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Abstract:

Central limit order books, such as those used on traditional exchanges, are impractical
with blockchain technology. Instead, DeFi exchanges like Uniswap and Curve use Auto-
mated Market Makers (AMMs) to facilitate trading. AMMs employ a predefined pricing
function based on token quantities to determine trade terms. To understand price discov-
ery and market impact in this setting, we characterize the optimal quantity provision of
liquidity providers. We find theoretically and empirically that price impact depends not
only on trade size but also on the dynamics of liquidity provision. Liquidity providers re-
spond to trading activity by adjusting their positions. Using data from 31 large Uniswap
v2 pools, we characterize the price-setting behavior of liquidity providers. Consistent
with our dynamic model, the price impact of active liquidity providers’ trade is in an
opposite direction to the prior trades of liquidity takers particularly when that liquidity
trade is likely to be uninformed.
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1 Introduction

Centralized exchanges for cryptocurrencies like Binance, Coinbase, FTX, and Kraken in-
termediate trade with a central limit order book. A central limit order book is constructed
from participants’ posts of quantity and price pairs they are willing to trade. This facili-
tates price discovery through matching buy and sell orders. Like the similar mechanisms
we see for trading equities (NASDAQ for example), settlement of the trades happens later
and not directly on the cryptocurrency ledger. For example, Bitcoin trades at Coinbase are
recorded only by Coinbase. Updates to the Bitcoin ledger happen only infrequently when

traders deposit or withdraw from the exchange.

In contrast, decentralized finance (DeFi) exchanges facilitate trade directly using a
blockchain. The computer codes that control the DeFi exchange, called smart contracts,
and the messages traders use to execute transactions are recorded “on-chain” in the de-
centralized blockchain by the decentralized network of ledger validators (“miners”). This
technology is currently incapable of replicating a central limit order book. The volume
and speed of messages needed to implement a limit order book is not practical and is
prohibitively expensive with most decentralized blockchains. As a consequence, decen-
tralized exchanges, such as those developed by Uniswap or Curve, have created Auto-
mated Market Makers (AMMSs) to intermediate trade. These alternatives to centralized
markets now account for a large volume of cryptocurrency trade. From January 2024 to
May 2025, decentralized exchanges processed an average of roughly $210 billion of cryp-
tocurrency spot transactions per month. As of May 2025, decentralized exchange spot
transaction volume is approximately 20% of the cryptocurrency spot transaction volume

on centralized exchanges.

To intermediate trade on blockchain with (far) fewer messages than a centralized
exchange, AMMs limit traders to posting only quantities. The smart contract code de-
tines trade in a liquidity pool with functions for adding (minting), removing (burning),
or exchanging (swapping) the two coins (or tokens) that constitute the pool. Liquidity
providers (LPs) supply a portfolio of two tokens to the AMM pool. Liquidity takers (LTs)



may swap one token for the other. The rate of this swap—effectively, the relative price
of the two tokens—is a coded function of relative quantities of the tokens posted and
swapped to date. For example, the constant-product market maker (CPMM) implies the

marginal relative price of the two tokens is the ratio of the current balance of tokens.

To understand how DeFi markets facilitate price discovery and to measure price im-
pact of trades, we study the dynamic provision of cryptocurrency quantities to a liquidity
pool. Specifically, we focus on liquidity providers as they play an active role in price dis-
covery by choosing the liquidity they supply in response both to information about coin
values and to information about the distribution of future liquidity trades. Additionally,
through our model we see that liquidity providers play an important role in understand-
ing the price impact of AMM trades as their liquidity supply and thus prices respond
directly to trades conducted by liquidity takers.

To motivate our study of the strategic behavior of liquidity providers, we use data
from Uniswap v2 (“version 2")! where the liquidity provision functions in the Uniswap
smart contract are particularly stark and limited to adding (“mint”) or removing (“burn”)
coins at the current ratio of coins in the pool. Here, liquidity mints or burns do not change
the marginal price of the coins in the pool. We document that many liquidity providers
are active in the price-setting process. Trades by LPs do constitute a small percent of the
overall trade as most of the trade is swaps by LTs. However, the majority of the liquidity
providers are active in the sense that a sizable proportion of their transactions involve
the swap transaction (liquidity taking). When liquidity providers swap against their own

pool, they directly impact prices faced by other liquidity takers at the AMM exchange.

To better understand how liquidity providers set prices and therefore explore the im-
pact of trades on liquidity providers’ price setting behavior, we build a dynamic model
of AMM liquidity provision. The basic tradeoff in our model for the liquidity provider is

familiar. We assume liquidity takers may be “informed” or “uninformed” giving rise to

!Uniswap has augmented their pricing functions to offer liquidity providers more direct control over
their liquidity in Uniswap v3 and most recently v4. We view the data from v2 as particularly insightful
since the limited choices liquidity providers allows us to measure their degree of activeness with their
swap transaction behavior.



a classic form of adverse selection in asset markets (as in Glosten and Milgrom (1985)).
With AMMs, what creates this structure is timing. We posit that liquidity providers are
“slow.” They post their coins to an AMM and then a liquidity taker trades. Liquidity
takers are “fast” and able to attain priority for blockchain execution. The liquidity taker
may be trading for reasons that are orthogonal to the public information (akin to a private
value). Alternatively, the trader may be trading having seen an update to public informa-
tion about coin prices (a common value)—sometimes referred to as “impermanent loss”
in AMM documentation. In either case, the liquidity provider cannot avoid the “fast”

liquidity taker.

Introducing this conventional friction allows us explore how adverse selection dis-
torts the amount of liquidity contributed by providers who must balance profits they earn
from uninformed liquidity takers (noise traders) with the losses that arise from trading
with informed liquidity takers. Our results provide AMM analogs to those in Glosten and
Milgrom (1985) in a smart contract setting and offer a new interpretation of impermanent
loss—committing to trade with informed liquidity takers at “stale” prices—stemming
from a traditional notion of adverse selection. While in Glosten and Milgrom (1985) lig-
uidity providers distort prices to protect themselves from informed trading losses, such
distortions may only manifest in the quantities of deposits liquidity providers post in the

AMM.

The risk of trading against a better informed liquidity taker is an important consider-
ation for the liquidity provider. However, our model does not assume perfect and con-
tinuous “arbitrageurs” whose AMM trades reflect a single agreed-upon external “market
price.” In our setting, some traders may trade for reasons orthogonal to current market
prices should they require liquidity—i.e., the very reason the market might exist. Our
setting allows for traders’ beliefs to be updated by new information that, say, reflects
information from a posted price on a central exchange. If the risk of that happening is
sufficiently high, the liquidity provider will choose not to post liquidity. However, we
do not model that event as an arbitrage. The costs to moving tokens between exchanges

and decentralized exchanges (an on-chain transaction) is not trivial. Perhaps more im-



portantly, a coin owned indirectly on an exchange is not a perfect substitute for owning
the same coin directly on a blockchain. The bankruptcy of an exchange (FTX and others)
or the loss of a private key are distinct risks. We are agnostic as to whether ownership
through an exchange is better or worse than ownership on-chain. Security, convenience,
and liquidity properties can all differ. Our point here is simply that they are not identical.
Lastly, there is a large number of tokens, some of which have a sizable implied market
capitalization, that are not listed on any centralized exchange. For these tokens, there is no
applicable “market price” from a centralized exchange and our theory provides guidance

on the price discovery process for such tokens.

Our model has interesting implications for the dynamics of liquidity provision. We
show that our model generates endogenous inactivity by liquidity providers. More pre-
cisely, even though the liquidity providers have the option to re-balance their liquidity
on deposit after each trade by a liquidity taker, often they optimally do not do so. This
endogenous inactivity arises because of our assumption that the LP is risk neutral and
(despite the convexity arising from the exogenous pricing function) finds it optimal to
supply her entire endowment of tokens for a range of relative prices—a maximal supply
region. If an LT trade leaves the LP in this maximal supply region, then she will not re-
balance her liquidity deposit. If an LT trade results in LP (ex post) balances outside of this

region, then the LP will re-balance back to the boundary of the maximal supply region.

While this inaction region does not respond to uninformed trades at the AMM, it does
shift when informed trades arrive. As a result, the extent of endogenous inaction depends
on the relative proportion of informed versus uninformed trading. Indeed, these model
dynamics give rise to predictions for the behavior of LPs. First, liquidity providers typi-
cally trade against liquidity takers; LP trades (when they happen) tend to move relative
prices at the AMM in the opposite direction of trades completed by LTs. Second, liquidity
providers are more likely to be active—are more likely to re-balance deposits—in markets

with more uninformed trade.

The empirical dynamics of liquidity provider behavior in Uniswap v2 are consistent

with these model predictions. Swaps—price setting behavior—completed by liquidity
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providers tend to impact relative prices in the opposite direction of (cumulative) trades
completed by liquidity takers. Further, we adopt an empirical strategy use to identify
informed trading in the Ethereum ecosystem as suggested by Capponi, Jia and Yu (2024)
and aligned with ideas from the high-frequency trading literature.> The idea is that in-
formed traders are more likely to be price sensitive. As a result, they should demand
more blockchain priority and be more willing to pay (gas fees to) validators to prioritize
their transactions. In AMM periods and markets where liquidity takers lower average gas
fees—suggestive of less price sensitivity of traders and hence more uninformed trading—

we also find liquidity providers transact more frequently, consistent with our model.

We then use our model to explore how the shape of the pricing function impacts gains
to trade and liquidity provider’s profits. Analogous to results in Milionis, Moallemi and
Roughgarden (2023b), we find that in the presence of only uninformed traders, convex
prices impede ex-post trading volumes and reduce ex-ante profits of liquidity providers.
Hence, in such a case, linear pricing is optimal. However, the presence of informed
traders complicates this analysis because convex prices also limit the losses liquidity
providers realize from informed trades. Nonetheless, we show that reducing the (lo-
cal) convexity of the pricing function improves the liquidity provider’s profits as long as
liquidity provision is profitable. Specifically, we construct a perturbation of the pricing
function that decreases its convexity around the liquidity provider’s deposit point and
scales the gains from uninformed trades at the same rate as losses from adverse selection.
If the original constant-product market maker (CPMM) function induces positive ex-ante
gains for the liquidity traders, then less locally convex prices increase ex-ante gains for

both liquidity providers and liquidity traders, thus improving efficiency.

1.1 Related Literature

Much of the research on AMMs has focused on examining how AMM s perform alongside

the presence of deep, liquid, centralized exchanges. One of the earliest examples is An-

2See Aquilina, Budish and O'neill (2022) and Brugler and Hendershott (2023) for recent papers that
exploit the timing of trades or orders on centralized exchanges to identify high-frequency, informed trading.
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geris and Chitra (20204) who obtain conditions under which a class of AMM mechanisms
reflect “true" prices—those observed on an infinitely deep centralized limit order book.
Angeris et al. (2021) presents a more specific analysis of the leading AMM Uniswap and
show that the exchange rate on Uniswap matches the exogenous prices up to the interval
of fee level. Aoyagi (2022) extends these frameworks to consider the effect of information
asymmetry in AMMSs shows that the equilibrium liquidity supply is stable under the as-
sumptions that liquidity provision is perfectly competitive and one token in the pool is

stable (its value has zero volatility).

Also under the assumption of a known, true price of tokens, Fabi and Prat (2023)
demonstrates how to use consumer choice theory to study how liquidity providers and
liquidity takers exert externalities on each other. They use their framework to examine
how the shape of constant function market makers impacts adverse selection costs faced
by liquidity providers and execution costs faced by liquidity takers. More recently, Lehar
and Parlour (2023) show how AMM fees can balance losses imposed by liquidity traders
who conduct such an arbitrage. They argue that pool sizes should decrease with the

severity of this arbitrage risk and find empirical support for this observation.

Similar to our model, Aquilina et al. (2024) considers heterogeneity among liquidity
providers using size or external information to classify liquidity providers and study their
empirical behavior on UniSwap V3 data. They classify liquidity providers with excep-
tionally large token positions or identified as VCs, asset managers, etc., as “sophisticated"
and find that they provide majority of the liquidity, actively manage their positions, and
interact with multiple pools. In contrast, “unsophisticated" liquidity providers earn sig-
nificantly smaller fees, and struggle to adapt their liquidity strategies during periods of
high volatility. Lehar, Parlour and Zoican (2023), who also focus on UniSwap V3, find
that larger liquidity providers dominate low-fee pools, while small liquidity providers
dominate high-fee pools. As in our model, liquidity providers in their model adjust their
pool positions after trades as well but only because the structure of contracts in Uniswap

V3 prevents informed traders from fully arbitraging prices from centralized exchanges.

