[(��+�)(s�t)+�(s)��(t)]���ds:

Since �(s) � �(t) � ��(s � t), the term between squared brackets in the exponential function underneath

the integral is positive for all s > t and hence �xt is bounded above byZ +1

t

e����(s�t)���ds = 1:

Moreover, �(s)��(t) � (s� t)�� so that �xt is bounded below byZ +1

t

e��(��+�+��)(s�t)���ds =
��

�� + �+ ��
> 0:

So, �xt 2 (0; 1) for all t and hence it is a solution. Using that �xt = �m�
t , I obtain (25).

The speculative hyperin�ation equilibria correspond to the continuum of solutions, indexed by T 2

(0;+1), where money becomes valueless at time T < +1, xT = 0. From (77),

xt = ���

Z T

t

e��f(��+�)(s�t)+[�(s)��(t)]gds � �xt for all t � T:

Given T > 0, the initial value for x is

x0 = ���

Z T

0

e��[(��+�)s+�(s)]ds:

Using that mt = (xt)
1
� , I obtain (24). At t = T , mt = 0 and hence, from (22), _mt = 0. It follows that

mt = 0 for all t � T .
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Proof of Proposition 3. From (21), assuming yt � mt binds for all t, the law of motion for real

balances are given by

_mt = f(mt); (78)

where

f(x) � (�+ � + ��)x� ��xu0(x):

The positive steady state, when _mt = 0, is given by (31). The left side of (31) is decreasing in ms, it is equal

to u0(0) < +1 when ms = 0, and it is equal to one when ms = y� < +1. The right side is constant and

greater than one. Hence, a solution exists provided that the left side evaluated at ms = 0 is greater than

the right side, i.e., ��u0(0) > �� + �+ �.

Existence and uniqueness for arbitrary initial conditions. The phase diagram representing the ODE is

similar to the one in Figure 6. It can be seen that any solution to _mt = f(mt) with m0 2 [0;ms] is such that

mt 2 [0;ms] for all t 2 R. Consider an open set 
 � Y such that [0;ms] � 
. Since u0 is C1, the function

f is continuously di¤erentiable with

f 0(x) = �+ � + �� � ��u0(x)� ��xu00(x) 2 (�1;+1) 8x 2 
:

Since f : 
 ! R is continuously di¤erentiable, then it is locally Lipschitz continuous for all x 2 
, i.e., for

all x 2 
, there is a neighborhood V � 
 and a L > 0 such that

jf(y)� f(z)j � L jy � zj , for all y; z 2 V:

By the Cauchy-Lipschitz theorem, for all initial conditions m0 2 [0;ms], _mt = f(mt) has a unique solution,

mt : R ! [0;ms]. It implies that if m0 2 (0;ms), mt cannot converge to the steady state solution, mt � 0,

in �nite time.

Approximate solutions. I linearize the ODE in the neighborhood of mt = 0 to obtain:

_mt = [�+ � + �� � ��u0(0)]mt;

where I used that u00(x) is di¤erentiable at x = 0 so that u00(0) 2 (�1; 0) and limx!0 xu
00(x) = 0. The

solution is (33). Under the condition for the existence of a positive steady state, i.e., ��u0(0) > �� + �+ �,

the term on the right side between squared brackets is negative, @ _mt=@mt 2 (�1; 0). Hence, mt converges

to 0 but only at the limit as t! +1.

Suppose m0 � ms and t � 0 so that mt is in the neighborhood of ms. The linearization of the ODE,

(78), in that neighborhood gives

_mt = f(�+ � + ��)� ��u0(ms)� ��msu00(mss)g (mt �ms):

From (31), (�+ � + ��) = ��u0(ms), and hence

_mt = ��u
0(ms)

�msu00(mss)

u0(ms)
(mt �ms):
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Using the notation �(ms) � �msu
00(ms)=u0(ms) and ��u0(ms) = �+ � + ��, one obtains

_mt = (�� + �+ �) �(m
s) (mt �ms) :

The solution to this linear di¤erential equation is (32).

