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1 Introduction

A Decentralized Exchange (DEX) is an important financial innovation. In contrast to a

centralized exchange, a DEX is accessible to all investors, provides transparent trading terms,

and o↵ers trade execution and settlement simultaneously. Nonetheless, irrespective of these

advantages, a DEX entails a variety of novel risks for investors, and those risks must be

understood prior to forming an appropriate regulatory policy. In this paper, we detail both

DEX investor benefits as well as risks and thereafter discuss potential regulatory approaches.

Nakamoto (2008) introduced the idea of a decentralized peer-to-peer payment system with

the Bitcoin blockchain. However, the Bitcoin blockchain does not allow for the deployment

of DEXs. Rather, a key innovation in blockchain technology, largely attributable to Buterin

(2014) and Wood (2014), was the introduction of the Ethereum blockchain. Ethereum pro-

vides the same functionality as the Bitcoin blockchain in terms of peer-to-peer transactions

but also adds a further functionality: the ability to deploy a computer program onto the

blockchain. These computer programs operating on a blockchain are known as smart con-

tracts, the importance of which is that blockchain users can interact with these computer

programs, thereby facilitating a rich set of user interactions.

One interaction made feasible by smart contracts is trading assets at transparent pricing

terms. This interaction is facilitated through a DEX, which is a set of inter-related smart

contracts that interact to facilitate trading. Any blockchain user can interact with a DEX

by submitting an order with a trade size and a trading direction. The pricing terms of the

trade are then determined mechanically and transparently by an algorithm encoded into a

smart contract. The pricing algorithm is known as an Automated Market Maker (AMM),

and the mechanics of this algorithm are known publicly precisely because they are defined

explicitly in a smart contract.

A DEX generally consists of liquidity pools wherein each pool is defined by a set of assets

across which it facilitates trading. Each pool can hold only a fixed set of assets, and trading

is facilitated through a pool by allowing users to exchange some of the assets held by the

pool for other assets held by the pool. As an example, a two-asset pool consisting of ETH

and DAI is a pool that can hold only ETH and DAI. A user interacting with an ETH-DAI

pool can purchase ETH for DAI by receiving ETH from the pool and providing DAI to the

pool in return. Similarly, a user can sell ETH for DAI by receiving DAI from the pool and

providing ETH to the pool in return. The specific amount of DAI (ETH) to be provided to

the pool for receiving a given amount of ETH (DAI) is determined by an AMM.

In general, an AMM determines pricing terms by maintaining a particular invariant. The

most common invariant is a constant product invariant where the product of the various asset
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holdings of the pool is held invariant before and after a trade. To give an example, for an

ETH-DAI pool, a constant product AMM (CPAMM) maintains the product of ETH units

and DAI units held by the pool as invariant across a trade. In particular, if there are initially

x ETH units and y DAI units held by the pool, then the product of ETH units and DAI

units must remain equal to x ·y after any trade. If a user submits an order to buy �x units of

ETH, that order reduces the ETH units held by the pool to x� �x and thereby requires an

increase in DAI units to maintain the constant product invariant. Direct verification reveals

that the user must add x·y
x��x

� y DAI units to the pool because this addition increases the

pool’s DAI holding to x·y
x��x

which thereby maintains the product of ETH units and DAI units

at (x� �x) · x·y
x��x

= x · y after the trade. So, if there are initially x = 5 ETH units and y = 20

DAI units, then the constant product that must be maintained after a trade is 5 · 20 = 100.

In turn, a trade to buy �x = 1 ETH unit requires a payment of x·y
x��x

= 100
5�1 � 20 = 5 DAI

units because the purchase of 1 ETH unit reduces the pool ETH holding to 5 � 1 = 4 and

providing 5 DAI units increases the pool DAI holding to 20 + 5 = 25, thereby maintaining

the constant product invariant of 100 = 4 · 25.
For a liquidity pool to function, the pool must acquire some inventory of the assets that

characterize the pool. For example, an ETH-DAI pool must acquire both ETH inventory

and DAI inventory; otherwise, such a pool could not facilitate exchanges of ETH for DAI

or vice versa. A liquidity pool acquires its inventory from investors who obtain the assets

separately (e.g., at a centralized exchange) and then provide those assets to the liquidity pool.

This investor behavior is incentive compatible because each liquidity pool charges trading

fees and passes those fees onto investors who provide the pool with inventory. Although

investors providing inventory to a liquidity pool earn trading fees, they also incur a loss

known as Loss-Versus-Rebalancing (LVR), which was first highlighted by Milionis, Moallemi,

Roughgarden, and Zhang (2022) and is explained below. Ultimately, the liquidity provision

for a liquidity pool is an equilibrium quantity, and it is determined as the level at which

investors are indi↵erent between providing liquidity to the liquidity pool and investing their

capital in other investment opportunities. For a formal economic analysis of equilibrium

liquidity provision at a liquidity pool, see Capponi and Jia (2021), Lehar and Parlour (2021)

and Hasbrouck, Rivera, and Saleh (2023).

LVR is a loss experienced by investors providing inventory to a liquidity pool due to

arbitrageurs trading at o↵-market prices against the liquidity pool. Liquidity pool pricing is

determined by an AMM that implements a mechanical pricing rule. The AMM mechanical

pricing rule does not directly incorporate public information so that prices implied by an

AMM do not directly update upon the release of news. Rather, prices implied by the AMM

change only as a function of the asset holdings of the associated liquidity pool, whereas

2



the relative asset holdings change due to trading. In turn, upon the release of public infor-

mation, arbitrageurs are able to trade against a liquidity pool at prices that do not reflect

the new public information. This arbitrage trading then alters the asset holdings of the

liquidity pool in such a way that the liquidity pool’s price begins to incorporate the public

information. The arbitrage trading ends only when the liquidity pool’s price has adjusted

su�ciently to eliminate further arbitrage opportunities. Importantly, investors who provide

inventory to a liquidity pool become partial owners of the overall inventory at the liquidity

pool. Therefore, such investors experience losses to the extent that the liquidity pool in-

curs trading losses through trades at o↵-market prices. Milionis et al. (2022) examine these

losses, demonstrating that they increase with the volatility of the exchange rate between the

assets in a two-asset liquidity pool. In turn, Hasbrouck, Rivera, and Saleh (2022) and Cao,

Hemenway Falk, and Tsoukalas (2023) discuss the need for trading fees at a liquidity pool

to be set such that they o↵set those losses.1

Trading via an AMM o↵ers various advantages. First, due to the mechanical implementa-

tion of AMMs, terms of trade are highly transparent. The assets of the underlying liquidity

pool are held directly by pool investors, and while these investors are exposed to market

risk, the pool assets cannot be misappropriated. Second, settlement of AMM trades nor-

mally occurs on the blockchain within at most a few minutes. This contrasts with traditional

markets, where settlements delays are often a day or more. These advantages have led to

the consideration of AMMs as supplements for traditional markets. In the interbank foreign

exchange market, the Bank for International Settlements’ Project Mariana demonstrated

the technical feasibility of AMMs for cross-border trading and settlement of wholesale cen-

tral bank digital currencies (Bank for International Settlements, 2023). Malinova and Park

(2023) suggest that AMMs could provide e�cient trading of tokenized US equities, particu-

larly for smaller firms. They also contend that, if applied to traditional markets, an AMM

could significantly reduce trading costs by allowing passive investors to provide their asset

holdings for the purpose of liquidity provision.

To clarify the innovative nature of DEXs, we first contrast DEXs with centralized ex-

changes in Section 2. Then, in Section 3, we explain the novel risks that investors face when

interacting with DEXs. These novel risks require regulation, but the nature of blockchain

poses various hurdles to regulation. We clarify these hurdles and discuss possible regulatory

approaches in Section 4. We then take a broader view in Section 5, exploring the general

notion of decentralized exchange and how DEXs have contributed to decentralized exchange.

1A concept related to loss-versus-rebalancing is impermanent loss which refers to a loss relative to the
value of the initial holding (“loss-versus-holding”). For a comprehensive discussion regarding impermanent
loss, consult Capponi and Jia (2021).
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We conclude with Section 6. Throughout, our analysis focuses on the Ethereum blockchain

because it possesses the most DEX activity of all blockchains as measured by either total

trading volume or total liquidity (see https://defillama.com/protocols/Dexes, date ac-

cessed: May 29, 2024). To be clear, DEX activity also occurs on other blockchains with

di↵erent consensus protocols.

2 Comparing DEXs and CEXs

We begin with a brief summary and comparison of the traditional centralized exchanges

(CEXs) prominent in equities markets, CEXs in cryptoassets, and the newer decentralized

exchanges (DEXs).

Many of today’s CEXs were initially organized around physical trading floors. In a floor

market, trading proceeds by open outcry. One floor trader makes an oral bid or o↵er (price

and quantity). A trade occurs when a second trader sells into the first’s bid or buys at

the first’s o↵er. The dialogue is formalized. For example, the CME (Chicago Mercantile

Exchange) Rulebook (Rule 521, circa 2004) states, “A bid is made by stating the price first

and quantity next (such as ‘38.50 on 2,’ etc.) ... An o↵er is made by stating quantity first

and price next (such as ‘2 at 38.50’).” The rule continues, “When a trader desires to buy

the going o↵er in the [market], he shall by outcry state ‘buy it’ ... [when] selling, the trader

shall state ‘sell it.’” The trade does not automatically occur simply because one member is

bidding and another is o↵ering at the same price. The two steps (“bidding”/“asking” and

“sell it”/“buy it”) are distinct; an execution requires both (Hasbrouck, 2023, chap. 3).

“Liquidity” often refers to immediacy, the option to convert a security into cash or the

reverse without delay. In this sense, the trader making the bid or o↵er is considered the

liquidity maker, or simply the “maker,” and the second trader is the liquidity taker. In a

floor market, maker and taker roles are not fixed. For example, a prospective buyer can take

the lowest o↵er or they can make their own bid. They might start by making a bid priced

below the lowest o↵er, possibly rebidding at progressively higher prices, and ultimately (if

no one hits her bid) they might take the best o↵er or withdraw from the market. A planned

strategy can be modified on the fly. The maker/taker distinction persists in almost all

markets.