Directly supporting our assumption that trades can be categorized as informed and
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uninformed, Capponi, Jia and Yu (2024) provide empirical evidence showing that high-
fee DEX trades contain more private information. Informed traders bid high fees both
to mitigate execution risks from blockchain congestion and to secure execution priority.
We build on these important papers by showing how liquidity providers directly impact
decentralized exchange prices and then building a model where there is a role for liquid-
ity providers to set prices. One of our contributions is to relax the assumption of perfect
arbitrage with centralized exchanges and examine optimal liquidity provision when the
notion of equal values is not clear because perfect price discovery in some other market

is not possible.

A related literature has emerged studying the costs imposed by traders who arbitrage
between centralized exchange prices and AMM prices. For example, Capponi and Jia
(2021) studies competition for priority among traders who would like to conduct such an
arbitrage and characterizes the joint determination of gas fees and liquidity pool sizes.
Hasbrouck, Rivera and Saleh (2023) study the impact of trading fees on trading volume
and show how an increase in the fees, by attracting more liquidity provision and thus
reducing traders” execution costs may lead to increased trading volumes. Milionis et al.
(2022) use a continuous-time Black-Scholes analysis to estimate these arbitrage losses for
liquidity providers using a stablecoin pool and decomposes the losses into risky and pre-

dictable components.

Milionis, Moallemi and Roughgarden (2023a) extend the model to involve trading
fees and provide results on the arbitrager’s behavior and profits accordingly. They also
conduct a cost-benefit analysis on the LP’s side with the new features. In our model in
the absence of a true price, the AMM generates gains to trade and so liquidity provision
may be sustained even in the absence of direct fees. Cao et al. (2023) develop a structural
model where a platform sets the fee level to maximize liquidity in the pool with one
token as a stablecoin. Like much of the earlier literature, they study this problem under
an assumption that a true price is known and the fee is designed to maximize rents from
uninformed trades. They find that the optimal AMM fee structure dynamically adjusts to
volatility, leading to better trade.



In terms of the design and efficiency of the price function, Park (2023) demonstrates
that constant function market makers may cause economically meaningless and costly
trading, such as front running. Front-running is a substantial concern that liquidity tak-
ers manage in practice by encoding a range of prices they are willing to trade at, known
as “slippage”, but we abstract from front-running in our model as we focus on the inter-
action between liquidity providers and (an aggregate of) liquidity takers. Bergault et al.
(2023) shows that the return of LP is always smaller than holding by duality theorem
and a constant product formula with a proportional fee is not efficient from the mean-
variance perspective. Goyal et al. (2023) focus on the design of convex pricing functions
that maximize the fraction of trades that with only uninformed trades. Milionis, Moallemi
and Roughgarden (2023b) uses the optimal auction framework to show that a linear price
curve maximizes the expected return of the liquidity provider when one token is a sta-
blecoin. Our results on the optimal shape of the design function are similar to those in
Milionis, Moallemi and Roughgarden (2023b) but hold under a wider set of assumptions

on traders’ beliefs about the token valuations.

The remainder of the paper is organized as follows. In Section 2, we look at the em-
pirical behavior of liquidity provider and document their active role in price setting on
AMMs. We describe our model in Section 3. In Section 4, we focus on the one period
model and analyze the resulting equilibrium and the welfare properties. Section 5 looks
at the dynamics of liquidity provision in our model and compares these dynamics to the

empirical evidence. Finally, Section 6 concludes.

2 Liquidity Provider Behavior

An AMM uses blockchain-based smart contracts so individuals can exchange cryptocur-
rencies (or tokens). Smart contracts are computer code stored on the blockchain. A feature
of the Ethereum Blockchain is that the functions in the code are transparent, verifiable,

and immutable.? Traders post transactions, calls to functions in the smart contracts, that

3You can see the functions for a Uniswap contract at https://etherscan.io/address/
0x0d4a11d5EEaaC28EC3F61d100daF4d40471f1852#code.
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are then executed by a decentralized network of validators (or “miners”). The typical
AMM smart contract for a pool is specific to two coins. To characterize the empirical be-
havior of liquidity providers, we pull data for Uniswap v2 pools. Specifically, we look at
v2 pools created prior to 2020-07-01 that have more than 100,000 transactions. The sample
period is from 2020-07-01 to 2024-06-30 and contains 19.2 million transactions across 31

pools.*

For context, Figure 6 show the evolution of the volume of trade for the Uniswap v2 and
v3 contract pools (v1 and v4 both have negligible volumes). Note the volumes are denom-
inated in Bitcoin to help control for the large variation in the dollar-denominated value of
cryptocurrencies over this period. The data from v2 are particularly relevant since these
smart contracts limit the transaction space to a swap, a mint, or a burn. This limited
smart contract functionality allows us to explore the behavior of liquidity providers in
a straightforward and tractable fashion. Given the evidence we present below of active
liquidity management, the smart contract modifications that follow in v3 (and now v4)

that offer more active control for liquidity providers are understandable.

A transaction in a Uniswap v2 pool is a call to one of three functions defined by the
pool contract. The functions are a swap, a mint, or a burn. The most commonly called
AMM function is the swap transaction. Here, a trader deposits a quantity of one coin, say
A, and withdraws a quantity of the other coin, say B. The rate (or price) of this exchange
is calculated by the smart contract based on the reserve balance of coins currently on
deposit at the pool. To calculate the rate Uniswap v2 uses the constant product market
maker (CPMM). The rate of exchange is determined so that the product of the quantity of
coins A and B before and after the exchange is constant. This implies the marginal rate for
the exchange depends only on the relative quantities of coin A and coin B in the pool. The
swap is “taking” liquidity from the pool in the sense that the swap necessarily changes
the relative quantities of coin A and coin B in the pool and thus distorts the marginal
exchange rate faced by subsequent traders. We refer to a trader who only uses the swap

function as a Liquidity Taker (denoted LT).

4We use the Etherscan API Pro Services to collect the data.



The liquidity providing portions of the smart contract happen through the mint and
burn functions in the code. In a mint transaction, the trader deposits both coins A and B.
Here, the mint refers to the creation of pool tokens to denominate the traders proportional
claim to the liquidity in the pool. Since this provides more of the coins to the pool for use
in swap transactions, we call this trader a Liquidity Provider (LP). In a burn transaction,
the LP can use some or all of their pool tokens to withdraw some or all of their share
of coins from the pool’s liquidity reserves. Both of these functions, by design, increase
or decrease the size of the pool proportionally. This feature is hardcoded into the smart
contract: mints and burns do not change the ratio of the quantity of coin A to B and so do

not change the implied marginal price on offer at the pool.

Given the trading environment defined by these smart contract functions, how do
liquidity providers behave? The general view is that LPs are passive in that they trade
(post a transaction to the smart contract) infrequently and use only the liquidity provision
functions mint and burn. They are akin to “buy-and-hold” investors. Uniswap in their
documentation for v2, for example, highlights that the passive aspect is a feature that may
increase participation of liquidity providers by removing the need for the sophisticated
infrastructure and algorithms of a liquidity provider—a market maker—in a limit order

book market.’

Table 1 characterizes traders’” behavior with transaction counts. Note that in Section 5.3
below we also explore the price impact of these trades once we have used our model to
highlight relevant measures of price impact in the data. To construct the table, we tag
each transaction as coming from a liquidity provider (LP) or a liquidity taker (LT). We tag
a transaction as coming from an LP if the trader, at the time of the transaction, owns a
pool token. That is, the transaction is by someone who owns a proportionate claim to the

pool.® LTs own no pool tokens at the time of the transaction. Since mints and burns both

5See https://docs.uniswap.org/contracts/v2/concepts/core-concepts/pools. See also the dis-
cussions in Malinova and Park (2024) and Lehar and Parlour (2023).

6Since the mint transaction creates the pool token, for timing, this is the definition of LP we use to
tag a transaction. A transaction is classified as belonging to an LP if: (a) it is a mint or burn; (b) any of
the addresses involved in the transaction have a positive balance of that pool’s tokens at the time of the
transaction; or (c) the swap transaction is paired with a mint transaction. We describe the process we use to
measure paired transactions below.
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imply pool token ownership, LT transactions are exclusively swaps.

Table 1: Transaction Counts

burn mint swap Total Percent

Full Sample: 2020-07-01 - 2024-06-30

LpP 149,911 196,128 108, 802 454,841 2.4%
LT 0 0 18,742,272 18,742,272  97.6%
Total 149,911 196,128 18,851,074 19,197,113 100.0%

v2 Dominant Contract: 2020-07-01 - 2021-05-31

LpP 112,762 157,363 80, 696 350,821 3.7%
LT 0 0 9,142,338 9,142,338  96.3%
Total 112,762 157,363 9,223,034 9,493,159 100.0%

v3 Dominant Contract: 2021-06-01 - 2024-06-30

LP 37,149 38,765 28,106 104, 020 1.1%
LT 0 0 9,599,934 9,599,934  98.9%
Total 37,149 38,765 9,628,040 9,703,954 100.0%

A transaction is classified as belonging to an LP if: (a) it is a mint or burn; (b) any of the addresses
involved in the transaction have a positive balance of that pool’s tokens at the time of the transaction;
or (c) the swap transaction is paired with a mint transaction. Each transaction can involve several
addresses (both wallets and contracts). A transaction is paired if all the addresses on both transactions
match and the transactions both occur within a three-minute interval. Data is pulled from all Uniswap
v2 pools that were created prior to 2020-07-01 and have more than 100,000 transactions. There are 31
pools. The sample period is from 2020-07-01 to 2024-06-30. The total number of transactions is 19.2
million. A transaction is defined as a unique call to a Uniswap pool contract as a swap, mint, or burn,
and involves multiple addresses (wallets and contracts) and token transfers.

Focusing on the full sample for a moment (top panel), we can see that most of the
transactions are from LTs. LPs are passive in that across all transactions, they transact
infrequently. Trades by LPs are 2.4% of the total transactions. However, in contrast to the
“buy-and-hold” passive characterization, liquidity providers are not completely passive.
A significant proportion of liquidity provider transactions are swaps (108,802/454,841).
Since every swap directly impacts the token exchange rate offered by the pool, when lig-
uidity providers interact with their pools, 23.9% of the time they take actions that directly

impact the pool’s exchange rate. We view these swaps by liquidity providers as evidence
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that at least some LPs play an active role in price setting and price discovery in AMM
markets. Finally, the different panels in Table 1 show the transaction counts across sub-
sample periods. The impact of the introduction of v3 on v2 volume is clear. However,
the activeness of the LPs (the percentage of transactions as swaps) is similar across the

subsamples.

Table 2: Uniswap LP Counts

Unique D Total  Liquidity Liquidity
Trader Transactions Provisions  Takings

Full Sample: 2020-07-01 - 2024-06-30

LP Active 44,636 201,162 45.9% 54.1%
LP Passive 64,127 253,679  100.0% 0.0%

v2 Dominant Contract: 2020-07-01 - 2021-05-31

LP Active 37,267 148,115 45.5% 54.5%
LP Passive 53,519 202,706  100.0% 0.0%

v3 Dominant Contract: 2021-06-01 - 2024-06-30

LP Active 7,743 51,330 45.2% 54.8%
LP Passive 12,318 52,690  100.0% 0.0%

A transaction is classified as belonging to an LP if: (a) it is a mint or burn; (b) any of the addresses
involved in the transaction have a positive balance of that pool’s tokens at the time of the transaction;
or (c) the swap transaction is paired with a mint transaction. Active liquidity providers are defined
as having more than 1 percent of their trades as swaps. Data is pulled from all Uniswap v2 pools
that were created prior to 2020-07-01 and have more than 100,000 transactions. There are 31 pools.
The sample period is from 2020-07-01 to 2024-06-30. The total number of transactions is 19.2 million.
A transaction is defined as a unique call to a Uniswap pool contract as a swap, mint, or burn, and
involves multiple addresses (wallets and contracts) and token transfers.

The percentage of LP transactions that are swaps differs across traders. From Table
2, notice that 41.0% of LPs in our sample have swap transactions while the remainder
of traders are completely passive. Again, note the number of LPs is smaller after the
introduction of Uniswap v3, but the percentage of active LPs remains about the same at
38.6%. For the active LPs, about half of their trades are swaps. Figure 7(a) highlights that

the swap percentage for LPs also differs across pools. (We will return to 7(b) below.)
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While we describe behavior at the level of “traders” (LP or LT), we do not directly
observe individuals. On the blockchain, activity is recorded at the level of addresses
(public keys), and a given transaction typically involves multiple addresses. Addresses
on Ethereum can be wallets or smart contracts. For example, an individual might trade
by connecting her wallet to the Uniswap web-app. This creates a trade involving her wal-
let ID and a Uniswap router contract. Larger traders often trade using their own smart
contracts.” We make the simplifying (and conservative) assumption of treating the set
of addresses involved in a transaction on a specific pool as a single unit (effectively con-
catenating pool address and all addresses in the the transaction to define a unique trader
ID). This approach will under-count liquidity providers who also use swap transactions
in cases where one trader (person) uses multiple wallets or modalities for different trans-

action types.