Proof of Corollary 4.

Part 1. Under the generalized CRRA preferences, for every element of the sequence fbng+1n=0, the ODE,

(21), can be rewritten as

_mt;n = (�+ � + ��)mt;n � ��mt;n(mt;n + bn)
��: (79)

The positive steady state, denoted ms
n, solves _mt;n = 0 and mt;n > 0, i.e., ��(ms

n + bn)
�� = � + � + ��.

Solving for ms
n in closed form gives (36). Using that fbng+1n=0 is decreasing, fms

ng+1n=0 is increasing.

Part 2. The uniqueness of the solution to the ODE, (79), follows from Proposition 3 and the fact that

the right side of (79) is continuously di¤erentiable for all mt;n > �bn. Since fms
ng+1n=0 is increasing, the

condition m0 < m
s
0 guarantees that m0;n = m0 < m

s
n for all n. From Proposition 3, for all m0;n 2 (0;ms

n),

_mt;n < 0 and mt;n ! 0 as t! +1. Moving backward in time, mt;n ! ms
n as t! �1.

Part 3. From (79), _mt;n is a continuously di¤erentiable function of mt;n and bn for all (mt;n; bn) 2 R2+
such that mt;n + bn > 0. By the theorem of continuous dependence (see, e.g., Grant, 2014, page 20), the

solution to (79) is continuous in bn. As bn ! 0, the ODE (79) converges to

_mt = (�+ � + ��)� ��mt(mt)
��:

Hence, as bn ! 0, mt;n : [0; T ]! [0;m0] converges pointwise to the solution in Corollary 3.

Proof of Proposition 4. Under quadratic preferences, the ODE, (78), becomes

_mt = [�+ � + ��(1�A)]mt + ��" (mt)
2
: (80)

The positive steady state solves _mt = 0 andmt > 0, which gives (40). In order forms > 0, ��A > ��+�+�,

which can be rewritten as (39). The ODE, (80), is a Bernoulli equation. Assuming mt > 0, I adopt the

change of variable x = m�1. Then _xt = � _mt=(mt)
2. Substitute _mt = � _xt(mt)

2 into (80) to obtain

_xt = � [�+ � + ��(1�A)]xt � ��":

The solution to this linear ODE is

xt = x
s + (x0 � xs)e[��(A�1)����]t;

where xs = 1=ms. Using that mt = 1=xt, I obtain (41). It is easy to check that for all m0 2 (0;ms), mt > 0

for all t > 0, as conjectured above.
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Proof of Proposition 5. Given the pricing function, (42), and assuming the liquidity constraint binds

at all dates, the law of motion for real balances, (21), can be reexpressed as

_mt = f(mt): (81)

where

f(m) � (�+ � + ��)m� �� (m)1��

� + (1� �)(m)�� :

The positive steady state obtained from _mt = 0 and mt > 0 solves (43). A solution exists provided

that �� > (�+ � + ��) (1 � �). From the de�nition of f above, it can be checked that f is continuously

di¤erentiable with

f 0(m) = �+ � + �� � �� (1� �)�(m)
� + (1� �)

[�(m)� + (1� �)]2
:

In particular,

f 0(0) = �+ � � ���

1� � 2 (�1; 0) :

By the logic of Proposition 3, there exist a continuum of speculative, hyperin�ation equilibria indexed by

m0 2 (0;ms) featuring mt > 0 and _mt < 0 for all t > 0 with mt ! 0 as time goes to +1. In the

neighborhood of mt = 0, the ODE (81) can be linearized to obtain

_mt =

�
�+ � � ���

1� �

�
mt:

The solution to this linear ODE corresponds to (44).

Proof of Proposition 6. Part 1.