A floor trader might trade as a principal (on their own account). Alternatively, they

might act as an agent for an o↵-floor customer. In this case, the customer leaves an order

specifying their intention. A limit order specifies direction (buy or sell), quantity, and a limit

price (a lower limit for a sell order or an upper limit for a buy order). Upon receiving an

order to buy “Buy 500 shares limit $10,” a broker might call out “bid 10 for 500” (although
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they might first try lower prices). Since a limit order translates naturally into a bid or o↵er,

it corresponds to a “maker” strategy. The main alternative, a market order, directs the

broker to place priority on obtaining an execution, with price a secondary consideration.

In this sense, a market order acts as a “taker”. The correspondence between order type

and maker/taker role is meaningful, but it should not be construed as equivalence because

there are significant di↵erences between an exchange member present on the floor and an o↵-

floor customer. A floor trader observing the open-outcry process possesses information not

available to o↵-floor participants. Furthermore, prior to the era of electronic communications,

the o↵-floor customer acting through the on-floor broker could not easily switch maker/taker

roles.

Late in the 19th century, the NYSE’s floor procedures were augmented by the addition

of specialists (o�cial market makers). The specialist assumed the responsibility of ensuring

that a listed stock always had a bid and an ask, bidding and o↵ering on their own account in

the event that no one else was willing to do so. This supported the NYSE’s reputation as a

reliable source of liquidity. In addition, the specialist maintained a book where other traders

would leave their (and their customers’) limit orders. This spared the customer’s broker

from the burden of constantly monitoring the trading process, watching and waiting for an

opportunity to execute the order. The specialist assumed these responsibilities as well.2

The specialist stood literally and figuratively at the center of the market for an assigned

stock. Their broad responsibility was the maintenance of a “fair and orderly market.”3 To

this end, the specialist was subject to numerous a�rmative and negative obligations. Some of

these obligations, particularly the maintenance of a market presence, could be formidable. In

compensation, the specialist enjoyed certain rights and privileges. For example, as agent for

the limit order book, they knew its contents but were prohibited from revealing the contents

to others (an important informational advantage). In modern times, when the specialist’s

post (desk) became the destination for orders conveyed to the exchange electronically, the

specialist had the first opportunity to engage with this order flow.

Under the specialist system, almost any market participant could provide liquidity, at

least in principle. A bid, for example, might originate from the specialist, another member on

the floor, or from a limit buy order placed in the book by an o↵-floor customer. The market

structure, however, generally favored the specialist and (to a lesser extent) floor traders

2The historical development of the specialist system and the operations of the U.S. equity market circa
mid-20th century are described at length in the SEC’s Special Study of the Securities Markets (U.S. Securities
and Exchange Commission, 1963). An NYSE memo to members summarizes the rights and responsibilities
of the specialist circa 1989, arguably the apex of specialists’ importance (New York Stock Exchange, 1989).

3This is a touchstone phrase in U.S. market regulation. See, for example, the SEC’s mission statement
at https://www.sec.gov/about/mission).
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over o↵-floor cu stomers. Broadly sp eaking, up  to  about 1990, providing (making) liquidity
was considered the purview of specialists and similar professionals, whereas the demand

for (taking of) liquidity flowed f rom t he p ublic c ustomers.4 The fl uidity an d fle xibility of
maker/taker roles that characterized the early floor markets no longer existed.

Market structure changed dramatically in the 1990s. Limit order books became much

more important, eventually dominating many markets, while the influence of specialists and
similar market makers ebbed. The forces responsible for these changes were technological and
regulatory. On the technological side, improvements in computing and communications led
to experimentation with electronic markets. Most of these were organized as electronic limit

order books, suggesting the attractiveness of this structure going forward (U.S. Securities
and Exchange Commission, 2000). On the regulatory front, the SEC took steps to promote

the prompt display of customer limit orders.5

The advent of electronic markets and the SEC’s order display requirements diminished

the specialists’ competitive presence. This decline was hastened, however, by two other
developments. By way of explaining the first, we note a  market’s tick size puts a  floor on  its
bid-ask spread, a strong determinant of market maker trading revenue. Since its founding
in 1792, the NYSE tick had been one-eighth (of a dollar), that is, $0.125 per share. In 1997, 
the U.S. Congress made an unusual direct intervention in market structure. The Common

Cents Pricing Act mandated a reduction of the tick size to $0.01. This change cut costs 
for o↵-floor tr aders but al so reduced sp ecialist pr ofits. The  second development comprised

various enforcement actions against Nasdaq market makers and NYSE specialists.6

Public limit orders were additionally strengthened by the Order Protection Rule com-

ponent of the SEC’s Regulation NMS (National Market System), adopted in 2005 (U.S.
4A parallel dichotomy between makers and takers generally pervades most of the early canonical economic 

models of liquidity. Papers from Garman (1976) (with its title including the then-novel term “market 
microstructure”), through the inventory control models (following Stoll (1976)), the sequential trade models 
(such as Glosten and Milgrom (1985)), and the continuous auction models (Kyle (1985), and so forth) almost 
universally posit separate and distinctly di↵erent populations of l iquidity providers and demanders.

5The SEC’s Market 2000 study noted that “Questions have arisen as to whether specialists and [other] 
dealers in listed stocks are displaying limit orders entrusted to them. Specialists and dealers that do not 
represent limit orders in the quotations may not be displaying the real quotation spread,” (U.S. Securities 
and Exchange Commission, 1994). The SEC later adopted strong order handling rules (U.S. Securities and 
Exchange Commission, 1996a).

6Nasdaq’s di�culties fo llowed fr om a se ries of  ac ademic st udies th at dr ew a co nnection be tween dealer 
quoting practices and the possibility of collusion (Christie and Schultz, 1994; Christie, Harris, and Schultz, 
1994; Christie and Schultz, 1995). The ensuing SEC investigation uncovered evidence of pervasive rule 
violations and mandated numerous reforms (U.S. Securities and Exchange Commission, 1996b). The NYSE 
cases involved patterns of violations from 1999 to 2003 involving five major specialist firms (U.S. Securities 
and Exchange Commission, 2004c). In 2008, the NYSE supplanted the specialists with designated market 
makers (DMMs). Like the specialist, a DMM is broadly charged with maintaining a fair and orderly market. 
Similarly, the DMM is required to bid and o↵er t o e nsure a  l iquid m arket. O ther o bligations h ave been 
softened, but the special rights and privileges enjoyed by the specialist have been sharply curtailed.
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Securities and Exchange Commission, 2005). This protection refers to situations known as

trade-throughs. For example, if venue XYZ is bidding, say, $10 per share (perhaps from a

customer limit order), no other venue can execute a trade priced below $10. That is, XYZ’s
$10 bid cannot be “traded through” (it is protected). This protection is subject to various

restrictions: the protected order must be electronically accessible, visible, and priced at the

top of its venue’s book (see the discussion accompanying the rule).

The requirement of electronic accessibility removed protection of oral bids and o↵ers,

seemingly sealing the fate of the traditional floor markets. Yet one important feature of

those early markets has reemerged, in a sense, relatively intact. The modern electronic limit

order market provides traders of all types with the ability to quickly reprice orders or shift

maker/taker roles. Standard order types can accomplish these tasks routinely, automatically,

and at no cost.7 This process is not as egalitarian as was once hoped (Mendelson and Peake,

1979). High frequency traders enjoy numerous and diverse first-mover advantages. All

traders nevertheless enjoy broad opportunities for accessing or supplying liquidity.

Given the success of electronic limit order markets for traditional securities, it is not

surprising that this structure is also used extensively for cryptoassets. Coinbase, Binance,

and the now-defunct FTX all employ/employed limit order books. Although the traded

assets may be implemented on a blockchain, however, the trading process itself is centralized

and these markets are most emphatically CEXs. A decentralized exchange (DEX), however,

is implemented via smart contracts on a blockchain. The implementation method is crucial

to the CEX/DEX distinction, but there are other di↵erences as well.

2.1 Contrasting CEXs and DEXs for Liquidity Demanders

Both the DEX automated market maker (AMM, discussed in the introduction) and the CEX

limit order book (LOB) supply liquidity. We therefore begin with an example demonstrating

the potential for similar pricing schedules. That is, the two markets can look similar from

the perspective of liquidity demanders (the takers). In the next section, we consider the

perspectives of liquidity suppliers (the makers).

Figure 1 depicts the top levels of limit order book on the CBOE’s BZX stock exchange

for Robinhood Markets Inc. at one instant on Tuesday, May 22, 2022.

The book is organized in price-time priority. For example, on the bid side of the book, the

best bid is the highest, $9.08. At this price, 3,100 shares are sought, possibly representing

multiple limit orders. If there are multiple orders at the same price, time priority applies

7A pegged order, for example, automatically updates its limit price relative to some reference level, such
as the best bid or ask in the market. A discretionary limit order becomes marketable when the quote on the
opposite side moves within a preset range.
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Figure 1: A Limit Order Book for Robinhood

Screenshot of the limit order book for Robinhood Markets
Inc. (Nasdaq ticker symbol HOOD) displayed on CBOE’s
web site for the BZX Exchange on Tuesday, May 22, 2022,
at approximately 1:10 PM ET.