Using this conservative definition of a unique “trader” as the concatenation of all ad-
dresses used in the trade, we count how often an LP actively changes marginal pool prices
(with a swap) just prior to adding liquidity (with a mint). Specifically, we pair LP transac-
tions when a swap and a mint (or burn) occur in a three minute window.® Table 6 shows
that almost all the paired transactions are swaps connected to mints. Focusing on the sub-
sample where Uniswap v2 was the dominant contract, 10.7% of the mints were preceded
by a swap transaction (by the same LP) and 21.0% of all swaps conducted by LPs were
in support of a subsequent mint transaction (again, by the same LP).? Figure 7(b) shows
that the percentage of mints paired with a swap differs across pools similarly to the raw
frequency of swap transactions by LP. Many of the summary statistics we have calculated
here are similar across the subsample periods. Interestingly, this is not the case for paired
transactions. Figure 8 shows the percentage of mints paired with a swap is declining over

the Uniswap v2 era. After the introduction of v3 with more fine grained liquidity choices,

’This is done for many reasons. For example, this can add a layer of security to the trading where
first coins are transferred to a trader’s smart contract and then the smart contract is called in a second
transaction.

8Defining pairs as happening in a three-minute interval is arbitrary. The specific numerical results
change with different windows, say 0.5 to 5.0 minutes, but the general proportions are quantitatively simi-
lar.

9While not immediate from Table 6, almost all the paired transactions are where the swap precedes the
mint.
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the frequency of mints paired with a swap goes to near zero for most pools. '

In summary, we have presented evidence from Uniswap v2 that some liquidity providers
play an active role in setting (marginal) relative prices by swapping against their own lig-
uidity. Next, we build a dynamic model with frictions that provides liquidity providers
incentivers to actively set prices at an AMM. We use this model to develop insights into
optimal active liquidity provision and to establish a lens to study the dynamics of the
swap behavior of liquidity providers. We explore this dynamic behavior in Section 5.3

below.

3 Model

We develop a model where traders’ relative valuation of coins consists of both a private
and a common value component. The private value component motivates gains to trade.
The common value component is public information that evolves over time. We model
the arrival of trading opportunities as sequential and so some traders will be “informed”
in that they have arrived at the same time as new information. The public component
creates the potential for an “adverse selection” cost. This cost is sometimes called “im-
permanent loss” in the AMM setting. Due to the intrinsic properties of cryptocurrencies,

we will refer to coins and tokens interchangeably throughout the paper.

Our model is in discrete time, t =0, 1,2,... and features two types of agents: liquidity
takers (traders) and liquidity providers (or market makers). Liquidity takers are short-
lived, have deep pockets, and care about net trading profits. Liquidity providers are
long-lived, discount the future at rate 4 € (0,1), and begin in period t = 0 with a fixed
endowment of tokens or coin balances. We focus on a representative liquidity taker (in

each period) and a representative liquidity provider.

190ddly, in the brief window 2023/0/01 to 2022/06/30, in WETH-USDC and USDC-USDT the swap-
then-mint pair accounts for about 75% of the mint transactions. As we saw, there are also fewer overall
.transactions in this period.
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Information. We study a model with two coins, i € {A, B} and coin i has a value at date
t given by exp(pi ). We interpret the common value componenet, exp(pi ), as either the
“price" of token i at time t or possibly the service flow attainable by holding 1 unit of coin
i. For example, 1 unit of the Ethereum cryptocurrency may be “spent” on the execution
of smart contracts on the Ethereum blockchain or 1 unit of the stablecoin USDC may be
redeemed for 1 US dollar by trading with the company Circle who issues USDC (Circle

(2023)). We assume the “price” or common payoff of coin i at time t evolves according to

t
pii=) dis+e
s=0

with the public information at each date d; ; and the residual uncertainty, €; realized in

period t independently and satisfying E[exp(e;)] = 1.

In particular, assume public information {d; } arrives independently across time and
across tokens. For each token i, with probability %, d;y = 0. With probability 1 —#,
dit € {—Ay, +Anp} where each is equally likely. We assume Ay, Ay, are positive and %e‘A‘ +
%eAh = 1 such that the expected price after the realization of public information is the
same as it is before this information is realized. At the beginning of each period t, both
LPs and LTs have beliefs about the common value component of each token given by

Hit—1 Where

tit—1 = Elexp(pit)ldo, ..., di—1] = Er_qlexp(pit)]-

Timing. At the beginning of each period, with probability § € (0,1), the LP exoge-
nously exits the game and realizes the current payoff of her endowment of tokens. If the
LP does not exit, then, before the arrival of any public information, the LP decides how
much of each token to deposit in the AMM smart contract. Once the LP deposits tokens,
public information is realized. After public information is realized, LTs value the tokens

according to
Vit = Elexp(pit)ldo, - .., didexp(nit) = Eelexp(pit)lexpmiq)
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where 1; ¢ reflects a private value component of owning token i realized by the LT that
trades in period t. The important timing assumption is that the LT trades before the LP
can adjust withdraw or adjust their deposits to the AMM. Once the LT trades, a new
period begins and the LP may re-balance the liquidity supplied to the AMM.

Next, we specialize the information setting of our model to highlight the key forces
at play. Note that in any period, before the arrival of public information, both the lig-
uidity providers and liquidity takers have the same beliefs given by p;_;. Once public
information arrives, the LT who trades in period t has valuation v; distinct from ;1
because she has more public information and because of her private value shock. We im-
pose a particular correlation between the public information and the LT’s private value
shocks. Recall that with probability 1 — A2, the LT has superior public information since

di+ € {—Ay, Ay} for some token i. For such realizations, we impose np =ng = 0.

Under this specification, our model features two types of information events as in
Glosten and Milgrom (1985). The first type of information event—analogous to unin-
formed trading in Glosten and Milgrom (1985)—occurs when da + = dg+ = 0 and repre-
sents a case where the LT’s new beliefs of the tokens’ values, v;; are uncorrelated with
the LP’s beliefs. That is, the LP believes the value of each token i will yield terminal value
according to E[exp(pit)] = E¢_1lexp(pit)] while the LT believes the value of each token
i is distributed according to vi; = Eilexp(pit)lexp(Mit). When nit # 0 under such an
event, there are gains to trade between the LP and the LT. Following the literature, we
interpret such an event as a “pure noise” trade where trade occurs for reasons orthogonal
to the LP’s beliefs about the potential returns to her tokens. We let m = #2 € [0,1] denote
the probability of this first type of information event which we describe as a trade for tastes

or uninformed trade.

Instead, the second type of information event—analogous to informed trading in Glosten
and Milgrom (1985)—occurs when di+ € {—Aj, Ap} (for some token i) and represents a
case where the LT’s new beliefs are correlated with the LP’s new beliefs. In such a case
both the LP and the LT now believe the value of each token has mean v; ; = E¢[exp(pi )]

and hence there are no gains to trade between the LT and the LP. For notational simplicity,
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we assume Vv; 1 follow the same distributions under the two events.!! Following the litera-
ture, we interpret such an event as pure information event that we describe as an informed
trade. The correlation between the information arrival and private values of the LT that
we impose allows us isolate the idea that liquidity takers may trade for “information” or

may trade for “tastes.”

Denote (Eat—1, Ept—1) as the amount of tokens the LP owns at the end of each period
t — 1. If the LP does not exit in period t, she chooses the amount of tokens (ea 1, e t) to
deposit in the AMM. After her deposit, public information is realized and the LT trades
in the AMM. Let (xa t, xg +) denote the amount of tokens remaining in the AMM after the
LT’s trade. Post-trade, the LP owns (Ea+, Egt) = (EAt—1 — €At + XA+, EBt—1 — €Bt + XB,t)

tokens.

With probability #, the LT’s trade is uninformed and the LP’s valuation of each token
remains unchanged. Alternatively, with probability 1 — 7, the trade is informed and the

LP’s valuation of each token updates to that of the LT.

Suppose that the LP has deposited a portfolio (eat, eg+) with the smart contract of
the AMM. We let G(-) be the embedded pricing function. That is, if the LT wishes to de-
posit (withdraw) qa units of token A then the function specifies an amount qg units of
token B that the LT may withdraw (deposit) where qg = G(qalea, eg). The most com-
mon implementation of automated markets imposes the constant product market maker
(CPMM):

(ea +da)(es —qp) = eaep (1)

where we have ignored fees charged to traders. This particular function was originally
proposed Angeris and Chitra (2020b) (see also Bergault et al. (2023)) and was then adopted
in Uniswap-V2 (2023). Although ad-hoc, the simple function has the attractive properties
that marginal prices are convex (the more you withdraw, the higher the marginal price).
The CPMM also ensures that the contract cannot “run out” of either token since marginal

prices approach infinity and aggregate token supplies are finite.

1 Allowing vy 1 to follow different distributions does not substantively change our theoretical results. We
do allow for different distributions in our numerical results in Section 5.2 below.
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Next, we define the problem of the liquidity provider and liquidity taker working
backwards from the LT’s problem in each period. We maintain the Constant Product

Market Making rule specified in Equation (1) through Section 3.1, 3.2, 4, and 5 below.

3.1 The Liquidity Taker’s Problem

In each period, the LT—whether uninformed or informed—observes liquidity on deposit
at the AMM as well as the realization of v;. From their perspective, the LT perceives a
favorable trading opportunity as prices in the AMM do not automatically adjust to their
own valuation. Since the LT is short-lived, we omit time subscripts when describing the

LT’s behavior.

The LT maximizes the expected value of her tokens:

max —VAQqA + VB(g (2)
qA.9B

s.t. (ea +qga)(es —qp) = eaes.

When gqa > 0, the LT’s problem given in (2) represents a case where the LT “buys”
token B from the AMM by depositing token A. She may wish to set ga < 0 in which
case she buys token A from the exchange by depositing some amount of token B. The
constraint represents the effective price that she faces in any trade. Under the Constant
Product rule, the LT would have to deposit infinitely much of one token to withdraw all
of the other (i.e. setting qg = ep, requires qa — —oo) and hence the implicit capacity

constraints are slack under such a rule.

The solution to the LT’s problem is straightforward, and, in terms of ex-post reserves

remaining in the pool after the LT’s trade implies

VB VA
ea+qa = ,/ﬂe;\eg, ep — (g = ”EeAeB. 3)

More succintly, for any beliefs v;, the LT will trade up until the relative price at the AMM
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Figure 1: Liquidity Taker’s Optimal Trade
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The liquidity taker’s optimal trade is characterized by the tangency of their relative valuations (red line)
and the constant product market making curve (orange line).

equals her relative valuation of the tokens or

VB _ €At qA 4)

VA €B — (B

Notice that xo = ea + qa and xg = eg — qg which are the post-trade AMM positions, then
(1) and (4) imply that the post-trade positions satisfy

XAXB = €A€B (5)

VAXA = VBXB. (6)
The liquidity provider internalizes that for any realization of beliefs of the LT, v;, her

ex-post portfolio will satisfy (5)—(6). We may represent this behavior graphically as in
Figure 1.

The convex curve represents the constant product market-making rule, and the point
(ea, ep) represents the liquidity deposited by the LP. Any trade by the LT will move the

LP’s ex-post portfolio along the convex curve. Once the LT realizes her beliefs v;, she will
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trade up until the relative price at the AMM equals her relative valuation of the tokens

(represented by the dashed line with slope —va /vp).

3.2 The Liquidity Provider’s Problem

Given a0, Ea 0, U0, Ep,o, the problem of the LP at time 0 can be written as:

max > 8B (1—B) EluaEac+upiEe,d )

{eA,t/eB,t}iozl t=0

where fort=1,2,3...

XA tXB,t —=€At€Bt
VA tXAt =VB,tXB,t
Ei¢ =xi¢ + (Ei -1 —eit)
Wit—1 with probm
Wit = )
Vit with prob1—m

0 <eit < Eit

The first two constraints embed the LT’s behavior in each period. The third and fourth
constraints reflect the law of motion for the LP’s endowments and her beliefs. The final

set of constraints reflect feasibility constraints for the LP.

We now formulate the LP’s problem as a stationary, dynamic program. Suppose the
LP starts a given period with endowments (Ea, Eg) and beliefs about these token’s values,

(1A, up). Then the Bellman equation is given by

V(Ea, Eg; 1A, ug) =P [MAEA + HBEg]
+(1—p)d max (nEV(EA, Eg; pa, up) + (1 - WEV(E4, Eg; va, Vi)
afb
(8)
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subject to

0<e <FE )
XAXB = €A€B (10)
VAXA = VBXpB (11)
E{ =xi+ (Ei—ei). (12)

With probability (3, the LP exits and enjoys the expected utility of her endownment.
Should the LP not exit, then she chooses the quantities of tokens to deposit on the ex-
change, e;, subject to the feasibiliy constraints (9). The constraints (10) and (11) summa-
rize the behavior of the liquidity taker for any realization of the public information or the
private taste shock (va,vg) which in turn dictate how the LP’s endowment will evolve
into the subsequent period as summarized in (12). Given her liquidity deposits (eq, ey ),
with probability 7t there is no public ifnormation event so that the LP’s beliefs remain
constant at (pa, ug). Alternatively, if there is a public information event, which occurs
with probability (1 — ), then the LP’s beliefs evolve and are consistent with those of the
LT given by (va, vp).