Steady states. From (50), steady-state equilibria solve

��(ms)1�� � (�+ ��)ms = g: (82)

The left side of (82) is strictly concave, equal to 0 when ms = 0 and ms = [��= (�+ ��)]
1=�. It reaches a

maximum when ms = mmax � [�� (1� �) = (�+ ��)]1=�. The right side is constant and equal to g. Hence,

if the left side when evaluated at mmax is greater than g, i.e.,

g <

�
�� (1� �)
�+ ��

� 1
� � (�+ ��)

(1� �) ;

then there are two steady-state equilibria, 0 < ms
` < m

s
h. Because the left side of (82) is increasing in m

s

for all ms < mmax, and ms
` < mmax, an increase in g raises ms

` . By a symmetric reasoning, an increase in g

reduces ms
h.

Speculative equilibria. From (50), @ _mt=@mt < 0 for all mt < mmax. From the result that ms
` < mmax

and _mt = 0 when mt = m
s
` , it follows that _mt > 0 for all mt < m

s
` , and hence mt converges to ms

` . So there

are no equilibria where the value of money converges to 0. By a similar reasoning, for all m0 2 (ms
` ;m

s
h),
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Figure 15: Phase diagram of ODE (50)

_mt < 0. So there are a continuum of in�ationary paths where mt converges to ms
` . These dynamics are

illustrated in the phase diagram in Figure 15.

Approximation. From (50),

@ _mt

@mt

����
mt=ms

`

= �+ �� � (1� �)��(ms
`)
��

I use this expression to linearize (50) in the neighborhood of ms
` :

_mt =
�
�+ �� � (1� �)��(ms

`)
��� (mt �ms

`):

Using that @ _mt=@mt < 0 at mt = m
s
` , the solution for m0 in the neighborhood of ms

` converges to m
s
` . The

closed-form solution to the linear ODE above is (53). Similarly, I linearize (50) in the neighborhood of ms
h

to obtain (52).

Part 2. If u(y) = ln(y + b)� ln(b), with b 2 (0; 1), then the ODE for mt, (49), is rewritten as

_mt = (�+ ��)mt + g �
��mt

mt + b
: (83)

A steady state solves _mt = 0, i.e.,

(�+ ��)ms + g =
��ms

ms + b
:

The left-hand side (LHS) is linear increasing in ms with a positive intercept. The right-hand side (RHS) is

a strictly increasing and strictly concave function of ms with a slope given by

@RHS

@ms
=

��b

(ms + b)
2 :

So, @RHS=@msjms=0 = ��=b and @RHS=@m
sjms!+1 = 0. Moreover,

@RHS

@ms
=
@LHS

@ms
() ��b

(ms + b)
2 = �+ ��:
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The solution is ms = m̂ where

m̂ �

s
��b

�+ ��
� b:

Hence, m̂ 2 (0; 1� b) if b < ��=(�+ ��). If this condition does not hold, @RHS=@ms < @LHS=@ms for all

ms. Finally,

RHSjms=0 = 0 < LHSjms=0 = g

and

RHSjms=1�b = ��(1� b) < LHSjms=1�b = ��(1� b) + �(1� b) + g:

Hence, if a solution exists, then there are two solutions, ms
` 2 (0; m̂] and ms

h 2 [m̂; 1� b). The determination

of the steady states are represented graphically in Figure 16.

RH SLH S ,

sm

LHS

)( 0bRHS
)( 1bRHS)0( →nbRHS

sm l

s
hm

Figure 16: Determination of steady states under logarithmic preferences

Consider a decreasing sequence, fbng+1n=0, that converges to 0. As bn approaches zero, the right side

increases and approaches �� for all ms > 0, as shown in Figure 16. Hence, if g < ��, there is a N � 0

such that for all n � N , there are two steady states, ms
`;n and m

s
h;n. Since RHS is decreasing in b, m

s
`;n

is decreasing in n and ms
h;n is increasing in n. Moreover, by the squeeze theorem, since 0 � ms

`;n � m̂(bn)

and limb!0 m̂ = 0, it follows that limn!+1m
s
`n = 0. The high steady state converges to the solution to

(�+ ��)ms + g = ��, i.e., (54).