(first come, first served).8

Figure 2 depicts the corresponding price-quantity schedule. For example, an incoming

order to buy 1,000 shares with limit price $9.13 would execute against the higher priority

ask price of $9.09, trading 600 shares but leaving 400 shares remaining. These 400 remaining

shares would then trade at $9.10 where there are 1,284 shares available. If the 1,284 shares

o↵ered at $9.10 represent multiple orders, they would be executed in time priority based on

order submission and not on a pro-rata basis. Similarly, a second incoming buy order for,

say, 1,110 shares would first take the remaining 884 shares at $9.10, followed by 216 shares

at $9.11.
The dashed green line in the figure represents the schedule generated by a hypothetical

AMM. The AMM schedule represents a continuous approximation of the book. The close

resemblance of the prices schedules suggests that for liquidity demanders, the CEX and

8The screenshot displays only the first five price levels on the bid and o↵er side, and only on the BZX
exchange. There may be non-displayed orders and orders priced outside of the first five levels. The display
is not consolidated: additional depth may exist at other exchanges. During regular trading hours, the book
is publicly available, with data slightly delayed, at https://www.cboe.com/us/equities/.
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Figure 2: Price schedule implied by the Robinhood limit order book

Cumulative supply and demand functions implied by prices and quantities in the Robin-
hood book depicted in Figure 1, expressed as a function of the incoming marketable order
size (signed negative for a customer sale, and positive for a purchase). The dashed line
is the pricing schedule corresponding to a hypothetical automated market maker (AMM).
Following the example in Section 1, the inventory of shares is y = 2M shares, and the
inventory of cash is x = $9.085⇥ 2M . The initial price is set to the bid-ask midpoint, and
the inventory of shares is selected to approximate the slope of the book.

AMM/DEX can be nearly equivalent. This equivalence does not extend, however, to liquidity

suppliers.

2.2 Contrasting CEXs and DEXs for Liquidity Providers

DEX/AMM liquidity supply di↵er in many respects from CEX limit order books. The

orders resting in the CEX limit order book retain their separate identities, and are executed

in price-time priority. In contrast, executions against a DEX liquidity pool are handled pro

rata against all relevant liquidity providers in a homogeneous fashion. In a DEX, among

liquidity providers, there is no time priority. Liquidity providers are treated identically

whether they are the first investors contributing to the pool or the last.

Additionally, while liquidity provision is one-way on a CEX, it is two-directional in the

DEX AMM. On a CEX, a resting limit sell order provides liquidity to incoming buyers only.

In contrast, a DEX liquidity provider is potentially a counterparty to either buyers or sellers

(or both). The liquidity provider invests in the pool without knowing the direction of the
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incoming orders.

A final di↵erence between CEX and DEX liquidity provision concerns the persistence of

the liquidity-provision obligation. On a CEX limit order book, once a resting limit order is

executed, it no longer exists. There is no further presence or obligation. In contrast, on a

DEX, after any execution, liquidity does not disappear but rather is converted to the other

side of the market. In turn, the liquidity provision obligation on a DEX persists even after

a trade execution. For example, a buy of ETH against DAI at an ETH-DAI pool reduces

ETH liquidity but increases DAI liquidity since the buy entails the DEX giving ETH but

receiving DAI. The additional DAI holding becomes available to serve as liquidity for future

ETH sell orders and thus the liquidity providers supplying the initial ETH remain obliged

to provide liquidity albeit on the opposite side of the market.

2.3 Custody and Settlement

In traditional finance, “the trade” is but the first step toward the transfer of legal ownership

of the payment and the security. The transfer is complete only when the trade is settled,

which may require several days to plan and complete. Furthermore, for reasons of safety, ease

of record-keeping and so forth, most investors do not directly hold their traditional assets

(physically or electronically), preferring instead to use a custodian. Blockchains o↵er the

possibility of simplifying both custody and settlement. Firstly, cryptoassets can be directly

and securely held in wallets. Secondly, if trade and settlement both occur on the blockchain,

there is a sense in which they are equivalent and simultaneous. From this perspective, DEXs

are an attempt to realize this simplicity.

2.3.1 Traditional Assets

Ownership of an asset conveys rights to income, control and exchange. A shareholder ex-

ercises these rights when they collect a dividend, vote for a slate of directors, or transfer

ownership. Because these processes may require specialized attention and expertise, the

owner may delegate them to a custodian. For a retail investor, the custodian would typically

be their broker.9 An investment fund managed on behalf of others (such as a mutual fund or

9For investor protection, assets held in custody are segregated from the business assets of the broker. U.S.
retail customer holdings are also protected (up to $500,000) by the Small Investor Protection Corporation
(SIPC, similar to the FDIC for banks). SIPC protection extends to the customer assets but not losses due
to change in market value. Suppose a customer buys 1,000 shares of a stock at a market price of $100. If
the market price subsequently declines to $90, SIPC does not cover the $10,000 loss. If the investor’s shares
are surreptitiously transferred without the investor’s knowledge or authorization, though, the value of the
shares ($90,000) would be covered.
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pension fund) will usually have a custodian distinct from the investment manager and also

separate from the brokers that execute the fund’s trades.10

Morris (2022) describes settlement in U.S. equity and bond markets. A trade transfers

security ownership (and generally custody). Historically, this required movement of the

physical share certificate and/or registering the new owner on the books of the issuer. In

more recent times, paper certificates were dematerialized and replaced with electronic records

of ownership. In the United States, these records are centrally held at the Depository Trust

and Clearing Corporation (DTCC). The DTCC normally registers shares in the name of

a custodian, or, in the case of a retail account, the investor’s broker. Settlement timing

generally follows market conventions. Until recently the US stock market settled two days

after the trade (“T+2”), but on Tuesday, May 28, 2024 settlement changed to T+1.11,12

2.3.2 Cryptoasset CEXs

Establishing an account on a CEX that intermediates cryptoassets usually requires that the

customer deposit the cryptoasset and/or fiat with the exchange. The customer’s trades on

the CEX are settled against this account. In this arrangement, the exchange is acting as

the custodian, but one that may not be subject to the same oversight as a custodian for a

traditional asset. Withdrawals and transfers from the account may be subject to high fees,

delay, and inconvenience. Finally, unlike a US retail brokerage account, the CEX account is

not covered by SIPC protection.

2.3.3 DEXs

A DEX is restricted to intermediate assets settled directly on the blockchain on which that

DEX is deployed. This restriction is what enables a DEX to generate trade settlement si-

multaneous to trade execution. The computer program that defines a DEX liquidity pool

10An institutional custodian will also assist in arranging loans of securities, management of collateral,
settlement of foreign securities, and exchange of foreign currencies (Loader, 2019).

11Technically, settlement is negotiable. A buyer and seller might agree to settle immediately or perhaps ten
days hence, but this must be agreed upon prior to the trade. A bid, ask, or the acceptance of a bid or ask is
understood to be for standard settlement. For anything else, the trader (or their broker) would have to search
beforehand for an amenable counterparty. Or, to take a post-trade perspective, it might be thought that
once the necessary information was shared and confirmed, settlement could proceed immediately, possibly
prior to the market convention. In fact, suppose that, in the current T + 1 environment, a buyer and seller
have confirmed the terms immediately after the trade (on day T + 0). If the seller were to suggest settling
on T + 0 the buyer would have to make payment one day early (thereby losing one day’s interest). If the
buyer were to suggest settling on T + 0, the seller would lose any dividend paid on day T + 0. In short, it is
unlikely that both parties would be agreeable to an accelerated settlement.

12We omit here a discussion of clearing. Clearing comprises various precursors to settlement, such as:
confirming the identities of the buyer and seller (or their custodians), confirming the terms of trade, and
making arrangements for payment.
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usually entails a swap function that a user can execute in order to trade. The swap func-

tion directly re-assigns ownership of the assets being exchanged to the new owners thereby

achieving trade execution and settlement simultaneously.13

To understand this point, we o↵er an example. If Alice wants to buy 1 ETH from a

DEX on the Ethereum blockchain, she must first identify an asset settled on the Ethereum

blockchain that she would like to provide in return to receive the 1 ETH. Alice cannot make

her purchase in U.S. dollars because the currency is not settled on the Ethereum blockchain.

In practice, Alice would typically opt to use a stablecoin for her purchase. Alice could pay for

her 1 ETH with the DAI stablecoin. Then, to execute such a purchase, Alice would need to

swap DAI for ETH from an ETH-DAI liquidity pool where the execution would entail Alice

explicitly executing the swap function for the ETH-DAI pool. In response, the ETH-DAI

pool would price Alice’s trade based on its AMM as discussed earlier. Suppose that the

ETH-DAI pool prices Alice’s purchase of 1 ETH at 3000 DAI. In that case, ignoring fees, the

resulting swap function execution would simultaneously transfer 3000 DAI into the ETH-

DAI liquidity pool while transferring 1 ETH to Alice. The swap function execution alters

ownership of the relevant assets and thus settlement is simultaneous to trade execution.

When trading with a DEX, there are no intermediaries. The trader receives not only

ownership but also custody of the asset being purchased immediately and also loses custody

of the asset being used for the purchase immediately. In our example, Alice possesses custody

and ownership of the 3000 DAI only before her trade execution and receives custody and

ownership of the 1 ETH when her trade is executed.

2.4 Order Priority on CEXs vs. DEXs

CEX limit order books are arranged in price-time priority: orders are ranked first on price

and then on time of submission. Arriving orders are handled on a first-come, first-served

basis. Within its own system, a CEX can enforce these priorities. When there are multiple

CEXs, maintenance of priorities requires more coordination (as mandated, for example, in

US Reg NMS), price priority is maintained, but time priority is less certain.

13We refer to trade settlement as the first time at which the assets being exchanged have transferred based
on the canonical chain of the blockchain implementing the transfer. To provide more technical precision
within the specific context of the Ethereum blockchain, our notion of the canonical chain refers to the chain
selected by the LMD-GHOST protocol. A more conservative definition of trade settlement would entail
requiring that the assets being exchanged have transferred according to a chain that has achieved some
notion of “finalization” (e.g., via Casper FFG in Ethereum’s case). However, that stricter definition generally
implies a settlement delay of less than 20 minutes while introducing unnecessary technical complexity. For
the sake of exposition, we avoid discussions regarding finalization. The interested reader may consult John,
Monnot, Mueller, Saleh, and Schwarz-Schilling (2024) for comprehensive details regarding finalization and
other technical details of the Ethereum protocol.
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In sharp contrast to CEX ordering, the ordering of DEX executions is determined by

the sequence in which these executions are posted on the blockchain ledger. Executions are

finalized only when they are included in a block. All executions within a block are priced

sequentially so that ordering within a block has practical implications. If one execution

receives priority on a block relative to another execution, then the first execution on the

block a↵ects the asset holding of the liquidity pool before the second execution on the block.