4 AMM Liquidity: Insights from a One-Shot Model

In this section, we focus on a one-period model to highlight the key results that emerge
from our dynamic model. Exactly as in the dynamic model, at the beginning of the pe-
riod, the LP deposits a portfolio (ea, eg) with the AMM given a pricing function G(-) and
her beliefs (pa, ug). Next, the type of information event is realized according to 7t and the
LT realizes a shock to her beliefs specified by (va, vg). With probability 7 the LT is unin-
formed and the LP’s beliefs remain (pz, ug). With probability 1 — 7t the LT is informed and
the LP’s beliefs also shift to (va, vg). In either case, once information is realized the LT
then chooses an amount to trade with the AMM. Finally, values and payoffs are realized
according to the terminal portfolios of the LP and LT. Here we set 6 = 1 (no discounting)

and 3 = 1 (the LP exits and enjoys the terminal value of the tokens after one period.).
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In the one-shot game, we solve for the LP’s optimal liquidity supply and show how
it depends on the LP’s beliefs about the probability of informed versus uninformed trad-
ing. We use this simple model to examine the usefulness of the conventional wisdom
from existing automated marketplaces—that liquidity providers should deposit liquidity
in equal (dollar) values—and find that such behavior is typically suboptimal. It is optimal
for the representative liquidity provider only when informed trading is so severe that the
liquidity provider prefers to supply no liquidity. We demonstrate how adverse selection
distorts the quantities of liquidity deposited by providers on automated exchanges. Fi-
nally, we examine how the shape of the AMM pricing function impacts gains to trade

realized by liquidity providers.

4.1 The Liquidity Provider’s Problem in the One-Shot Model

Anticipating the behavior of the liquidity taker, the LP chooses her liquidity deposit to
solve the following program.

max 7t(uaE[xa — eal + ugE[xg — egl)+ (13)

€A,€B

(1 —m)(Evalxa —eal + ugEvg[xg — egl)
s.t. (5)=(6),

0<ei<Ei, Vi

where 7 is the probability of an uninformed trading event. Notice, regardless of whether
the LP experiences an uninformed or informed trading event, the beliefs of the liquidity
taker will result in an ex-post portfolio of the LP according to (5)—(6). These events differ,
however, in how the LP perceives the value of these ex-post portfolios. When the LT
represents an uninformed trade, the LP continues to value her ex-post portfolio according
to her prior beliefs, ;. Instead, when the LT represents an informed trade, the LP values
her ex-post portfolio according to the realized beliefs of the LT, v;. As we show below, the
LP will trade off profits she earns on uninformed trades with losses on informed trades.

Unlike in standard models of exchange subject to adverse selection where market makers
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post prices that reflect the extent of adverse selection, blockchain market makers must
distort their quantity choices for liquidity provision to protect themselves from possible

adverse selection.

4.2 Liquidity Provision with Uninformed Trade Only

Suppose first that m = 1 so that there are only uninformed trades. The LP’s problem (13)

v v
max Ha (]E, / —B€A€B — eA) + ugp (E, / —A€A€B — €B>
€A,€B A VB
174

y
st.0<e <Ey, Wi

simplifies to

Since the LP’s deposit quantities, e;, are not random, her objective may be written as

(Ew VEL - 2) IR/ T55 — (v/TAEA — i%5)? (14)

where w = ,/%. Equation (14) shows how an LP facing only uninformed trade
chooses the optimal liquidity to provide. By changing the quantities of tokens A and B

she deposits, she adjusts the position of the pricing curve the LT will face ex-post.

To better understand (14), consider one possible (suboptimal) deposit choice for the
LP: an equal value deposit, or ex and ep that satisfty paea = pgeg. Notice that all possible
ex-post portfolios for the LP lie on the constant product price function that runs through
the point (e, eg). Moreover, at (ea, eg), the constant product price function has slope
—Ha/ug. Since the constant product price function is convex, any trade by the LT will
appear to happen at favorable prices from the perspective of the LP—that is, terms of
trade are better than —u /ug for the LP regardless of whether the LT is buying token A
or token B. As a result, for such a deposit choice, the LP only stands to gain and suffers

no losses.

Panel (a) of Figure 2 illustrates this result. Given the LP’s beliefs are fixed, facing only

uninformed trades, the straight (blue) line with slope —pa/up reflects the LP’s indiffer-
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ence curve. Since all terminal portfolios lie on the constant product price function, and
this function lies above the LP’s preferences, such a deposit choice by the LP ensures the

LP only stands to gain from trade.
Figure 2: Liquidity Provider’s Deposit Choice
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Panel (a) illustrates a deposit choice of the LP that ensures zero losses if she only faces uninformed liquid-
ity takers. The straight (blue) line shows the indifference curve an LP assuming her beliefs are given by
(LA, np) and do not change when trade takes place. The (orange) curve shows the set of possible ex-post
allocations. Panel (b) shows an LP’s optimal deposit is (typically) not a no loss deposit.

Should the LP provide liquidity different from an equal value deposit, then for small
differences in beliefs from her own, the constant produce price function will provide
prices that appear unfavorable from the perspective of the LP and yield second-order

losses. For this reason, the LP faces a loss function—the second term in (14)—that de-

pends on how her portfolio differs from an equal value (upea = ugep) portfolio.

To the extent v; differs from p;, there are gains to trade. The value of these gains
depend on the term Ew + EL —2 > 0. (The inequality follows directly from Jensen’s
inequality.) As a result, from any equal value deposit, a small perturbation that raises
ea or eg on the margin will induce second-order losses but incur first-order gains by
supporting more trading with uninformed LTs at typically favorable pricing. As a result,
equal-value deposits are generically not optimal for the LP. In general, the LP desires
to provide as much liquidity as possible to facilitate gains to trade, and thus, her budget

constraint must bind (either e = Ea or eg = Eg). We then have the following proposition.
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Proposition 1: Optimal Liquidity with only Uninformed Trade. With only uninformed
trade, the optimal liquidity deposit satisfies:

1\2
ex = Ea, eg = min { (%) ﬁ—’;EA, Eg p, if uAEA < ugEp

132
ej = min { (%) t—/‘iEB,EA , ep = kg, if uaAEA > ugEp.

132
ey = Ea, ey = min { (Ew;]E“’) t—QEA/EB} , if uaEa < ppEp

1 2
e;:mm{(mimj BBER Ep ¢, e =Ep, if taEx > ppEs.

Generically, then, the LP will prefer a deposit choice different from the equal value
portfolio to maximize intermediation profits with uninformed traders. Such a choice is
illustrated in Panel (b) of Figure 2 where, according to Proposition 1 typically, we expect

either ey = E5 or eg = Egp.

4.3 Liquidity Provision with Informed Trade Only

Suppose next that m = 0 so that there are only informed trades. The LP’s problem (13)

max Eva (, / V—BeAeB — eA> +Evp (q / V—AeAeB - eB> (15)
eA,eB VA VB

st.0<e <E, Wi (16)

simplifies to

If we impose a mild assumption that v; is a mean preserving spread of p;, i.e. IE% =1,

the LP’s objective in this case may be written as

(2Ep —2) \/iiaeay/ipes — (viaea — v/ipes) (17)
where ) = , /Y2 XE Equation (17) shows how an LP facing only informed trade chooses

HA BB
the optimal liquidity to provide.
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Since the LP and the LT hold the same ex-post belief, any gains of the LT must reflect
losses borne by the LP. Moreover, since the LT only trades when it is beneficial for herself,
all trades hurt the LP. As a result, the case of only informed trading reflects a case of pure
adverse selection and induced losses for the LP relative to what the value of her wealth

would have been had she simply held her portfolio rather than providing liquidity.'?

. . . . v v . .
The Cauchy-Schwarz inequality implies Ey < |/EZ4E 2 and holds with equality
only when v and vg are perfectly correlated. Since we impose Ev;/p; = 1, the above
inequality implies E\p < 1. Therefore, the LP’s objective function is necessarily non-

positive for any deposit amount, yielding our next proposition.

Proposition 2: No Liquidity Provision with Only Informed Trade. The optimal liquidity

deposit satisfies:

One interpretation of Proposition 2 is consistent with the conventional view in the
nascent literature on AMMs: if arbitrageurs have frictionless access to a centralized ex-
change where price discovery for the tokens takes place as well as the AMM, then in the
absence of fees LPs can only lose by supplying liquidity to the AMM. Fees must then
be imposed by the AMM to make liquidity provision sustainable. In contrast, when arbi-
trageurs face frictions—in our model, this interpretation assumes 7t is not too small—then

the market may be sustainable even in the absence of fees.

4.4 Liquidity Provision with Uninformed and Informed Trading

We now use these results to understand better the general problem (13) with arbitrary 7.

We once again simplify the LP’s objective function as

{71 (le + E%) + (1 —m)2EY — 2| \/itaea/ises — (VEAea — viBes) (18)

12Since we implicitly assume LPs are “slow” traders, we do not consider the opportunity cost of trading
at an AMM herself. See Milionis et al. (2022) for such an analysis.
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As before, we may write the LP’s objective as the sum of a revenue function less losses that
depend on how the LP’s deposit portfolio differs from an equal value portfolio. The rev-
enue function now reflects the probability of realizing an informed versus an uninformed
trade. Similar to the previous cases, when uninformed trades occur the LP realizes profits
and when informed trades occur, the LP realizes losses. If the gains from uninformed
trades are larger than the loss from informed trades, i.e. 7 (Ew + EL1) + (1 —m)2Ey > 2,
then the LP will be willing to provide as much liquidity as possible—up to their ex-ante
resource constraint. Otherwise, the LP will optimally choose to provide no liquidity. We

summarize this result in the next proposition.

Proposition 3: Optimal Liquidity. The optimal liquidity deposit with 7t proportion of

uninformed trade and 1 — 7t proportion of informed trade satisfies

Eyw+Ey & 2
ey = Ea, e = min (Tt (%) +(1 —ﬂ)lEnb) TAEAEpp, if HAEA < upEp
Eyw+Ey & 2
ey, = min (71 <w> +(1 —TI)IEIlI)) E—/‘iEB,EA , e =Ep, if uaEa > ppEp

if 1 (Ew+EL)+(1—m)2EyY >2and

otherwise.

1
We write TT =7 (%) + (1 —m)E to represent the LP’s expected profit mar-

gin from liquidity provision. According to Proposition 3, if TT > 1, then the optimal value
ratio upej /upey satisfies

/

1 : 1
m if Ea < mﬁEB
U’Aet\ E 1
b= AR hlMEs <EA<TPUMES 19)
B
2 if ﬁ25—§EB < Ea

We illustrate Proposition 3 in Figure 3 for cases where the optimal deposit is strictly
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Figure 3: Liquidity Provider’s Optimal Deposit Choice
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The figures illustrate different cases of the optimal liquidity deposit (e’ , e}, ) described in Proposition 3 for
various possible initial endowment points (E 5, Eg). Moving from Panel A to Panel C, we slowly increase
the LP’s initial endowment of token A making it relatively more plentiful and highlighting how according
to Propostion 3, differences in her relative endowments impacts which token she supplies completely.

positive (so TT > 1). We slowly vary the LP’s endowments of tokens (Ea, Eg) making
token A relatively more plentiful as we move from Panel A to Panel C. Initially, when
the LP’s endowment of token A is relatively scarce (shown in Panel A), she deposits all
of token A and an interior amount of token B. When the LP’s endowments are tokens
are relatively balanced (near paEA = pgEp shown in Panel B), she deposits all of both
tokens. When the LP’s endowment of token A is relatively abundant (shown in Panel C),

she deposits all of token B and an interior amount of token A.

Next, we use Proposition 3 to explore the optimality of the conventional wisdom that
liquidity providers should deposit portfolios with equal values. Notice that when IT > 1,
the optimal deposit ratio, tAEA/pgEp is only 1 if the LP’s endowments are relatively
balanced (as in Panel B of Figure 3) and her endowment satisfies uaEx = pugEg. This
suggests that the conventional wisdom the liquidity providers should deposit portfolios
with equal values is typically not profit maximizing for liquidity providers. Furthermore,
Proposition 3 reveals that as TT — 1 then uaej — ugey for all values of Ea, Eg. In other
words, only when the gains from uninformed trades exactly offset the losses from in-

formed trades, then it is optimal for the LP to deposit a portfolio with equal values.