Using that ms
`n & 0 and ms

hn % ms, for all m0 2 (0;ms), there is a ~N � 0 such that for all n � ~N ,

m0 2 (ms
`;n;m

s
h;n). The ODE, (83), can be written as _mt = f(mt; b) where

f(m; b) � (�+ ��)m+ g � ��m

m+ b
; for all m � 0.

Since f 2 C1 for all m > �b, it is locally Lipschitz continuous. By the theorem of Cauchy-Lipschitz, the

ODE (83) admits a unique solution, mt;n, given the initial condition, m0, and it is such that mt;n converges
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to ms
`;n as t ! +1. Since f is continuously di¤erentiable with respect to m and b for all (m; b) such that

m + b > 0, by the theorem of continuous dependence (see, e.g., Grant, 2014, page 20), the solution to the

ODE is continuous in bn. As bn ! 0, the ODE converges to

_mt = (�+ ��)mt + g � ��; for all mt > 0.

The solution to this linear ODE is ~mt given by (55) where T is de�ned by ~mT = 0. So, for all t 2 (0; T ),

mt;n converges pointwise to ~mt as n! +1.

Proof of Proposition 7. The ODE (49) becomes

_mt = ��"(mt)
2 � [��(A� 1)� �]mt + g: (84)

The steady-state solutions to (84) are given by

ms
h =

��(A� 1)� �+
q
[��(A� 1)� �]2 � 4��"g
2��"

ms
` =

��(A� 1)� �
��"

�ms
h

Positive solutions exist if ��(A� 1)� � > 0 and

g <
[��(A� 1)� �]2

4��"
:

The ODE (84) is a Ricatti equation that admits an explicit solution. Denote zt = mt �ms
` to rewrite (84)

as

_zt = ��"(zt)
2 + f2��"ms

` � [��(A� 1)� �]g zt:

The ODE in zt is a Bernoulli equation. Using the change of variable xt = 1=zt, it becomes

_xt = ���"� f2��"ms
` � [��(A� 1)� �]gxt:

Using that ��"ms
` + ��"m

s
h = ��(A� 1)� �, the solution is

xt =
1

ms
h �ms

`

+

�
x0 �

1

ms
h �ms

`

�
ef��(A�1)���2��"m

s
hgt:

Using that x0 = 1=(m0 �ms
`) and mt = 1=xt +m

s
` , the solution to (84) is (58).

Proof of Proposition 8. The ODE (62) can be rewritten as

_mt

mt
= max f�0(mt);�1(mt)g ;

where

�0(mt) � (�� + �+ �)� ��(mt)
��

�1(mt) � (���m + ra + �)� ���m(mt)
��:
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From (63), ms
0 is the unique solution to �0(m

s
0) = 0. From (64), ms

1 is the unique solution to �1(m
s
1) = 0.

The right side of the ODE is increasing in mt with

lim
mt&0

_mt

mt
= �1 and

_mt

mt

����
mt=1

= �+ � > 0:

Hence, there exists a unique positive steady state, ms 2 (0; 1). Moreover, since max f�0(ms);�0(m
s)g = 0,

ms = minfms
0;m

s
1g. In Figure 17, I represent the functions �0(mt) and �1(mt) and the determination of

ms
0, m

s
1, and m

s.

Characterization of speculative hyperin�ations. For all mt < m
s, _mt < 0. Hence, there are a continuum

of speculative hyperin�ation equilibria indexed by m0 2 (0;ms) and such that mt decreases over time with

limt!+1mt = 0. From (61),

at

�
=
>

0 if ���2
�
(mt)

�� � 1
�� <

>
�� ra:

Equivalently, using the de�nition of !s1 in (65), i.e., ���2 [(!
s
1)
�� � 1] = �� ra,

at

�
=
>

0 if mt

�
>
<

!s1:

Since mt is decreasing over time and approaches zero asymptotically, there is a T0 > 0 such that for all

t < T0, at = 0 and for all t > T0, at > 0. It follows that the ODE (62) can be rewritten as