In turn, due to AMM pricing, the price of each execution depends on the asset holding

directly before the execution. Therefore the order of executions within a block a↵ects the

pricing of each execution. This leads to various risks from profit-seeking entities. We explore

those risks in detail in Section 3.2.

The ordering of executions within a block is ultimately at the discretion of whichever

entity received the authority to post that block (the proposer). The proposer in turn relies

on another entity (a builder) to build the block (see Section 4.4), and the builder usually

determines block order so as to extract maximum value from users. The last quantity is

known as Maximal Extractable Value (MEV). This extraction of value by the builder arises

largely through priority fees whereby users pay a higher fee to the entity building the block

to receive priority execution within the block relative to other users (see Daian, Goldfeder,

Kell, Li, Zhao, Bentov, Breidenbach, and Juels 2020). This type of prioritization is distinct

from prioritization across blocks, a phenomenon that arises also in simpler blockchains such

as Bitcoin (see John, O’Hara, and Saleh 2022).

The referenced pay-for-priority mechanism might resemble practices of high frequency

traders (HFTs) in existing CEXs. In both cases, intermediaries are paying for speed. Beyond

that though, there are many substantive di↵erences. Most importantly, the expenditures of

HFTs represent fixed-cost investments in technology that the traders hope will enable them

to make higher trading profits on average (over a large population of stocks and over time).

The bidding for priority execution on a block, though, is essentially order-by-order. The

order-by-order auctions are likely to be more e�cient than averaged mechanisms, but only

in the narrow sense of maximally extracting value from users from the the more numerous

liquidity traders.14

3 Risks

A variety of novel risks arise for DEX users relative to CEX users. Some of these risks apply

generally for users of any smart contract, whereas other risks apply specifically to DEX users.

14Ernst, Spatt, and Sun (2022) note the contrast between order-by-order and averaged pricing in their
analysis of a recent SEC proposal for handling retail orders.
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We detail the former in Section 3.1 and the latter in Section 3.2.

3.1 Risks for Smart Contract Users

A DEX is a set of inter-related smart contracts where a smart contract is a computer program

deployed on a blockchain. DEXs are generally deployed on blockchains that are both public

and permissionless. Each of those features implies novel risks.

3.1.1 Risks Due to Public Nature of Blockchain

A blockchain is deemed public if any individual can read the contents of the blockchain.

Most blockchains, including most blockchains with DEXs, are public. As a consequence,

risks for public blockchains are also risks for DEXs.

The key problem arising from the public nature of blockchain for DEXs is that the

computer programs that define the DEX are public and thus their code is known to even

profit-seeking hackers.15 There are potentially hundreds of hackers simultaneously examining

DEX computer programs for vulnerabilities in order to steal user funds. To date, several

hacks have led to non-trivial losses fore DEX users (see, e.g., MarsNext 2023 and Haqshanas

2023).16

From a theoretical perspective, such hacks could be overcome with perfect code-writing

for smart contracts. However, such a standard for code writing is practically unrealistic.

Due to the volume of code involved in any sophisticated computer program, most if not all

such programs will likely possess vulnerabilities overlooked by the code writers. Thus, the

crucial di↵erence between the public blockchain context and a traditional centralized system

context is the extent to which hackers have access to the underlying code. From an economic

perspective, the ease of access to the code in the public blockchain context reduces the cost

of a hacker attack and thereby increases the risk of a hacker attack in equilibrium.

15As a technical aside, the DEX code is not necessarily publicly available in the format that it is initially
written (i.e., source code). Rather, the initial source code is compiled to bytecode before being released to the
public blockchain network. This caveat notwithstanding, major DEXs (e.g., Uniswap) generally release their
source code publicly (e.g., on www.etherscan.io). Moreover, that source code is usually verified against the
publicly available bytecode to confirm that it is the source code for the DEX.

16A DEX hack can arise due to portions of the associated smart contract code unintentionally including
opportunities for profit-seeking attackers to drain funds associated with the smart contract. A common
example of such a code vulnerability is the re-entrancy bug whereby a user is able to withdraw their funds
but “re-enter” the code infinitely, making the same withdrawal request each time as though the user had
never withdrawn their funds initially. In this way, the user can drain all funds of the smart contract. The
interested reader may consult Liu, Liu, Cao, Chen, Chen, and Roscoe (2018) for details.
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3.1.2 Risks Due to Permissionless Nature of Blockchain

A blockchain is deemed permissionless if an agent requires no special permission to interact 
with it. Most prominent blockchains, including most blockchains with DEXs, are permis-

sionless. In turn, risks for permissionless blockchains are also risks for DEXs.
A key feature of a permissionless blockchain is that user identities are not managed 

by a centralized entity. That an individual requires no permission to interact with the 
blockchain means that any individual can create an identity understood by the blockchain 
without approval from any centralized authority. In practice, identities within permission-

less blockchains are generated through cryptographic systems in a manner that is not only 
independent of centralized entities but also independent of any particular blockchain. The 
Ethereum blockchain, for example, relies on a cryptographic system known as the Ellip-
tic Curve Digital Signature Algorithm (ECDSA), that not only operates independently of 
Ethereum but also predates all modern blockchains (see Johnson, Menezes, and Vanstone 
2001).

Since blockchain user identities exist independently of any centralized entity, those user 
identities must be managed directly by users. This is an advantage in that users maintain 
direct custody of any assets held on the blockchain. However, it also introduces a novel risk 
because mismanagement of a user identity could lead to a financial loss that cannot be 
corrected by any centralized authority. Cryptographic systems involve a private key that 
functions as a password for the user identity; a user can misplace their private key which 
would cause them to lose access to their blockchain identity and thus all assets held under 
that identity. In a traditional centralized context, the same user could reset their password 
through their centralized intermediary. However, in the context of a DEX, a user providing 
inventory to the DEX would lose all associated financial claims if they misplace their private 
key because the user would no longer be able to demonstrate that they are the user who 
provided the inventory. Furthermore, in this case, with no centralized entity that could reset 
the private key, the user’s loss from misplacing their private key would be irreversible.17

Custody is a significant risk and is the reason why many choose to interact with central-
ized exchanges like Coinbase, Gemini or Kraken where custody is delegated. Indeed, custody 
also explains the popularity of the cryptoasset ETFs where the purchaser does not need to 
worry about managing private keys. However, there are many ways to reduce custody risk

17The relationship between a user’s public identity and their private key is publicly known and there 
exists an algorithm to recover a user’s private key from their public identity. However, the referenced 
algorithm for recovering a user’s private key is practically infeasible given modern technology. Although 
advances in quantum computing will likely make the process of recovering ECDSA private keys feasible, 
quantum-resistant cryptographic systems are also likely to arise. This research is usually called post-quantum 
cryptography or PQC.

15



in the absence of a centralized entity. One popular method is “key splitting”, by which a

key is divided into three or more pieces. Any two pieces can be used to reconstitute the

original private key. A user might delegate one piece to a custodian. Even if the custodian

is hacked, the single piece is useless. The user might keep the other two pieces. If one is

lost, reconstituting the key with the custodian’s piece is straightforward.

3.2 Risks for DEX Users

An especially salient risk for DEX users is front-running, an activity that occurs frequently

and regularly on DEXs without any intervention from governments.18 On a DEX front-

running might arise from three considerations: (1) blockchains update only at discrete time

intervals, (2) many actions submitted to a blockchain are publicly observable when not yet

posted to the blockchain, and (3) actions posted to a blockchain are not typically posted

with time priority. An action being posted to a blockchain only at discrete time intervals and

that action being publicly visible while pending implies that a blockchain user can observe

that action prior to it being posted to the blockchain. Then, since actions are not posted

to the blockchain with time priority, a user can take a consequent action after observing a

prior action in such a way that her consequent action is processed prior to the earlier action

- i.e., a user can front-run an earlier action. In practice, front-running can pose risks for

both traders and liquidity providers. We discuss front-running related to trading in Section

3.2.1 and front-running relating to liquidity provision in Section 3.2.2.

To provide detail on actions being posted to a blockchain, it is important to understand

that a blockchain is a distributed system that involves many nodes. Moreover, updates to

the blockchain are allowed only at certain times, and the authority to update at a particular

time is generally allocated on a probabilistic basis to a single node (see John et al. 2024). In

turn, to receive the fastest possible service time, a user submitting an action would prefer

the action be received by all nodes in the network, ensuring that the action is known to the

node that can next update the blockchain. To achieve timeliness, blockchain nodes follow

a gossip protocol whereby nodes rebroadcast actions to a random set of other nodes, until

the action is disseminated to all nodes in the network. A user seeking to have their action

posted to the blockchain generally submits that action to only a few nodes (sometimes only

one) and the action is eventually observed by the full network due to the gossip protocol.

18In one recent case, an SEC complaint defines front-running as “trading ahead of large, nonpublic orders of
market participants to benefit from the market impact of those large orders,” (U.S. Securities and Exchange
Commission, 2022a). More generally, the legality of the activity may turn on the nature of the relationships
(Linehan, Heath, and Shulkin, 2021). For example, should a block-builder be considered an agent for the
trading parties, or is the relationship “arms-length?” An agency duty normally prohibits front-running; an
arms-length separation might a↵ord greater leeway.
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Crucially, an action received by a node cannot be posted immediately to the blockchain.

For that reason, until a pending action is posted to the blockchain, it is stored locally by

each node in a structure known as a memory pool. Once a node observes a block, that node

removes the actions within the observed block from their memory pool.

3.2.1 Trader Front-Running Risk: “Sandwich Attacks”

As discussed in Section 2.4, an order to trade is executed only when it is included in an

update of the underlying blockchain. In turn, an order to trade can be front-run by an order

submitted later in time so long as the later order is included on the blockchain with a higher

priority than the earlier order. Prior to being included in an update to the blockchain, an

order can be publicly visible. As a consequence, an order later in time can be constructed

so that it receives priority over the initial order thereby front-running the earlier order.