Proposition 3 also suggests an important feature of optimal liquidity provision in our
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model. The liquidity provider optimally supplies her entire endowment to the AMM
when the ratio of her endowments (in token quantities) E5/Ep lies in a region that de-
pends on her relative value of tokens pa/upg as well as the profit margin T1. If we inter-
pret the LP’s endowment in the static model as having arisen from past trades by liquid-
ity takers, then should her endowment lie in this region, she will not “re-balance” her
deposits—she will simply leave her entire endowment on the AMM. We return to this

point in Section 5 when we study dynamics of liquidity provision below.

Note also that the LP’s expected profit margin IT is increasing in the probability that
trades are uninformed, 7t. Hence, there is a minimal value 7 such that IT = 1. We then

have the following Corollary.

Corollary 1: Optimal Value Share. Let 1t be such that TT = 1 and assume paEa # ugEp."?

The equal value deposit ppea = pgep is optimal only when 7t = 7.

4.5 Break Even Proportion of Uninformed Trading

The threshold 7 also sheds light on the extent to which liquidity provision is profitable.
The value of 7t such that TT = 1 depends critically on the distribution of the LT’s beliefs
specified by H;. Since the term w + % is not globally convex in v;, a mean preserving
spread of the LT’s beliefs v; could increase or decrease the threshold 7t. We instead explore
how the profitability of liquidity provision varies with the distribution of the LT’s beliefs

via a numerical example.

To simplify the numerical analysis, consider a special case where one token is a sta-
blecoin whose value does not fluctuate over time such as USDC or Tether.'# We let token
B represent the stable coin and set vg = pug = 1 and hg(vg) = 1 if vg = 1. Then we

have w =1 = }Vl—f\. We assume :L—i is a log-normally distributed random variable with

131f the LP happens to be endowed with an equal value portfolio and profits from liquidity provision
are increasing, then she may deposit in equal value simply because she is constrained. We rule out this
uninteresting case with this assumption.

14In practice, the value of stablecoins do fluctuate at specific points in time, such as when USDC de-
pegged for a short window in April 2023. For our example, we assume liquidity providers and takers
believe the stablecoin peg will hold with certainty.
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E[va/ual = 1 and Var[va/ual = 0'/%\. As a benchmark, we impose cr% = 0.8 consis-

tent with variation in the daily price of ETH-the native cryptocurrency of the Ethereum
blockchain—over the past five years.!> Around this benchmark, we explore how changes
in the variance of beliefs about ETH prices change the threshold probability for liquid-
ity provision to be profitable, t. We plot how this threshold varies with the variance
of the LT’s beliefs in Figure 9, which shows that increases in variance typically decrease
this threshold. ¢ In other words, liquidity provision becomes more profitable (LPs can

tolerate more informed trading) as ETH price risk increases.

4.6 Efficiency Losses from Constant Product Market Making

Finally we examine how the shape of the AMM pricing function impacts gains to trade
realized by liquidity providers. We focus on the (local) convexity of the CPMM price
function and leave a full mechanism design perspective for future work (see Milionis,
Moallemi and Roughgarden (2023b) for such an approach applied in an environment with
only one risky token and limit pocket for the traders.) Specifically, we consider perturbing

the CPMM price formula and study a class of pricing functions given by

(ea + (1 —1)ga) (eg — (1 —T)qB) = eaes (20)

where T € [0,1). Notice that this class of price functions admits the CPMM function
when T = 0. For values of q; close to zero, an increase in T reduces the convexity of the
price function. For larger values of g, it is possible that the price function becomes more
convex. Moreover, for any T > 0, there exist values of q; such that the implied ex-post
portfolio of the LP would have a negative amount of token A or B so we must impose
the boundary conditions, e > qa and eg > (g. Such boundary conditions also tend to

increase the global convexity of the price function.

We illustrate how an increase in T impacts the price function locally in Figure 4 below.

15Based on the Coinbase ETH index price obtained from fred.stlouis.org.
16We experimented with several other distributional assumptions for ZL—? and found similar results. De-
tails are available upon request.
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fred.stlouis.org

The solid curve represents the standard CPMM with T = 0. Around a given deposit point,
(ea, ep), the dashed curve represents how the CPMM function changes when T increases.
If we impose the LP’s ex-post token holdings (xA = ea + qa and xg = ep — ) then we

may re-write (20) as
((1—1)xa +71ea) ((1—1)xg +7Teg) = eaep. (21)

The price function (20) is convex and smoothly decreasing when x > 0. The convexity of

the function is decreasing in t. The boundary conditions on q; simply imply x; > 0.
Figure 4: CPMM with change in local convexity
Us

R ce,

i1 T‘:.'L'r-|_ t Tl“.]:[l] I_-:.'l'ﬁ t T\'.'Ilc] = E€qfQ

€A Qa

The figure illustrates a perturbation of the CPMM curve that decreases the (local) convexity at the LP’s
deposit point. The CPMM curve with T = 0 is displayed as the solid, orange curve while the CPMM curve
with T > 0 is displayed as the dashed, blue curve.

For a given the realization of the LT’s beliefs, (va, vg), the LP’s net proceeds from trade

1 1
X —ep = {1/V_BeAeB_eA} , Yy—ep= [\/V_AeAeB_eB] . (22)
1—-7 VA 1-7 VB

Since net proceeds for both tokens scale by the same factor 1/(1 — ), the LP’s expected

satisfy
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returns also scale by i-. Moreover, gains from uninformed trading and losses from
informed trading scale by the same ratio so that the break-even proportion 7t does not
change with 1. As a result, increased (local) convexity of the CPMM hinders trading
volume and reduces gains to trade for both the LP and the LT.

However, eliminating (global) convexity of the CPMM is not costless. When Tt > 0,
equation 21 has finite positive intercepts: (0, 1J“TTeB) and (HTTe A,0). For such values of T,
trading volume cannot increase beyond the two intercepts, even for more extreme beliefs
of the LT. Holding the LP’s choice of liquidity fixed, we argue that relaxing the local

convexity of the pricing function may be detrimental to the LP’s ex-ante profits.

To illustrate this, it is simplest to consider a piece-wise linear approximation to the
convex pricing function that runs through the LP’s (fixed) choice of liquidity deposit.
With piece-wise linear prices, liquidity takers either do not trade or trade up to one of the
intercept points. For example, suppose py represents the (minus the) slope of the price
function for values of x5 between 0 and e the amount of token A deposited by the LP.
If the beliefs of the LT are more optimistic than py, (so if va/pua > pn), then the LT will
trade up to the intercept where xo = 0—the LT will buy all of token A in the pool at the

prevailing price, pn. Otherwise, for py, > va/pua > 1, the LT will not trade.

Consider a marginal increase in py (in absolute value). Such a change increases the
region of no trade by the LT and thus reduces trading volume on the extensive margin.
Recall that the LP only loses expected value from informed trades (and earns exactly zero
losses on the marginal informed LT who is just indifferent between trading at py and not
trading). Therefore, decreasing the volume of trade reduces the LP’s expected losses from
informed trading. Among uninformed trades, reducing volume is costly on the extensive
margin, but raising the intercept implies the LP realizes increased gains to trade for all
beliefs where the LT continues to trade. An analogous argument occurs if beliefs of the
LT are sufficiently low so that the LT trades to the point where xg = 0. Consequently, it
is possible that the gains from increasing the global convexity of a piece-wise linear price
function outweigh the costs, implying some degree of convexity is desirable. We show

this result both for piece-wise linear prices as well as for the continuously differentiable

32



price function in (20) in Appendix B.

If the distribution of the LT’s beliefs has bounded support, then the potential losses
from reduced (global) convexity for extremal beliefs may be limited with an appropriate
choice of T. In other words, when the LT’s beliefs have bounded support, then there exists
T > 0 that increases the LP’s expected returns. In fact, we generalize these results beyond

the CPMM formula in the next Proposition (proved in Appendix A).

Proposition 4: Pareto Improvement. Consider a convex and smoothly decreasing price
function y = G(x). Assume the distributions of the LT’s valuations of the tokens (v, vg)
have bounded support such that a trade that exhausts one token never happens under
the price function G(x). Then there exists T = T € (0, 1) such that the new price function
(1—1)y+1tep = G((1—1)x+ tea) is less convex at (ea, ep), the LP’s optimal deposit is
the same at T = T as at T = 0, and T = 1 increases both the LP’s and the LT’s expected

returns proportionally by .

In particular, if G(x) is the CPMM function and if |, E} is the support of the distri-

bution of v;, then the result of Proposition 4 hold for all T < T = min {, JEB®B | JEACA }
HAEA HBe€B
with t > 0.

We see that with bounded beliefs, convexity hurts the LP’s expected returns. In fact,
with some additional conditions, the optimal price function for the LP is the linear price

function:
PIXA +XB = Pi1ea +€es, X =ea 23)
PhXA +XB =Pnea +ep, X <ea
where again e; are the LP’s deposit and x; are the tokens left in the pool after the LT’s
trading. Similar to the results in Milionis, Moallemi and Roughgarden (2023b), we have

the following proposition (proved in Appendix C).

Proposition 5: LP’s Optimal Pricing Function Assume the distributions of the values of
the tokens have bounded support and the LT has a budget limit on at least one token, i.e.
x or y can’t go to infinite. Given the LP’s deposit (e, eg), the optimal pricing formula is

the linear pricing formula is one of the following conditions is satisfied:
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1. All trades are uninformed trading, i.e. m=1;

2. The LT’s value (va, vg) follows the same distribution for both informed and unin-
formed trading. And one of the two tokens is a stablecoin. In the case of token A is
stable, it implies vo = pa for sure. Also, there exists some uninformed trading, i.e.

7 #£ 0.

5 AMM Liquidity: Insights from the Dynamic Model

In this section, we solve for and simulate the optimal supply of liquidity in the dynamic
model. We show how the LP’s dynamic problem, which is a function of four state vari-
ables (her endowment of each token and her beliefs about the value of each token), may
be simplified using an auxiliary dynamic problem with a single endogenous state vari-
able and a single exogenous state variable. We use this approach to solve and simulate

the dynamic supply of liquidity.

We use our simulations to study the dynamics of optimal liquidity—that is, we study
how optimal liquidity responds to trading by liquidity takers. First, we show that LP’s
responses typically feature action and inaction regions. For trades (informed or unin-
formed) that have little price impact, LPs typically do not re-balance their liquidity. For
large trades, however, LPs typically re-balance. Moreover, LPs are more likely to re-
balance when trading is uninformed. Finally, we explore our empirical evidence on AMM

trades and liquidity provider behavior and demonstrate similar findings exist in the data.

5.1 The Dynamic Model Solution

Although the liquidity provider has linear (risk-neutral) preferences, the evolution of her
endowments is not immediately linear given the convex pricing curve G and the behavior
of the liquidity takers in each period. Nonetheless, we are able to simplify our dynamic

model which naturally has four state variables.
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Towards this end, observe that Ea 1, Eg+, 1A t, HB + Only show up in the objective func-

tion (7) as products pa+Ea + and pp tEgt. We now show that the same holds in the LP’s

VAt VBt

he r f change in
Y uA,tq) as the rates ot change

constraints in each period. Define (ra+,T8t) = (
the LT’s valuations relative to the LP’s. Let X; ¢ = u;+Ei represent the expected value
of each token the LP has at the end of each period t and Y;; = pit_jei+ represent the

expected value of each token the LP deposits into the pool at the beginning of period t.

Now, suppose that (ra+, 1g+¢) follows the distribution H¢, which is independent of
the current beliefs (na+—1, ugt—1). Then, there is a one-to-one mapping from the initial
values {Ea o, Eg o, a0, U0} and the sequence of {Ea 1, Egt, WA i, 1B 1, €A 1, €B, 1oy, tO the

initial values {Xa 0, Xg 0, LA 0, UB,0} and a sequence of {Xa+, XBt,TAt, TBt, YA t, YB,t}fi 1

Xit
Eir=—
Hit
t
Hit = Hi0 H Tit
s=1
Vit
et = ——.
Hi,t—1

In other words, assuming the change in beliefs is independent of the level of beliefs ren-
ders the LP’s optimal liquidity supply in each period independent of the level of beliefs.
Her payoffs, of course, depend on these levels so we must track their values, but they do

not influence the LP’s optimal supply.

Using notation similar to that from the one-shot model, w; = ,/ :;\—'E and Py = \/TA(TB t,

we may re-write the LP’s dynamic problem as

max Y §'B(1—B)'EXae+Xp4
{YArt}tzl’{YB/t}tzl t=0
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where fort=1,2,3...

YaYet+ (Xat-1—Yar)

<XAt>: YaiYet+ (Xpt-1— Yp,t)
\/erYAt Xai-1— Yat)

Wi/ YAV, + 1Bt (XB -1 — YB,t)

0< Vi <Xy

with prob 7

with prob1—m

given pa o, Xa,0, 18,0, Xg,0. We leave a detailed proof in Appendix D. This result implies
that we may re-write the sequential problem as a dynamic program with value function

V (XA, Xg,¢) (rather than as V (Ea ¢, Eg /1A, 1B,t))-

Next, we argue that this value function is homogeneous with degree one (constant

return to scale).