_mt

mt
= �0(mt) for all t < T0

= �1(mt) for all t > T0:

For all t > T0, the ODE _mt=mt = �1(mt) is identical to (22) where �� has been replaced with ���m and �

has been replaced with ra. Hence, from Corollary 3, the solution is

mt =
n
(ms

1)
� � e�(���m+ra+�)(t�T0) [(ms

1)
� � (mT0)

�
]
o 1

� I[T0;T0+T1](t);

where, from (29) by replacing �� with ���m and � with ra,

T1 =
ln [1� (mT0=m

s
1)
�
]
�1

(���m + ra + �) �
:

From (61) at equality, at +mt = !
s
1 for all t > T0.

For all t < T0, the ODE _mt=mt = �0(mt) is identical to (22). Hence, from Corollary 3, the solution is

mt =
n
(ms

0)
� � e�(��+�+�)t [(ms

0)
� � (m0)

�
]
o 1

� I[0;T0](t) for all t < T0. (85)

Steady states. As shown in the right panel of Figure 17, if ms
1 < m

s
0, then m

s = ms
1 < !

s
1. The condition

ms
1 < !

s
1 is equivalent to ra > �m���2�. From (61), as+ms = !s1 and the steady-state holdings of dollars

are

as1 =

�
���2

�� ra + ���2

� 1
�

�
�

���m
���m + ra + �

� 1
�

: (86)
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Figure 17: Representation of the functions �0 and �1

For all m0 < ms, m0 < !s1. Hence, at > 0 for all t, i.e., T0 = 0. As shown in the left panel of Figure 17,

if ms
0 < ms

1, then m
s = ms

0 > !s1, a
s = 0, and as + ms = ms

0. The condition m
s
0 > !s1 is equivalent to

ra < �m�� �2�. For all m0 2 (!s1;ms), T0 > 0.

Determination of T0. From (62), T0 is the solution to

���2
�
(mT0)

�� � 1
�
= �� ra;

or, equivalently,

mT0 = !
s
1 =

�
���2

���2 + �� ra

� 1
�

:

Using the expression for mt given by (85), T0 is the solution ton
(ms

0)
� � e�(��+�+�)T0 [(ms

0)
� � (m0)

�
]
o 1

�

= !s1.

Solving for T0,

T0 =
1

�(�� + �+ �)
ln

�
(ms

0)
� � (!s1)

�

(ms
0)
� � (m0)

�

�
;

which corresponds to (66). If !s1 < m0 < m
s
0, then T0 > 0, as shown in the left panel of Figure 17.
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Appendix B: Shi-Trejos-Wright model in discrete time

In discrete time, the model can be rewritten as:

V1;t = �� f���(1�M) [u(yt+1) + V0;t+1 � V1;t+1] + V1;t+1g

V0;t = �� f���M (�yt+1 + V1;t+1 � V0;t+1) + V0;t+1g :

The take-it-or-leave-it o¤er by sellers gives

yt+1 = V1;t+1 � V0;t+1:

Hence,

yt = �� f���(1�M) [u(yt+1)� yt+1] + yt+1g :

We assume �� = e
��� and �� = 1� e���.

Suppose u(y) =
p
y. The ODE can be rewritten as:

�� [1� ���(1�M)] yt+1 + �����(1�M)
p
yt+1 � yt = 0:

Adopt the change of variable xt =
p
yt. Then,

�� [1� ���(1�M)]x2t+1 + �����(1�M)xt+1 � x2t = 0:

We solve for xt+1 as a function of xt:

xt+1 =

q
[�����(1�M)]

2
+ 4�� [1� ���(1�M)]x2t � �����(1�M)
2�� [1� ���(1�M)]

:

In terms of yt+1,

yt+1 =

8<:
q
[�����(1�M)]

2
+ 4�� [1� ���(1�M)] yt � �����(1�M)
2�� [1� ���(1�M)]

9=;
2

:
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