For a concrete example, we describe front-running a trading order submitted to a DEX on

the Ethereum blockchain. First, the Ethereum blockchain updates only at regular intervals

of 12 seconds. In turn, if a blockchain user, Alice, submits a trading order one second

after the most recent Ethereum update, then her order cannot be posted to the Ethereum

blockchain for another 11 seconds, although her order would be publicly visible for those 11

seconds. Thus, during those 11 seconds, another user, Bob, could submit a trading order

for the same liquidity pool and in such a way that Bob’s order receives priority over Alice’s

order in terms of the sequence of the orders being posted to the Ethereum blockchain. This

course of action would constitute Bob front-running Alice.

Under certain conditions, front-running a trade can be conducted such that it is always

profitable (see, e.g., Park 2023). This is important because if any blockchain user can conduct

a front-run and front-running is profitable, then front-running is an inevitable outcome for

a submitted DEX order. Indeed, front-running can always be made profitable in the specific

case of a DEX with a CPAMM and no fees. So, if Alice places an order to buy �x > 0 ETH

units from an ETH-DAI liquidity pool with a CPAMM, then, absent fees, it will always be

profitable for Bob to execute a version of front-running known as a “sandwich” attack.

In a “sandwich” attack, Bob not only submits an order that receives priority ahead of

Alice’s order (front-running) but also submits an order that is executed directly after Alice’s

order (back-running), thereby sandwiching Alice’s order between two orders. For a CPAMM

with no fees (liquidity or gas), it is always profitable for Bob to execute a sandwich attack

whereby he front-runs Alice’s order to buy �x ETH units with an identical order to buy �x

ETH units and then back-runs Alice’s order with an exactly o↵-setting order to sell �x ETH

units. The CPAMM ensures that the ETH-DAI price decreases with ETH units held by
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the pool and increases with DAI units held by the pool.19 In turn, Bob’s front-run order to

buy �x ETH units increases the ETH-DAI price for Alice’s trade but then Bob’s back-run

order to sell �x ETH units receives the same elevated ETH-DAI price of Alice’s order because

Bob’s back-run trade exactly o↵sets Alice’s order. Bob’s order to buy �x ETH units would

face some ETH-DAI price P0 whereas Alice’s following order to buy �x ETH units would

face an ETH-DAI price P1 > P0 because it is processed after Bob’s order to buy �x ETH and

because Bob’s order reduces the liquidity pool’s ETH holding while increasing the liquidity

pool’s DAI holding. Then, since Bob’s order to sell �x ETH units exactly o↵sets Alice’s buy

order of �x ETH units, it incurs the same price as Alice’s trade, P1 > P0. Consequently,

absent fees, Bob receives a guaranteed strictly positive profit of (P1 � P0) · �x > 0 from the

described sandwich attack.

In response to concerns regarding front-running of trading orders, a class of intermediaries

called private pools has developed. A private pool is a known intermediary that accepts orders

and posts those orders to the blockchain while ensuring the orders will not be front-run.20

Capponi, Jia, and Wang (2023a) put forth a comprehensive economic analysis of private

pools and find that although private pools can ameliorate front-running trading risk, they

do not fully resolve the risk in equilibrium. By submitting orders through a private pool,

execution risk arises because the private pool is not a centralized entity in control of the

blockchain and thus the private pool may not be able to post to the blockchain in a timely

manner. Capponi et al. (2023a) demonstrate that, in equilibrium, some users prefer to bear

the front-running risk from submitting an order to the blockchain network directly rather

than bearing the execution risk from a private pool.

3.2.2 Liquidity Provider Front-Running Risk: Just-In-Time Liquidity

Within the context of blockchain, front-running extends beyond a user constructing a trad-

ing order that receives priority in terms of posting to the blockchain over a trading order

submitted earlier. In particular, front-running can entail a user taking an action to provide

liquidity such that the liquidity provision receives priority over a trading order submitted ear-

lier in time. This type of front-running, Just-In-Time (JIT) Liquidity, and it is detrimental

to other liquidity providers (see Capponi, Jia, and Zhu 2023b).

When a trading order is submitted, the order becomes public even though it is not posted

19Recall that the ETH-DAI price is given explicitly by y
x��x

where y > 0 denotes the DAI units held by
the pool and x > 0 denotes the ETH units held by the pool. By direct verification, the ETH-DAI price,

y
x��x

increases in the DAI units, y, (i.e., @
@y [

y
x��x

] = 1
x��x

> 0) and decreases in the ETH units, x (i.e.,
@
@x [

y
x��x

] = � y
(x��x)2

< 0).
20There is circumstantial evidence that private pools exploit private order flow for profit (see Yaish, Dotan,

Qin, Zohar, and Gervais 2023).
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to the blockchain immediately. Then, while the trading order is pending, another user can

observe this order and front-run it by taking an action to provide liquidity such that the

liquidity provision action is posted to the blockchain directly before the trading order. In

such a case, the liquidity provision action entails providing inventory to the specific liquidity

pool against which the trading order is executed. The purpose of this type of front-running

is for the front-running user to accrue trading fee revenues while avoiding the risks faced

by other liquidity providers. Since liquidity providers at a liquidity pool are owners of

the inventory at the liquidity pool, they incur the price risk associated with fluctuations

in the price of their inventory. The front-running user largely avoids this price risk by

providing liquidity specifically for a single trade and then withdrawing liquidity immediately

thereafter. This type of liquidity provision not only directly front-runs a trading order with a

liquidity provision action but also directly back-runs the same trading order with a liquidity

withdrawal action that removes all the liquidity provided earlier. Thus, the front-running

user’s liquidity is used only for the trading order and is otherwise insulated from price risk.

Most liquidity providers are passive liquidity providers and leave their inventory at a liquidity

pool for a long period. As such, liquidity provision front-running, or JIT liquidity, reduces

the accrued fee revenue of most liquidity providers.

4 Challenges of Regulation

Investor protection of DEX traders and DEX liquidity providers is a legitimate concern for

regulators. Traders and liquidity providers at a DEX face various risks from other profit-

seeking DEX users. In turn, it would be ideal for regulation to ameliorate those risks.

Nonetheless, any such regulatory policy, should be sensitive to the specific challenges for

regulation in the blockchain context. To that end, we describe the most fundamental of

those challenges. Our key point is that a DEX cannot be regulated as a centralized exchange

due to the specific institutional details of blockchain technology.21

We discuss separately challenges arising from regulating DEX users and from regulating

DEXs in Section 4.1 and Section 4.2 respectively. Then, in Section 4.4, we discuss the

challenges associated with regulating the entities that post orders to the blockchain.

21This point has also been made more generally for decentralized finance applications by the International
Monetary Fund (IMF): “In these contexts, the lack of intermediaries means that traditional AML/CFT
regulation, in which AML/CFT requirements are imposed on the private sector and compliance is monitored
by supervisors, cannot be applied” (International Monetary Fund, 2023).
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4.1 Regulating DEX Users

The fundamental constraint to regulating a DEX user, whether a trader or a liquidity

provider, is that access to a DEX does not require on-boarding and thus identifiable in-

formation regarding a DEX user is not generally available. In turn, there are non-trivial

di�culties associated with imposing sanctions on a DEX user. For a user, interacting with a

DEX requires only an identity recognizable by the blockchain on which the DEX is deployed.

Moreover, as discussed in Section 3.1.2, an identity on a particular blockchain is not spe-

cific to that blockchain or even to blockchains more generally. Rather, blockchain identities

are generated through cryptographic systems that are entirely independent of blockchain

technology. Importantly, identities within a cryptographic system can be generated by an

individual through isolated mathematical computations thereby making detection of gen-

erating such identities impossible in general. Then, since blockchain identities cannot be

detected perfectly and since DEX users are known only through their blockchain identities,

regulating DEX users is di�cult because identifiable information regarding a user is not

generally available. As a caveat, regulators may be able to uncover DEX user identities

through blockchain forensic analysis (see, e.g., Cong, Harvey, Rabetti, and Wu 2023), but

the need for such analysis represents a substantial increase in regulatory costs relative to

a centralized exchange. Indeed, it is an open question as to whether such heightened costs

render regulating DEX users directly unrealistic.

One approach to address the lack of identifiable information for a DEX user is for the DEX

code to implement white-listing. In particular, the DEX code could theoretically restrict

access to the DEX’s trading functions to only those users who have undergone identity

verification. While this solution may seem appealing, it nonetheless possesses a fundamental

problem in that it assumes the existence of a centralized entity that will provide the identity

verification service. A DEX is ultimately just computer code deployed on a blockchain

and any entity can deploy such code without remaining available to support the application

thereafter. We discuss this point in more detail in Section 4.2 because it relates to regulating

the DEX itself.

4.2 Regulating DEXs

Given the di�culties of regulating DEX users in general, a regulator may prefer to regulate

the DEX itself. This approach, however, reveals two problems. The first which also arises

in the previous white-listing discussion, is that this approach assumes the existence of a

centralized entity that may not exist. The second is that, even if such a centralized entity

does exist, then imposing regulation on this entity may cause the entity to suspend its
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operation which would then increase DEX user risks.

Regarding the first problem, again, any entity can deploy a DEX to a blockchain. The

DEX smart contract code distributed by software development companies rarely creates a

legal relationship between the code and the developer (Cohen, Strong, Lewin, and Chen,

2022). In particular, the developer is generally under no legal obligation to support the

code, although they usually do so at least initially. Moreover, as a further complication,

an entity deploying a DEX need not identify itself since deploying a DEX requires only

possessing an identity recognizable by the particular blockchain. As mentioned in Section

4.1, such an identity can be generated through isolated mathematical computations thereby

implying that an entity can, without providing any traceable information, deploy a DEX

and then cease to operate.22 As a consequence, any regulatory policy that relies upon the

existence of a centralized entity is, by construction, limited.