Proposition 7: Constant Return to Scale For any X¥ , = kX0 and X, = kXp g, it must
be V (X]j\,o, XgO) = V (KXp 0, kXp0) = KV (Xa 0, Xg,0) for any k > 0.

Proposition 7 implies that we may use two one-dimensional functions V*: (0,1] — R

to represent the value function instead of one two-dimensional function V : R — R.

X X
Xa0V (1, ﬁ) Xa0 2 Xgo _ XaoV® (ﬁ) XA0 2 Xpo

V (Xa0,Xgo) = :
’ s X X
X0V <—ng, 1) Xao<Xpo | XpoVA (—X;\8> XA0 < XB,0

(24)
Being able to reduce the value function into the form of a two-dimensional function with

domain (0,1] allows us to numerically solve the value functions and policy functions

through policy function iteration.

5.2 Simulated Dynamics of Liquidity Provider Behavior

We now explore the features of the dynamics of optimal liquidity using simulated data

from our model. Specifically, we consider the case of one risky coin and one stable coin.
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We assume the rate of change of beliefs of the risky coin follows a truncated normal dis-
tribution. We first examine what fraction of each token the LP deposits as a function of
the ratio of the expected value of each token the LP has at the beginning of each period.
Numerical experiments across a wide range of parameters suggest that at least one corner

constraint is always binds as in our static model.!”

Figure 10 displays an illustration of the LP’s optimal deposit strategy for a typical
numerical example (we provide the numerical details in the figure’s description). In the
example, token A is a risky coin and token B is a stable coin whose values never fluctuate.
On the left-hand side of the panel, the LP owns risky coins with lower expected value rel-
ative to the stable coins she owns. In this case, she deposits all of her risky coins with the
AMM and retains a portion of her stable coins. The fraction of stable coins she deposits on
the AMM grows as the ratio of the value of her endowment of token tends towards one.
We see the inverse behavior when instead the LP owns risky coins with greater expected
value relative to the stable coins she owns. In this case, she deposits all of her stable coins
and only a fraction of her risky coins. In this example, the full deposit region—when the
LP deposits all of her endowment of both tokens—is when the expected value of her risky
coin endowment is slightly bigger than that of her stable coin endowment (when Xg/Xa

is close to 1).

Using numerically solved dynamic optimal policy functions, we conduct Monte Carlo
experiments to simulate the dynamic behavior of the LP under different parameteriza-
tions. As shown in Section 2, liquidity providers transact at the AMM rarely compared
to liquidity takers. Our model generates this inactivity endogenously since an LP who

deposits their whole endowment may still do so even after a trade by the liquidity taker.

To understand this inaction, recall from our discussion following Proposition 3 that
there is a range of relative token endowments (given the LP’s beliefs) where the LP finds

it optimal to deposit her entire endowment. Suppose in some period t the LP deposits

17 Qur simulation results below (Figures 5, 10, 11) assume 7t = 0.8, rg,+ = 1 (token B is a stable coin),
Tt follows a normal distribution where the distribution for uninformed trades has mean 1 and standard
deviation 0.5 while for informed trades has mean 1 and standard deviation 0.25 (both distributions are
truncated to a range of 0.5 to 1.5), 6 = 0.99, = 0.01. We simulate conduct 20,000 simulations of activity at
the AMM in our model with each simulation lasting for 500 periods.
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her entire endowment and there is subsequently an uninformed trade. If this trade is
small—it shifts the LP’s ex-post endowment very little—then the LP is likely to remain in
the region where she finds it optimal to supply her entire endowment. (With uninformed
trades, the LP’s relative valuations pa + and pp + do not adjust.) When a large uninformed
trade takes place, the LP is likely to find herself outside of the maximal supply region
and will adjust her balance. However, when a large informed trade takes place, the LP’s
maximal supply region also shifts (simulations suggest this shift is typically in the same
direction as the LT’s trade) and so sometimes the LP will remain in the (new) maximal
supply region. This result suggests that LP’s will trade more frequently when there is

more uninformed trade.

Figure 11 explores this inactivity numerically by examining how the extent of the LP’s
inaction depends on the severity of informed trading. This figure shows that an increase
in m—the degree of uninformed trade—Ileads to a higher probability that the LP will re-
balance her deposits in any given period.'® In other words, we should expect more LP

transactions in pools that feature less informed trading (or less adverse selection).

Regardless of whether the LP faces informed or uninformed trades, when trades are
sufficiently large we expect the liquidity provider to re-balance her deposits in such a
way that adjusts relative prices in the opposite direction of the liquidity taker’s realized
trades. Moreover, it is more likely for the LP to re-balance her deposits following an LT

swap after an uninformed trade relative to an informed trade.

To study how LPs adjust prices empirically, we construct measures of price impact by
LTs and LPs at AMMs. Recall, that the ratio of the quantity of coin A to coin B defines the
marginal price in the liquidity pool. Motivated by this feature of the AMM, we define the

price impact of an LT trade at time t as

7\%T =log (xat/xBt) —log(eat/ept) (25)

18While we display the percent of periods the LP trades, the level of this value is not determined in
our model as we may assume an arbitrary amount of trades by LTs in each period before the LP has the
opportunity to re-balance.
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where e; ; are the quantities prior to the trade and x; ; are quantities immediately after the
trade, as in 7. Similarly, we define the price impact of the LP swap after an LT trade at

time t as

ALY =log (e t11/€8,11) —1og (xa,1/xB1) - (26)

We expect these measures of price impact to be negatively correlated and that the cor-
relation is more negative for uninformed trades than informed trades. Figure 5 illustrates
this result in our numerical simulations. Each panel displays the scatter plot of AL” against
ALT (panel (a) shows this relationship following informed trades and panel (b) shows this
relationship following uninformed trades). In a given period, the LT experiences a shock
to her valuation of token A relative to the LP’s beliefs at the start of the period 14 1 (recall
token B in this simulation is a stable coin). When 14 is larger than 1, the LT becomes
relatively optimistic about token A and so withdraws token A from the pool and deposits
token B. From (25), this swap induces a negative price impact (ALT < 0). Conversely,
when 14+ is smaller than 1, the LT is relatively pessimistic about token A and will induce

a positive price impact AT > 0).

In the figure, darker colors with larger positive LT price impact are associated with
lower values of T4+ (more pessimistic views of the LT) while lighter colors with larger
negative LT price impact are associated with higher values of r ; (more optimistic views
of the LT). There is variation in the implied price impact for a given level of r + because
the state of the AMM at the time of the shock varies (and because the colors represent

bins of the belief update distribution).

For a given level of T4, whether trades are informed or uninformed, we observe
a negative correlation between the LT’s price impact and the LP’s price impact caused
through deposit re-balancing. (In both plots for a given color, we see a strong negative
relationship.) However, for any level of T4, when trades are informed, the LP is less
likely to re-balance their deposits, and, as a result, the distribution of LP price impacts is
(roughly) centered at no price impact. Instead, LPs respond more aggressively to large

trades by uninformed LTs. When examining the overall correlation of the price impact of
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swaps by LTs and LPs, we expect a much weaker correlation for informed trading than

for uninformed trading as shown in Figure 5.

Figure 5: LP Swap Slope against LT Trade Slope
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Scatterplot of price impact of LT swaps (A-T) with price impact of subsequent LP swaps (ALF) from numer-
ical simulation where the value of token A follows a truncated normal distribution and the value of token
B is fixed or stable. Different colors represents different rates of change in the LT’s valuation of token A
relative to the LP’s at the beginning of each period (r4,). Panel (a) shows the cases of informed trades.
Panel (b) shows the cases of uninformed trades. For detailed choices of parameters, see 17.

5.3 Empirical Dynamics of Liquidity Provider Behavior

In Section 2, we used data from Uniswap v2 contract to show that even with a limited
set of actions, many liquidity providers are actively involved in price setting. Specifically,
we observed that many liquidity providers execute swap transactions in pools where
they had also provided liquidity. We also found that many mint transactions, which add
liquidity to a pool, were preceded by swaps that adjust the marginal price in the pool.

In our dynamic model, building on the static framework shown in Figure 3, we charac-
terized how liquidity providers “set prices” (by posting quantities) based on their beliefs.
As liquidity takers post swap transactions, liquidity providers may want to adjust their

positions. Whether they do so depends on the nature of the LT trade. Any LT swap, by

40



definition, changes the relative quantities of pool tokens and, given the CPMM function,
the relative marginal token price. If the swap came from a LT who is a noise trader, the
beliefs of the LP are unchanged. So, to move the pool back towards the LP optimal posi-
tion, they would need to swap in the opposite direction. In contrast, if the LT trade came
from an informed trade, then the beliefs of the LP have updated. In this case, the LP may
wish to swap to to attain the optimal position. However, given the new beliefs centered
at those motivating the last LT trade, there is no bias for the LP to swap in one direction

or the other.

We can use the transaction data for the Uniswap v2 data to examine this behavior em-
pirically. We begin by defining an empirical counterpart to our measures of price impact

as

At = IOg (qa,tl/qb,tl) — 10g (qa,to/qb,to)

where t( are the quantities prior to a swap and t; are quantities immediately after the
swap. We are interested in the price impact of the swap of an LP, AL", and how that

compares to LT swaps prior to t.

In Table 3 we present summary statistics on the typical size of LP and LT price impacts
in our Uniswap data. Note in this table we focus on individual rather than cumulative

trades.

Table 3: Price Impact

Standard

Mean Deviation Min Max

LP 0.002958  0.010522 -0.526232 0.326240
LT 0.001911 0.014523 -7.496103 6.977194

The table presents the average and standard deviation of the absolute value of price impact by LPs
and LTs. The table also includes the smallest and largest price impacts by LPs and LTs. Data is
pulled from all Uniswap v2 pools that were created prior to 2020-07-01 and have more than 100,000
transactions. There are 31 pools. The sample period is from 2020-07-01 to 2024-06-30.

Given our focus on transaction counts in Section 2 above, it is interesting to note that
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a typical swap by an LP is of a comparable size (by price impact) to a typical swap by an
LT. We view this as supporting evidence that LP swap behavior is meaningful for overall

price discovery at AMMs.

Additionally, our model suggests that the response of the LP to LT trade as measured
by the correlation between AL" and ALT should vary with the extent of informed trading
in the market. We pursue an approach to identify the extent of informed trading behavior
in AMMs motivated by ideas in Capponi, Jia and Yu (2024) who use blockchain gas fees
(transaction costs) paid for swaps to categorize informed and uninformed trades. The
logic is that a LT with information that is short-lived will pay a higher mining (gas) fee to
increase the priority of her transaction and ensure it is added to the blockchain quickly.'
Building on this idea, here we categorize a transaction by an LT as an informed trade if
the gas fee is “high.” We define high as a gas fee paid in a specific pool that is in the top

25% decile over the prior (rolling) seven day window in that pool.

Using this categorization, we find that the average (absolute) price impact of an in-
formed trade is roughly 0.0029 and of the same order of magnitude as an LP swap as
reported in Table 3 while the average (absolute) price impact of an uninformed trade is
slightly smaller and roughly 0.0016. Focusing on one specific pool, Table 4 shows the
distribution of the size of trades in the largest pool in our sample, the WETH-USDT pool
where traders may swap WETH for the Tether stable coin USDT.?

Table 7 shows similar results for all pools in our sample. Consistently, we observe the
price impact of a typical swap by an LP is comparable to the price impact of a typical swap
by an LT. While this result holds across most pools for a wide range of the distribution,
from the 5th to the 95th percentile, for some pools we do observe that the LT swaps with
the largest price impact in absolute value tend to be larger than those for LP swaps. We

view this evidence as consistent with our assumption that a typical liquidity provider is

19To expedite the processing of an Ethereum transaction, an LT can increase the gas fee, effectively offer-
ing a higher amount of ETH as an incentive for miners to include it in the next block. This prioritization
mechanism ensures that, during periods of network congestion, transactions with higher fees are processed
ahead of those with lower fees.

20WETH represents “wrapped” ETH which is a smart-contract based representation of the native cryp-
tocurrency of the Ethereum blcockchain, ETH.
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Table 4: Price Impact in the WETH-USDT Pool.

Trader Type 5% 50% 95% Min Max
LP -0.000361  0.000000 0.000535 -0.278843 0.273400
LT -0.000330 -0.000001 0.000327 -0.232827 0.322526
Informed -0.000737 -0.000002 0.000700 -0.232827 0.322526
Noise -0.000241 -0.000001 0.000246 -0.230243 0.234302

The table presents distributional statistics of price impact by LPs and LTs. The table also shows
distributional statistics of price impact by LT trades classified as Informed trades compared to those
classified as uninformed trades. Trades are classified as informed if the gas fee associated with
the swap transaction is in the top 25% quartile of gas fees paid for swaps over the prior (rolling)
seven day window in that pool. Data is pulled from all Uniswap v2 pools that were created prior to
2020-07-01 and have more than 100,000 transactions. There are 31 pools. The sample period is from
2020-07-01 to 2024-06-30.

“slow”—they wish to trade less often and would obtain less transactional priority should

they trade—compared to the typical trader.

We now use this evidence to understand if the dynamics of LP behavior in the data
are consistent with our theory. In our data, we typically have multiple LT swaps in a
row (recall from Table 1 that LT transactions are, by far, the most common). Instead of
focusing on the price impact of a single trade by a liquidity taker, then, we define AL"
as the cumulative price impact of LT trades after the previous LP trade and prior to t.
In other words, the impact of all the LT swaps between two LP swaps. More precisely,
recall that we have labeled all swap transactions as coming from a LP or a LT. Define
Tt = {7 | the trade at time Tis by an LT} and T;p = {t | the trade at time t is by an LP}.
So, the date of the last swap by an LP prior to t is p(t) = max{t € J1p | T < t}. Hence, the

cumulative price impact of all intervening LT trades prior to date t is

> A

TeT T p(t)<T<t

ALT —

Then the price impact A,ET is informed if any of the intervening LT swaps were informed.

This is captured in the indicator function I; as:

ifdte Tir:

1 p(t) < T < tand gas_ishigh
0 otherwise

I =
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Table 5 reports the results of the following regression

ALP = by + byl + boALT 4 AT + e

Table 5: LP swap reaction to LT trade

Sample Period Full v2 era v3 era Full v2 era v3 era Full Full
Intercept b0 0.00010  0.00009  0.00030 - - - -
(0.00008) (0.00008) (0.00030)
Intercept Informed b1 0.00010  0.00010 —0.00008 0.00010  0.00020 —0.00030  0.00010  0.00006
(0.00008) (0.00009) (0.0003) (0.00008) (0.00009) (0.0003) (0.00009) (0.00008)
LT Price Impact b2 —0.2284 —0.2302 —0.1725 —0.2204 —0.2227 —0.1422 —0.2200 —0.2063

(0.0170)  (0.017) (0.096) (0.017) (0.017) (0.080) (0.017) (0.018)
LT Price Impact x has_informed bs  0.2264 0.2053 0.1721 0.2187 0.1985 0.1422 0.2184 0.2039

(0.017) (0.019) (0.096) (0.010) (0.019) (0.080) (0.017) (0.018)
Pool fixed effect No No No Yes Yes Yes Yes No
Month fixed effect No No No No No No Yes No
Pool —Month fixed effect No No No No No No No Yes
# of observations 75,047 64,312 10,735 75,047 64,312 10,735 75,047 75,047
R? 0.025 0.036 0.007 0.045 0.054 0.081 0.046 0.156

ALP is the price impact of LP swap at t. ALT is the price impact of all LT swaps at between the last LP swap
and prior to t. I; is an indicator that is one if the LT swap is identified to be informed. LT swaps are tagged
as informed if their gas fee (transaction cost) is high (top 25% decile of past seven days, by pool). Standard
Errors (in parentheses are heteroscedasticity-robust (HC2). A transaction is classified as belonging to an LP
if: (a) it is a mint or burn; (b) any of the addresses involved in the transaction have a positive balance of
that pool’s tokens at the time of the transaction; or ¢ the swap transaction is paired with a mint transaction.
Each transaction can involve several addresses (both wallets and contracts). A transaction is paired if all
the addresses on both transactions match and the transactions both occur within a three-minute interval.
Data is pulled from all Uniswap v2 pools that were created prior to 2020-07-01 and have more than 100,000
transactions. There are 31 pools. The sample period is from 2020-07-01 to 2024-06-30. The total number of
transactions is 19.2 million. A transaction is defined as a unique call to a Uniswap pool contract as a swap,
mint, or burn, and involves multiple addresses (wallets and contracts) and token transfers.

The focus of our analysis is the reaction of the LP to prior trades of the LT. For LT trades
classified as noise trades, this reaction is b, and for LT trades classified as informed, the
reaction is by 4- bs. Notice in the table that b is negative. The LT actively adjusts marginal
prices in a direction opposite that of the noise trader LT. Also, b, + b3 is approximately
zero. When the intervening swaps were informed, the LP swap is, on average, direction-
less. (See table 5 for results using the full sample as well as on partial samples that include
the periods before and after the introduction of Uniswap v3.) Additionally, we run the
regression with fixed effects for pools, months, and the pool-month combination. The

main result that by < 0 and by + b3 ~ 0 is consistent across all these specifications.
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These findings on the dynamic behavior of liquidity providers in Uniswap v2 are con-
sistent with our theoretical model’s predictions for this same behavior. The fact that there
is systematic variation in how liquidity providers actively set prices on AMMs suggests
the importance of better understanding the role liquidity providers in AMMs play in aid-

ing price discovery for cryptocurrencies.

6 Conclusion

Blockchain technology has spawned a very large variety of cryptocurrency tokens. Given
the large disagreement about their speculative value and heterogeneity about any util-
ity of the tokens, trading the tokens is important. Over the past decade, a large number
of new centralized exchanges have been successful (and unsuccessful) at both generat-
ing large volumes and innovating. The perpetual futures contract is one example of in-
novation (Soska et al. (2021), Christin et al. (2023)). Similarly, Automated Market Mak-
ers (AMM) have innovated trade by designing smart contracts (automated code on the

blockchain) to conduct trade directly on a blockchain.

In this paper, we have explored the key design characteristic of AMM technology,
the pricing curve. Specifically, we look at two aspects related to the pricing curve, G.
First, what is the optimal ratio for deposits? Contrary to conventional AMM wisdom,
depositing tokens in equal value (measured through the lens of the liquidity provider)
is not optimal. Second, we explore the convexity of G and its impact on the liquidity
provider profits. The trade-off is subtle since convexity impacts the profits from trading

with both informed and uninformed liquidity takers.

There are, of course, several important areas we have left for future research. Our
model treats the G function as given. This, along with the “deep pockets” assumption
for the liquidity takers, means the liquidity provider’s decision can be made in isolation
(i.e., atomistic with respect to liquidity takers). In practice, there are multiple AMM ex-

changes. So, thinking about competition across the design of the G function is interesting.
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Second, our model takes a simplified view of the timing of transactions —first, the LP posts
and then the LT trades. Again, in practice, the timing of transactions in a decentralized

blockchain is complicated and potentially strategic.
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A Proof of Optimal Liquidity Provision

LP’s optimal deposit problem is

max 1t(puaE[xa —eal + upE[xg — epl)+
€A,€B

(1 —m)(Evalxa —eal + upEvg[xg — egl)
s.t. (5)-(6),

0<e<E, Wi

Based on equation (5)—(6), we can write down the post-trade portfolio of the LP as

VB VA
XA = 4/ ——€A€B, XB = 4/ ——€EAC€B
VA VB

Then we can write the post-trade net value gains from each token in the hand of the
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LP by depositing as

VB/UB
HA (XA —ea) = HAHUBEAER — HACA
VA/HA

[ va/uaA
up(xg —ep) = HAHBEAECR — LBEB
VB/UB

for uninformed trades and

VAVE
Va(xa —ea) = HAUBEAER — VACA
KA LB

VAVB
Vp(xg —ep) = HAUBEAECR — VBEB
HA LB
for informed trades.

_ [vA/pA _ [YAYB A ; S ’ ;
Denote w = Va7 and Y = TR With assumptions that Ev; = p;, LP’s optimal

deposit problem becomes

€A,€B

1
max {7‘( (]Ew —HE$> +(1 —7T)2]E11):| vVHACAV/LBERB — LAEA — UBER

st.0<e<E, Vi
Ew+E-L

Further denote IT = m——— + (1 — 7)[E{p. We can use the standard Lagrangian method

to solve the above constraint optimization problem. The FOCs are

oL e
= ua (ﬂ HBeB —1> fna—Ea =0

dea HACA

oL HAEA

o~ m —1 g =0
dep HB( HBeB >+n3 &

where 1 is the Lagrangian multiplier for 0 < e; and &; is the Lagrangian multiplier for

e; < Ei.
If TT < 1, the above FOCs only hold when ey = eg = 0. In this casen; > 0 and &; = 0.

If TT > 1, the solution is always at the corner, i.e. at least one of the & > 0. To see
this, consider the interior cases where 1n; = 0 and &; = 0. For the FOCs to hold, we

need TT, /EBEB — T, [EAA — 1 which is impossible. Since TT > 1, if one of TT, /LB<E
HACA UB€B HACA
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and TT % equals to 1, then the other one must be bigger than 1. And it needs the

corresponding &; to be positive for the FOCs to hold.

Therefore, we have the following optimal deposit of the LP

* * . 2HA .
e, = Ea, eg =min {ﬂ i EA/ EB} , ifpaEA < upks

¢4 = min {HZE—iEB,EA}, e, =Ep, if paEA > upEp

if TT > 1 and

if T < 1.

B Proof of Pareto Improvement

Lety = G(x) be a convex and smoothly decreasing price function where eg = G(ea).
Consider a uniform stretch of the function around the initial deposit point (ea, eg): (1 —
T)y + teg = G((1 —7t)x + tea) where T € (0,1). Then the second order derivatives is
g—i% = (1—7)?>G”((1 —1)x +Tea). Therefore, the transformation is less convex around the

initial deposit point (ea, eg) as T increases.

Now we can write the LT’s problem as:

max VA(CA —X) —l—VB(eB —y)
€A,€B

s.t. (1—T)y+Teg = G((1—1)x+ Tea)

Assume the distributions of the LT’s values of the tokens (va, vg) have bounded support
such that a trade that exhausts one token never happens. Then the first order condition

becomes G'((1 —T)x +Tea) = —%. Similar to the CPMM case, the LP’s post-trade port-
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folio satisfies

(1—71)y+71eg =G((1—T)x+Tea)

G/((1—T)x +1ep) = —A

VB

Let (xp,yo) be the post-trade portfolio for the original function, i.e., when T = 0. Let
(xt, yr) be the portfolio for some T € (0,1). Then given %, the ex post portfolios satisties

(1—T)xr+Tea =xg

(1—1)yr+Tea =yo

which can be written as

1
xe—ea =7 (xo—ea)
—T
—ep = L( —ep)
Yr—es =7 Yo—¢B
Therefore, the trading volume is proportionally increased by 1 — 11 = = for every ex

post scenario.

Given the probability of uninformed trading 7, the LP’s expected return with the

transformed price function is

R =E[(mtua + (1 —m)va)(xc —ea) + (mtup + (1 —71)vp) (Y — ep)]

:1%EIE[(7THA + (1 — T[)VA)(X() — eA) -+ (7‘[”3 + (1 — W)VB)(UO _ eB)]

Since the objective is just scaled up by a constant, the optimal deposit decision (e}, eg)

shouldn’t change as well.
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C Cost of Convexity

Again let token B represent a stable coin and set vg = pg = 1 and hg(vg) = 1if vg = 1.

Denote 1A = va/pa. Assume 15 follows a distribution with CDF F(ra). For simplicity,

assume EASA — 1. The results still go through when £2°A equals to some constant other
UBeB HB€B

than 1.

C.1 Piece-wise Linear

Consider the piece-wise linear prices 23. The region of belief where a trade happens with
price py, is when A > pp. From the LP’s perspective, the trading volume in this region
is —ea for token A and pnea for token B. The expected return of the LP from uninformed
trading is

JOO (pn—1)dF(ra)uaea
Ph

with derivative as [1 — F(pn) — (pn — 1)f(pn)lnaea. The first term represents the increased
gains to trade for all beliefs where the LT continues to trade. The second term represents

the reduced trading volume on the margin.

On the other hand, the expected return (negative) of the LP from informed trading is

J (ph—7A)dF(rA)uaen
Ph

with derivative as (1 — F(pn))puaea. Since on the marginal informed LT is just indifferent

between trading and not, the second term in the case of uninformed trades is not here.

Given the proportion of uninformed trades 7, the marginal benefits of increasing py

(increasing convexity) is

[1—F(pn) — mtlprn — Df(pr)lnaea

which has finite number of roots. It implies that some degree of convexity is desirable.
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C.2 Continuously Differentiable Price

Now consider the continuously differentiable price function in 21. Similarly, the region of
belief where a trade happens with price py, is when rp > % From the LP’s perspective,
the trading volume in this region is —ex for token A and ieg for token B. Denote c = 1 €
(1, 00). So, increasing c increases the local convexity. The expected return of the LP from

uninformed trading is

ro(c— 1)dF(ra)uaea

c2
with derivative as [1 — F(c?) — (¢ — 1)f(c?)]uaea. Again the first term represents the in-
creased gains to trade for all beliefs where the LT continues to trade. The second term

represents the reduced trading volume on the margin.