As for the second problem, even in DEX deployments that feature a centralized entity

supporting the DEX, regulation of that centralized entity may not be optimal. In particular,

onerous regulations could lead such an entity to cease operation, a course of action that

would then exacerbate risks for DEX users. A well-meaning entity would typically directly

address some of the risks discussed earlier (e.g., revising code to mitigate hacks) thereby

implying that the absence of such an entity would amplify DEX user risks. More concretely,

a lab often supports a given DEX (e.g., Uniswap Labs for the Uniswap DEX), but the DEX

code nonetheless exists independently of the supporting lab. Excess regulation could drive

the lab to suspend its operations, but that would not interfere with the investors’ ability to

trade with the DEX through its code.

The SEC seems to favor direct enforcement actions against the DEXs. On April 10,

2024, the SEC delivered a Wells Notice to Uniswap Labs. While the content of the Wells

Notice is not public, Uniswap Labs has stated that it will fight saying “this is the latest

political e↵ort to target even the best actors in crypto like Uniswap and Coinbase.” Uniswap

Labs has released a lengthy response to the Wells Notice (see https://blog.uniswap.

org/wells-notice-response.pdf). Trading volumes on Uniswap were approximately $10
billion per week before Uniswap Labs received a Wells Notice and similar trading volumes

have persisted since. Uniswap had approximately $5 billion of liquidity in its liquidity pools

prior to Uniswap Labs receiving the Wells Notice and still maintains over $5 billion of

liquidity as of May 30, 2024.

22As an aside, actions on a blockchain (e.g., deploying a DEX) generally require paying fees in terms of
the unit of account of the blockchain (e.g., ETH for Ethereum). In turn, a DEX deployment on Ethereum
would require first acquiring ETH, and that transaction could ease the task of tracing the user deploying
the DEX.
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4.3 Regulating Market Places

U.S. securities exchanges and alternative trading systems (ATSs, a less-restrictive classifica-

tion) are regulated by the SEC. In the 1934 Securities and Exchange Act, the original (and

still current) text states, “[The] term ‘exchange’ means any organization, association, or

group of persons, whether incorporated or unincorporated, which constitutes, maintains, or

provides a market place or facilities for bringing together purchasers and sellers of securities

or for otherwise performing with respect to securities the functions commonly performed by

a stock exchange as that term is generally understood, and includes the market place and

the market facilities maintained by such exchange,” (15 U.S.C. § 78c(a)(1); full text available
at https://www.law.cornell.edu/uscode/text/15/78c).

The SEC’s current position on the applicability of this definition to DEXs is interwo-

ven with recent rule proposals on non-crypto markets. As of this writing, the most recent

discussion is (U.S. Securities and Exchange Commission, 2023, the “Reopening Release”).23

Section II.B of the Reopening Release (“Exchange Activity . . . Using ‘DeFi’ systems”)

summarizes the SEC’s views, the positions expressed in comment letters, and the SEC’s

responses. Our general concern regarding the absence of a centralized entity that might be

regulated appears in some of the letters.

In response the SEC notes that although many current exchanges are operated by a

single organization, the statutory definition of an exchange does not require the existence of

a single entity: a group of persons su�ces. Specifically:

The group of persons that constitutes, maintains, or provides a market place or

facilities for bringing together buyers and sellers of securities or performs with

23In 2020 the SEC released a rule proposal concerning alternative trading systems (ATSs) (U.S. Securities
and Exchange Commission, 2020). The proposal included a Concept Release (essentially a broad overview)
that discussed the bond market, noting in particular the diversity of trading protocols and variation in the
regulation of trading platforms and requesting comment on approaches to regulatory harmonization. Based
in part on the received comments, the SEC released in 2022 a new proposal (U.S. Securities and Exchange
Commission, 2022b) that considered the definitions of exchanges and ATSs as they might apply to “U.S.
Treasury and Agency Securities, National Market System (NMS) Stocks, and Other Securities”. Some of
the comments received on the 2022 proposal sought information about how the proposed rules might apply
to trading systems for cryptoasset securities. The 2023 Reopening Release supplemented the 2022 proposal
with a discussion of crypto markets (including decentralized developments) and where these markets might
fall under the proposed regulatory framework (U.S. Securities and Exchange Commission, 2023). To clarify
one aspect of the discussion, the 2022 proposal contains numerous references to a new term, “Communication
Protocol Systems” (upper case). The fact sheet for the proposal describes these as “[trading] systems that
o↵er the use of non-firm trading interest and provide protocols to bring together buyers and sellers of
securities.” A reference early in the proposal notes that they “. . . perform similar market place functions of
bringing together buyers and sellers as registered exchanges and ATSs.” These descriptions suggested possible
consideration of a new regulatory classification, and references to “Communication Protocol Systems” appear
widely in subsequent comment letters and various non-SEC material. The SEC dropped the term, however,
in the Reopening Release, in favor of the more generic “communications protocols” (lower case).
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respect to securities the functions commonly performed by a stock exchange, and

is thus an exchange, would collectively have the responsibility for compliance

with federal securities laws. A group of persons must consider how they will

comply with the Exchange Act registration requirements given their activities,

which can include, but are not limited to, designating a member of the group,

to register the group or forming an organization to register as an exchange or,

to operate as an ATS, registering as a broker-dealer and becoming a member

of Financial Industry Regulatory Authority (“FINRA”) to ensure compliance.

(U.S. Securities and Exchange Commission, 2023, p. 26)

Although this passage authoritatively asserts the necessity of regulation, the question of

feasibility remains unsettled.

The National Market System for U.S. equities comprises multiple exchanges and numer-

ous ATSs that are subject to di↵erent regulatory obligations. A broker receiving a customer

order usually has considerable flexibility in where they route the order (exchange, ATS, or

dealer). The broker’s agency duty of best execution nevertheless imposes a responsibility

to monitor and evaluate the consequences of their choices. Crypto market structure might

evolve along similar lines to construct a landscape of CEXs, DEXs, and other venues. Bro-

ker monitoring of order handling and execution outcomes might substitute in part for more

direct regulation.

4.4 Regulating Block Proposers

A potential alternative approach to regulating DEX activity is to regulate posting to the

underlying blockchain more generally. In theory, such regulation could be imposed on block

proposers, the entities with the authority to add blocks to the blockchain. However, block

proposers generally do not construct blocks, relying instead on entities known as block

builders (Heimbach, Ki↵er, Ferreira Torres, and Wattenhofer 2023). Moreover, the inter-

action between block builders and block proposers is intermediated by entities known as

relays. Regulators may consider regulating any or all of these three types of entities involved

in block production.

For context on block production, the Ethereum blockchain partitions time into 12 second

periods known as slots. For each slot, a single entity is selected as a block proposer according

to a selection protocol known as Proof-of-Stake (see Saleh 2021). Proof-of-Stake requires

that only one block per slot can be added to the blockchain and grants a monopoly right

to the selected block proposer as the only entity with the authority to add that block. In

practice, the selected block proposer does not construct the block and instead sells their
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block creation monopoly right to a block builder in a competitive bidding process.24 Block

builders participate in the competitive bidding process because each block builder specializes

in creating blocks that specifically transfer value to that block builder. These value transfers,

known broadly as Maximal Extractable Value (MEV), are frequently due to activities such

as front-running (see Section 3.2.1) but can also be accrued through voluntary fees paid for

priority processing within a block. The value is transferred to a specific block builder only

if that block builder’s block is added to the blockchain and thus block builders are willing

to engage in a competitive bidding process to have their blocks included in the blockchain

(see Schwarz-Schilling, Saleh, Thiery, Pan, Shah, and Monnot 2023). A recent estimate

indicates MEV of approximately $846 million per year and attributes roughly $216 million

of that to sandwich attacks.25 MEV has generally increased over time and thus the estimated

magnitudes may significantly understate MEV going forward.

Whichever block is added to the blockchain in a given slot must involve a cryptographic

signature from the block proposer selected in that slot by the Proof-of-Stake protocol. This

cryptographic signature requirement is the enforcement mechanism for the block proposer

having a monopoly right to add a block in a selected slot. In turn, the process of a block

builder buying the block proposer’s monopoly block creation right is not straight-forward

and requires a mediator, a role fulfilled by a relay. If a block builder provides blocks directly

to a block proposer, then the block proposer could steal the MEV that the block builder had

transferred to themselves in the block builder’s block. If the block proposer could simply

construct a block identical to that of the block builder but replace any action involving

the block builder with an identical action involving the block proposer. For example, the

block proposer could replace any front-running trades by the block proposer with identical

front-running trades by the block proposer. In this way, the block proposer would accrue all

the MEV received by the block builder in the block produced by the block builder, but the

block builder would receive nothing because the block proposer would construct their own

block rather than use the block builder’s block.

A relay resolves this problem by receiving blocks from block builders and then passing

onto the block proposer only the block headers and the block builder bids.26 A block header

24The auction process can be viewed in real time at https://payload.de/data/.
25Our MEV estimates rely on data from www.libmev.com as of June 5, 2024. As of June 5, 2024, https:

//www.libmev.com/ reports MEV of 20,163 ETH over the past 30 days. Then, taking an estimate of 3500
USD per ETH, the approximate annual MEV is 20,163 ETH/ month ⇥ 12 months/ year ⇥ $ 3500/ ETH =
$ 846 million/ year. With regard to the estimate of MEV due to sandwich attacks, www.libmev.com reports
$ 18 million for the past 30 days from June 5, 2024, indicating an annual rate of $ 18 million/ month ⇥ 12
months/ year = $216 million.

26In theory, a relay could defraud either the block builder or the block proposer. For that reason, block
builders and block proposers interact only with relays whom they trust.
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summarizes the block content but does not directly reveal the block’s content. As a conse-

quence, the block proposer must select a winning bid without observing the winning block’s

content. More formally, the block proposer selects a winning bid by signing the associated

block header and sending that signed block header to the relay. The act of the block proposer

signing a block header allows the relay to combine the block header with the block content

and then release it to the full blockchain network to be added to the blockchain. In particu-

lar, the block proposer’s signature transfers their monopoly right to the particular block and

thus the block proposer cannot propose a distinct block after signing a block header without

facing a penalty (see John et al. 2024 for details). The block builder’s bid is typically paid as

a transaction on the block builder’s block so that the block proposer is paid once the block

builder’s block is added to the blockchain.27

From a practical perspective, how to sanction block proposers, block builders or relays

is unclear since none of these entities are required to provide identifiable information to

participate in the block creation process. To that end, while the US Treasury Department’s

O�ce of Foreign Assets Control (OFAC) maintains a list of sanctioned Ethereum identities,

those sanctioned identities can still have their actions posted on the Ethereum blockchain

in practice. Heimbach et al. (2023) find that the share of blocks produced by non-OFAC

compliant relays has increased over the past few years to approximately 50% in March

2023. Heimbach et al. (2023) also find that some relays that claim OFAC-compliance nev-

ertheless occasionally produce blocks that violate OFAC sanctions. In fact, the proportion

of Ethereum blocks including activity by OFAC-sanctioned Ethereum identities exceeds 1%.

Wahrstätter, Ernstberger, Yaish, Zhou, Qin, Tsuchiya, Steinhorst, Svetinovic, Christin, Bar-

czentewicz, et al. (2023) find that 46% of block builders are OFAC compliant, but this level

of OFAC compliance is not e↵ective at censoring transactions. In particular, transactions

by OFAC sanctioned entities are only delayed but not censored.

4.5 The Settlement Process: Regulatory Parallels from Tradi-

tional Markets

Starting from a set of trades that have been submitted for inclusion in a block, builders,

relays, proposers, and other entities (described in section 5.2.2) interact to determine the

order in which the submissions will be processed as the block is assembled and, as soon as

the block is proposed and accepted, settled. Di↵erent orderings can e↵ectively change the

27To provide more context on payo↵s, block proposers receive the winning block builder’s bid and block
rewards with the latter being seigniorage revenues from newly created units of Ethereum’s native asset,
ether. As a contrast, block builders receive any MEV that they extract (through priority fees or actions such
as front-running) minus the bid paid to the block proposer.
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identities of the participants trading and settling in a given slot. Relative to participants’

expectations when their trades were submitted, these reorderings can break or reprice their

trades. Social welfare can increase or decrease. The addition of the new block represents

a market clearing (not necessarily with a single or unique price). Builders might bring to

this clearing additional participants or determine matchings with higher trade surpluses,

increasing total welfare. Some agents, though, might (via sandwich attacks, front-running,

and so forth) interject themselves as intermediaries that extract for themselves not just

newly-created surpluses but pre-existing surpluses as well.

These tensions are not unique to crypto markets, but exist in traditional markets as well.

The main di↵erence is that the reorderings, displacements, and so forth occur earlier in the

trading process through practices known as interpositioning, spoofing, and triggering.

Interpositioning involves a “stepping between” a natural buyer and seller to extract rents.

An SEC enforcement case against an NYSE specialist (U.S. Securities and Exchange Com-

mission, 2004a) explains:

To illustrate: if market orders were present on both sides of the market and

simultaneously visible on the [limit order book], and the quote constituted a bid

for $25.00 (purchase price) and an ask of $25.01 (sale price), the specialist was

obligated to pair the market orders at $25.00 or $25.01. Instead, the specialist

improperly interpositioned [their] dealer account by buying from the sellers at

$25.00, and then selling to the buyers at $25.01 and capturing the one-cent spread.

The specialist in this case is analogous to a builder since they are aware of the orders and

the state of the market and can propose an alternative to the natural matching that enriches

themselves.

Spoofing involves making a spurious bid or o↵er often with the intent of establishing

a reference price for a subsequent trade. In one such case (U.S. Securities and Exchange

Commission, 2004b), the SEC noted,

***’s conduct, known in the industry as “spoofing,” is illustrated by the following

example:

• 12:27:11 - *** placed an order to sell short 100 shares of the target security

at $15.80 ... The order lowered the [market ask] price from $16.16 to $15.80;

• 12:27:13 - *** entered a limit order to buy [emphasis ours] 500 shares of the

target security at a price of $15.80, and the order was immediately executed

[by a market-maker who guaranteed execution at the market ask].

• 12:27:28 - *** cancelled his sell order.
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By improperly altering the public quote to obtain a better execution price for

the buy order, *** was unjustly enriched in the amount of $180 [= ($16.16 �
$15.80)⇥ 500 shares]

This example lacks an exact correspondence on a DEX, because DEXs don’t have bids

and asks. Moving the reference price to obtain favorable executions on subsequent orders,

however, is the essence of a sandwich attack.

The final instance, triggering, involves a special type of order. “Stop” orders submitted

to a market are flagged so that their display and execution will be delayed until the last-sale

price passes through some preset threshold (the stop price). If there are many such orders in

the same direction and with stop prices close together, the triggering of one order may cause

a trade that triggers another, and so on, cascading and generating a strong price. In the

foreign exchange market, “[the UK Financial Conduct Authority] found that traders were

sharing details about their [customers’] stop-loss orders with traders at other firms. Both

would then trade in a manner designed to change the spot FX rate, and thus trigger the

stop-loss order,” (Kuhn and Bushnell, undated). As in the other cases, knowledge of a set

of orders together with the ability to interject one’s own orders can a↵ect outcomes.

In these examples, the malefactors generated something analogous to MEV. They would

presumably surrender some portion of the gains to ensure that their transactions would be

settled on their terms. The resulting outcomes might be - in a narrow sense, at least -

informationally e�cient and pareto optimal. Yet in all cases, the practices are viewed as

fraudulent.

5 Evolution of Decentralized Exchange

DEXs represent the most recent evolution in the more general concept of peer-to-peer ex-

change. In a general sense, a decentralized exchange of assets is any peer-to-peer transfer of

assets without an intermediary. Barter is an example of peer-to-peer exchange. Any modern

exchange of an asset for physical fiat currency is another form of peer-to-peer exchange.28 In

this section we examine the broader concept of decentralized exchange and discuss the role

played by DEXs in the evolution of this concept.

5.1 From Decentralized Exchange to DEXs

The simplest form of decentralized exchange is a peer-to-peer cash payment. While a peer-

to-peer cash payment may be desirable because it does not require an intermediary, it is

28See Harvey, Ramachandran, and Santoro (2021) for a historical perspective on decentralized exchange.
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nonetheless ine�cient for large value transfers and therefore impractical for many payments.

Holding cash involves an opportunity cost of investment and also an inconvenience of needing

to store the physical cash. These costs increase with the value being transferred and thus

large cash payments are not practical.

Ultimately, the appeal of peer-to-peer decentralized exchange coupled with the imprac-

ticality of using physical cash for such exchange motivated the creation of the Bitcoin

blockchain (Nakamoto, 2008). To that end, the Bitcoin blockchain facilitates digital peer-

to-peer payments thereby o↵ering a practical method for large decentralized value transfers.

Bitcoin facilitates such peer-to-peer payments by creating an asset that settles directly on

the Bitcoin blockchain, BTC, and by allowing users to transfer this asset peer-to-peer with-

out an intermediary. Any amount of value therefore can be transferred peer-to-peer over the

Bitcoin blockchain so long as the value is sent in the form of BTC.

While Bitcoin made an important first step by facilitating decentralized peer-to-peer

payments, it did not enable a two-legged decentralized exchange of assets in which a user

both sends and receives an asset. While Bitcoin enables a user to send value, it does not allow

the user to send value in return for another asset of value. Rather, this type of decentralized

exchange is the innovation characterizing DEXs. DEXs permit a user to acquire any asset

settled on a blockchain in return for a payment in terms of any other asset settled on a

blockchain. DEXs implement the exchange without an intermediary and thus the exchange

is decentralized.

While DEXs do not involve intermediaries, they nonetheless do not implement direct

peer-to-peer exchanges. A DEX liquidity pool is a smart contract, and DEX trades occur

at the liquidity pool because users deposits liquidity at the smart contract and traders then

swap assets with the smart contract (e.g., ETH for DAI). Thus, DEX is facilitated through

peer-to-smart contract exchanges and not through direct peer-to-peer exchanges. Smart

contracts have no discretion to act and simply execute their defining code logic. As such,

while DEX trades involve no intermediary and are decentralized exchanges, they are not

peer-to-peer.

5.2 Evolution of DEXs

DEXs are not a static technology. In fact, DEXs have evolved significantly since their

inception. On one hand, the design of individual DEXs have advanced. On the other hand,

the ecosystem of DEXs has also evolved with interactions among DEXs. We will consider

each of these points in turn.
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5.2.1 Evolution of DEX Design

Our discussion of the evolution of DEX design focuses on the most prominent DEX, Uniswap.

Uniswap’s first prominent deployment, Uniswap v2, is a simple construction, featuring a sin-

gle liquidity pool for each asset pair and a constant product AMM for pricing within each

liquidity pool. Furthermore, Uniswap v2 features uniform liquidity provision. This means

that any liquidity provided to a liquidity pool is used uniformly for all trades at that liquid-

ity pool irrespective of the execution price. In contrast, Uniswap’s subsequent deployment,

Uniswap v3, allows for concentrated liquidity provision, whereby a liquidity provider may

specify that the assets they provide would be used only for trades executed within specific

price ranges (Hasbrouck et al., 2023). The motivation behind allowing for concentrated liq-

uidity is that Uniswap v2’s uniform liquidity e↵ectively dispersed liquidity across all price

levels, even price levels unlikely to be reached. Still, Uniswap v3’s concentrated liquidity

explicitly enables liquidity providers to focus their liquidity near current prices, thereby

facilitating higher e↵ective liquidity for trading even when liquidity providers invest an iden-

tical total level of capital.

Uniswap has recently launched Uniswap X, a web interface that seeks to facilitate better

pricing for traders. Uniswap X combines a router with the opportunity for market-makers

to fill each order. A router is software that seeks to determine the lowest cost execution

for a trade across many liquidity pools, and Uniswap X’s router specifically seeks the lowest

cost execution across all Uniswap liquidity pools (both v2 and v3). In contrast, the process

that involves market makers begins with a Request For Quote (RFQ) from a whitelisted set

of market makers. The most competitive quote from the RFQ is compared to the lowest

cost execution through Uniswap liquidity pools determined by the router. If the router

execution cost is lower than the RFQ’s most competitive quote, then the order is executed

directly through the pools specified by the router. Otherwise, a competitive descending price

auction process is triggered in which the prices descend block by block over the course of the

auction. This descending price auction relates to the RFQ only because the descending prices

associated with each block are determined by the RFQ results. The auction is competitive

because any market maker (even those not white-listed) can seek to fill the order on any

block during the auction so long as the order has not already been filled. Since any market

maker can fill the order, multiple market makers may seek to fill the order on the same block.

The auction price descends block-by-block so that the execution price is fixed for a given

block. In turn, multiple market makers competing to fill on the same block do not compete

on price; rather, they compete for priority within the block by o↵ering higher fees to the

block builder with only the market-maker receiving the highest priority within the block

filling the order. The block-by-block descending price auction has a block limit (e↵ectively a
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time limit), and the order is left unfilled if no market-maker meets the required fixed price for 
any block during the auction. If the descending price auction fails, the trader may re-start 
the process by querying the Uniswap X interface again.

Uniswap is planning a new deployment, Uniswap v4. Uniswap 4’s primary innovation 
is the incorporation of hooks, which are custom smart contracts that allow for code logic 
that conforms to a pre-specified i nterface.29 Each l iquidity p ool would b e a ssociated with 
a single hook smart contract. Then, when trading through a particular pool at Uniswap 
v4, the code logic to be executed would be partly from the code within the pool’s hook 
smart contract and partly from Uniswap v4’s core smart contracts. Ultimately, hooks would 
enable a higher level of customization than prior DEX deployments. Some notable ideas for 
hooks include White-listing and MEV internalization. White-listing refers to maintaining 
a list of pre-approved user identities and allowing trades only submitted by user identities 
from the pre-approved list. MEV internalization refers to attempts to monetize profits from 
exploitative activities (e.g., front-running) and to distribute those profits back to t raders. In 
fact, Flashbots has already implemented a version of MEV internalization, “MEV-Share”, 
that allows searchers to backrun trades but also requires that the back-running searcher 
must pay back to the backrun victim a specified p ercentage o f the MEV g enerated. MEV-

Share is a modest beginning, while the functionality of Uniswap v4’s hooks may facilitate 
further MEV internalization. The functionality of Uniswap v4’s hooks may allow traders to 
be compensated for their losses from MEV beyond backruns and without the involvement 
of an intermediary (e.g., Flashbots). Additionally, if the MEV extraction is su�ciently 
competitive, then traders may be able to recoup almost all their losses.

5.2.2 Interaction Across DEXs

Our analysis thus far has focused upon a single liquidity pool at a single DEX in isolation. 
But there are many DEXs in practice, and these DEXs frequently involve overlapping liq-
uidity pools. For example, multiple ETH-DAI liquidity pools are spread across DEXs. This 
redundancy of liquidity pools across DEXs implies that the lowest trading cost might be 
achieved by trading across multiple DEXs simultaneously. An advantage of blockchain tech-
nology is that multiple legs of a trade can be executed simultaneously and atomically even if 
the legs of the trade are at different DEXs. In fact, as a consequence, entities called aggrega-
tors have arisen to facilitate trading across DEXs.30 DEX aggregators provide pricing by 
determining the lowest cost execution across various sources. The specific sources consulted

29The code interface, IHook, is available at https://github.com/Uniswap/v4-core/blob/ 
1dda6f5095e88a82a6249089fbc827a4a12abcf5/src/interfaces/IHooks.sol.

30A related set of entities that have arisen are solvers. Solvers aggregate across aggregators. For the sake 
of brevity, we do not discuss solvers in detail.
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by DEX aggregators generally fall into two categories: routers and market makers. Routers

corresponds to a software and seek the minimal cost execution through specific liquidity

pools. In contrast, market-makers correspond to users who compete to provide liquidity on

a trade-by-trade basis through an RFQ process.

There are several fundamental di�culties in designing a DEX aggregator. First, each

router considers only a subset of available liquidity pools so that each router’s pricing is

likely sub-optimal relative to the lowest cost execution across all liquidity pools. Second,

even if all liquidity pools were considered by a single router, the mathematical problem of

determining the lowest cost execution across an arbitrary set of liquidity pools is non-trivial

due to the heterogeneity in the pricing of di↵erent liquidity pools. Third, the set of market-

makers consulted for the RFQ process are a subset of all possible liquidity providers, and

thus the RFQ process may not reflect pricing from a fully competitive liquidity provision

market. Finally, there are also concerns about market makers providing competitive quotes

and then opting not to fill the order, resulting in trade failures.

Although theoretically possible, a router cannot realistically incorporate all liquidity

pools on a blockchain. The permissionless nature of blockchain (see Section 3.1.2) implies

that any user can deploy a new DEX at any time and new liquidity pools within new DEXs at

any time. Furthermore, smart contracts characterizing a DEX are not easily distinguishable

from other smart contracts. Thus, any router seeking to incorporate all liquidity pools would

have to be constantly revised to capture all DEXs and, even if a router were revised regularly,

it might overlook some DEXs.

6 Conclusion

Decentralized exchanges represent an important innovation in finance. In particular, they

enable asset swaps at transparent pricing terms with simultaneous trade settlement and

trade execution. Anyone with a wallet can trade on a DEX almost instantly. There is no

registration and no need to establish an “account” at a DEX. The DEXs are also intercon-

nected, so a user can buy on one DEX and sell on another in the same transaction. Liquidity

is relatively constant and available 24-7. Holders of assets can earn extra funds by providing

their assets to DEX liquidity pools.

DEXs also involve a variety of novel risks. Given the algorithmic pricing function, prices

do not immediately jump when new information arises leading to arbitrage among CEXs

and DEXs. That said, in equilibrium, the fees that liquidity providers earn should exceed

losses due to this sniping. More seriously, due to the nature of consensus in the Ethereum

blockchain, pending transactions are visible to anyone. Those constructing the blocks of
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transactions can insert trades just before a larger order to front run the order.
There is no straightforward strategy for a national regulator. DEX is a global technology. 

A regulator could limit or prohibit access to a DEX in a particular country, but trading 
would proceed in other countries. One approach would be to sanction the users of DEX -
but this goes against the initial motivation for exchange regulation. The original statutes 
were designed to protect users - not to sanction them. Another unproductive strategy is to 
focus on the DEX itself. This makes little sense because a DEX is an immutable algorithm 
deployed to a blockchain. While it might be possible to sanction the creator of the DEX, due 
to the nature of the technology, a DEX can be deployed by a (nearly) anonymous address. 
Often there is a “lab” entity associated with a DEX, (e.g., Uniswap Labs) so another 
strategy is to try to regulate the lab entity. However, this too has multiple issues. First, the 
lab does not control the existing DEXs. Second, this approach might increase risk for users 
since the lab often serves useful function deploying updated algorithms that patch bugs and 
thereby ameliorating user risk. Yet another approach would be to try to regulate the block 
builders. Given the global nature of the technology, this seems infeasible.

One potential regulatory strategy is to let this innovation play out in a Safe Harbor or 
Regulatory Sandbox environment. There are already indications that some of the negative 
outgrowths, in particular, front running, may be naturally mitigated. The basic idea is to 
allow the front running but to give those that are front run a rebate. With the competitive 
e�ciency, th is re bate sh ould ev entually co ver al most al l of  th e lo ss. Th e re maining loss 
is just an additional (small) cost of trading. Layer 2 technologies with a first-in, first-out 
strategy may also mitigate the front running. Finally, researchers are exploring technologies 
that enforce verifiable rules regarding the ordering of transactions (Ferreira, Venturyne, and 
Parkes, 2023).

The recent evolution of trading has incorporated a combination of DEX and other venues 
such as private pools. Traders will have many options as to where to execute: a centralized 
exchange, DEX, a request for quote market, or some combination. In the future, centralized 
exchanges will likely utilize DEXs as well as their order books to provide the best possible 
prices for their customers. This o↵ers a n i ntriguing p ossibility: t he e xisting regulatory 
oversight of centralized exchanges might create an indirect way to conduct oversight of 
decentralized exchanges. For example, a centralized exchange utilizing a DEX may conduct 
due diligence on all assets purchased from the DEX to ensure that such assets are appropriate 
for the centralized exchange customers.

The decentralized nature of this technology poses another risk: DEX trading is available 
to anyone, even OFAC-sanctioned entities. While some block builders may avoid sanctioned 
addresses, this only delays the trading of sanctioned entities so long as some builders accept
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transactions from sanctioned addresses. Further, even if all block builders refused to include

transactions from sanctioned addresses, those that are sanctioned could create new addresses

that are not in the registry yet. This is a vexing problem with no obvious solution.

This space is progressing rapidly. We are seeing only one frame of a movie whose next

scene has yet to be written. Most of the activity in the blockchain setting has been dominated

by speculative traders. Satoshi Nakamoto’s original vision of replacing the existing financial

architecture with a new transaction mechanism has been supplanted by the so-called store

of value role for crypto. However, there are signs that this is changing. Layer 2 technologies

that vastly reduce the cost of trading provide a credible alternative transaction mechanism.

Furthermore, we are seeing the gradual introduction of tokenized real world assets. Tra-

ditional financial institutions such as the $11 trillion asset manager, BlackRock, have fully

embraced tokenization and have launched products in the space. While DEX might seem a

relatively modest size today, increasing tokenization suggests a larger role for DEX in the

future.

As with any new technology, DEX is not risk free. Regulators should reflect on the

big picture: this technology promises to substantially reduce transactions costs which is

a positive force for economic well being and growth. The technology also o↵ers financial

democracy – there are no distinctions between retail, institutional, banker, broker, or cus-

tomer in decentralized finance – everyone is a peer. This may be a time to carefully monitor

with a light rather than heavy hand. For example, some MEV issues are likely to naturally

mitigate. Regulators should measure this progress. They also might want to leverage the

existing regulatory oversight of centralized exchanges so that CEXs can carefully monitor

the subset of DEXs they deem useful for their customers.
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