On the other hand, the expected return (negative) of the LP from informed trading is

||, te=rarartaluren

with derivative as [1 — F(c?) + c(c — 1)f(c?)Iuaea. Since ¢ > 1 there is an additional gain

for the LP from reducing the trading volume further.

Given the proportion of uninformed trades 7, the marginal benefits of increasing py

(increasing convexity) is
[1—F(c?) + (¢ —1)((1 —m)e —m)f(c?)uaea

which is always positive for ¢ > . In these cases, increasing (local) convexity is always
beneficial for trades induced by extremal beliefs. However, it reduces the trading volume

and the returns from mild beliefs.

D Proof of Optimal Pricing Function

We can consider the optimal design problem as the LP post the ending position of the

pool given the new valuation of the LT (v, vg) such that the LT is willing to participate
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(Individual Rational) and truthfully report the values (Incentive Compatible).

Assume the LT’s value (va, vg) follows the same distribution for both informed and

uninformed trading. Also, assume the LT has at most Iz token B to trade in.

Let tA = ea —x and tg = eg —y be the net amount of token the LP loses by trading.

With the percentage of uninformed trading 7, the problem can be written as:

max Efy , vg) [= (A + (1 —=7) va) ta (va, vB) — (g + (1 —7) vB) tg (va, VB
s.t. vata (Va, vB) + Vete (VA, VB) = vata (Va, vg) + Vets (VA Vi)
vata (va,ve) +vetg (va,vg) =0

ta (va,vB) <ea, —lg < tp(va,ve) < ep

Since only p = V—Be—i matters in the constraints, the problem can be written as

Va €
ta(p) (mup+ (1 —m)vp) ep tp (P))
E — — — Tiup + (1 —7m) v e
s p[( ea (tup + (1 —7) va)ea ep (mpa + Jva)| ea
t t tg (P tg (P
or 20) B0t () ts (D)
€A €B €B €B
t t
A (p) N B (p) >0
(<% €B
talp) B _tl) _,

Under one of the two conditions, i.e. T = 0 or vo = ua for sure, we know 7y +

(1 —7)va is a constant. So the objective can be simplified. Let —té—i\p) +1 = yl(p),

e ;p) = x(p) and %%ﬁ = 7 (po,p). The problem then has the same expres-

sion as Milionis, Moallemi and Roughgarden (2023b).

maxEp [y (p) — 7 (po, ) x (p)]

s.t. px (p) —y (p) = px (P) —y (P)
px(p)—y(p) =0
y(p) =0, —c<x(p) <1
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E Dimension Reduction of the Dynamic Model

E.1 Proof of Total Value Equivalence

We see that Eat, Egt, A t, Bt only show up in the objective function (7) as products

HatEat and pup+Ept. We need to show that this is also the case for the constraints.

VAt VBt
HAt—17 HAt—1

Remember that (rat, T t) = ( > are the rate of belief change, Xi+ = 1 +Ei+
are the total value of each token LP has at the end of time t and Y+ = pit_1ei+ are the
total value of each token LP deposits into the pool at the beginning of time t. We also
assume that (ra+, 1) follows the distribution G, which is independent of the current

belief of valuations (pa +—1, ug+—1). Then we have the following mappings:

Xit
Eit = —
Hi t
t
Hit = Hi0 H Tit
s=1
_ Yig
€it =
Hit—1

First we can pin down (xa ¢, xg ¢)-the pool position after trade at time t-using Con-

stant Product and LT’s optimality:

[VB1 1 [ VBt/UBt—1
( XAt ) B m@A/teglt B a1\ VAar/Par 1 \/p'A,t—l €A, tHB,t—1€B,t
= e =
XB,t ~——C€A tEB t 1 VA /LA -1
’ v ’ 7
\V VBt 51\ Veu/mp vV HAL—1CAtHB—1€Bt

Combining with Accounting, we have the post-trade token in the hand of LP as

VB,t

Ea \vaieatest + (Eai1—ea)
o VAt

Eat \ Vo CAeB T (Epr1 —ept)

Similar to the static problem, we can write the post-trade values of each token in the
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hand of LP as

VB,t/UB,t—1

( A EaL \ Vahin s VPA1€A B —1€B,t + HA—1 (Ea 1 —eai)
E B VA BAL-1

HBtEB L o i VEA1€AtHB 1€t T HBt—1 (EB 1 —ept)

for uninformed trades, and

VAt VBt
( taEA S S VIR TeA B 18 + A1 (Eaet —eaq)
E o VAt VBt o
HB,tEBt ir T e VA 1CA B, 1€Bt+uBt M1 (Et-1—est)

for informed trades.

VAt VBt

is in ndent of
NA,t—1’MB,t—1> S depe dent o

Therefore, with the assumption that (ra ¢, Tpt) = (
the state variables Ea 11, Eg+—1, A t—1, HB,+—1, We can use a notation similar to that of the

static model, w{ = , /;;\—’: and P = ,/Ta1TB+- And the constraints become:

1
HatEAat | w; VHAL-1€AtHBt-1€B,t T (MAt—1EAt—1 — HAt—1€AL)
HptEB t Wty/HAt1€A tHBt 168t T (MBt-1EBt-1 — HBt-1€B,t)

for uninformed trades, and

< HAtEAL ) _ ( WPiy/HA L 1€A 1B, 168t T TAt (MAt-1EA -1 — HAt-1€At) >

uptEpt Pt/BA - 1€A,tHBt 1Bt + T8t (4Bt—1EBt-1 — 1B t-1€Bt)

for informed trades.
Now we have that Ea 1, Eg 1, 1A t, 1B+ only show up both in the objective function and
the constraints as products ua+Ea+ and pgEgt. By changing the sequence of variables

o0 o0 .
{EA,’U EB,t/ HA t, UBts €At/ eB,t}t:1 to {XA,t/ XB,t/ TAt,TBt/ YA,t/ YB,t}t:1 as we define above, the

problem can be written as:

max Z §'B(1—B)' E [Xar+ Xp 4]
{YAt}t 1{Y3t}t 1 t=0
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where fort=1,2,3...

with prob 7
Wi/ YarYst + (Xpt—1— YBt)

P/ YarYBe +Tat (Xat—1—Yar)
P/ YarYte + 7Bt (XBt—1— YBt)

0< Vi <Xy

with prob1—m

.
E th YaiYet+ (Xat—1—Yar)
Y

given pa o, XA 0, 18,0, XB,0-

E.2 Proof of Constant Returns to Scale

We need to show that for any X]/‘\/0 = kXa,0 and Xlé,o = kXg,o, it must be V (X]/Q\,O’ Xlgl()) =
Vv (kXA,(), kXB,O) =kV (XA,Oz XB,()) for any k > 0.

(0.9]
To do that, we can show that for any realization of {ra 1, 8 t };—;, We have {X‘/i/t, Xlé,t }tzl =

(kXA t, kXBIt},fi 1, then the objective function implies the above statement directly.

Notice that the assumption of {ra , g1}~ is an independent process of the pool posi-

tion and LP’s move is needed here.

o0
Let {Y/*\,t, Yi 1 }tzl be the optimal deposits for X o, Xg 0, {TAt, T8 t}1q and together they

induce {Xa 1, XB,t}ioq-

We can do this by two steps.

(0]
1. The first step is to show that { kYA o kYE,t}t_1 is a feasible sequence of deposit for
X§ 0 X5 o, and they induce {kX,t, kXg, %, which implies that V (X5, X, ) >

kV (Xa,0,XB0);

2. The second step is to show that there’s no other deposit for XE\IO, Xlﬁ,o that can achieve

higher value than kY} , kY; , induce, ie. V (X} o, Xk ) <KV (X0, Xso)
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Let us first show that V (X‘j\/O, Xlé,o) > kV (Xa,0,Xo)-

Given {ra 1, Tg t};oq, it is easy to see that kY3  kYg 1 is feasible given (Xl/‘\,til, Xlé,pl) =
(kXA t—1, kXBt—1)-

0< Yl*,t < Xi,t—l =0< kY{k’t < kXi,t—l

then it implies for next period

TBt

SALY* kY* + <kXA 1 — kY* )

TAt At B,t , At )
Kk ALY kY: 4 (kX ey with prob 7
( XA,t ) _ Bt - AtT Bt Bt—1 Bt

k * * *
XE 1 IATBARYR KV T (KX — Y
\/T‘A,trB,th/*\lthE/t + TB,t (kXB,t—l — kYE,t)

[ KXax
\ KXay

Therefore, we construct a feasible sequence {X}ilt, Xlé,t}:; = {kXa 1, kXgt}ioq by de-

N—

with prob 1 —m

o0
positing {kY/*\’t, kYE,t}t ) for any realization {rx t, T‘B’t},([)i 1- We don’t know if this is opti-

mal for X‘j\/o, Xlé,o- But at least it implies that V <X]§\,0, Xlé,o) > kV (Xa,0,XBo)-

Next we show that V (le\ o XE 0) < kV (Xa,0,XB,0). In other words, no deposit can
achieve higher value.
o0
Suppose for some realization {ra ¢, YB,t}fi 1 there exist {Y;‘\kt, ngt} Y such that the
7 7 t:

corresponding Xfli yields

o0 o

DB AP (X Xas) > Y 8'B (1—B)' (X + KXo

t=0 t=0

Then for (Xa 0, Xg,0), we can use deposit 1 Y;¥, which by the same logic as in step one, is

feasible and yields (%Xj‘\]ft, %XE‘}). And it gives
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(9]
which is contradicted to the definition that {Yj{\ o Y t} . is optimal.
4 4 t:

Therefore, together we have V (kXa o, kXg o) = kV (Xa 0, Xg,0)-

F Additional Tables and Figures

Table 6: LP Transactions - Paired

burn mint swap

Full Sample: 2020-07-01 - 2024-06-30

Naked 149,855 169,015 81,686
Paired 56 27,113 27,116
Total 149,911 196,128 108, 802

v2 Dominant Contract: 2020-07-01 - 2021-05-31

Naked 112,719 140,452 63,789
Paired 43 16,911 16,907
Total 112,762 157,363 80, 696

v3 Dominant Contract: 2021-06-01 - 2024-06-30

Naked 37,136 28,563 17,897
Paired 13 10,202 10,209
Total 37,149 38,765 28,106

A transaction is classified as belonging to an LP if: (a) it is a mint or burn; (b) any of the addresses involved
in the transaction have a positive balance of that pool’s tokens at the time of the transaction; or (c) the swap
transaction is paired with a mint transaction. Each transaction can involve several addresses (both wallets
and contracts). A transaction is paired if all the addresses on both transactions match and the transactions
both occur within a three-minute interval. Data is pulled from all Uniswap v2 pools that were created
prior to 2020-07-01 and have more than 100,000 transactions. There are 31 pools. The sample period is from
2020-07-01 to 2024-06-30. The total number of transactions is 19.2 million. A transaction is defined as a
unique call to a Uniswap pool contract as a swap, mint, or burn, and involves multiple addresses (wallets
and contracts) and token transfers.
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Figure 6: Uniswap Volume for v2 and v3
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Volume of trade on Uniswap across all pools measured in BTC. Uniswap v2 has mint and burn liquidity
functions to add or remove coins from a pool. Uniswap v3 allows LPs to specify custom price ranges in
which their liquidity is active. Volume for Uniswap v1 and v4 is negligible. Source: https://dune.com/.
Monthly trading volume in dollars is converted to BTC using the average monthly USD/BTC exchange
rate, computed from daily price data provided by the Federal Reserve Economic Data (FRED).
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Figure 7: Swap Trades by LPs
(a) Swaps
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(b) Swaps Paired with Mints
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Panel (a) shows the proportion of LP transactions that are swaps. Panel (b) shows the proportion of mint
transactions that are paired with a swap transaction. A transaction is classified as belonging to an LP if:
(a) it is a mint or burn; (b) any of the addresses involved in the transaction have a positive balance of that
pool’s tokens at the time of the transaction; or c¢ the swap transaction is paired with a mint transaction.
Each transaction can involve several addresses (both wallets and contracts). A transaction is paired if all
the addresses on both transactions match and the transactions both occur within a three-minute interval.
Data is pulled from all Uniswap v2 pools that were created prior to 2020-07-01 and have more than 100,000
transactions. This subsample is the period where v2 was the dominant contract. There are 31 pools. The
sample period is from 2020-07-01 to 2021-05-31. The total number of transactions is 9.5 million. A transac-
tion is defined as a unique call to a Uniswap pool contract as a swap, mint, or burn, and involves multiple
addresses (wallets and contracts) and token transfers.



Figure 8: Share of Paired Transactions

Share of Paired Transactions
Percentage of LP mints paired with a swap
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The proportion of mint transactions that are paired with a swap transaction by month. A transaction is
classified as belonging to an LP if: (a) it is a mint or burn; (b) any of the addresses involved in the transaction
have a positive balance of that pool’s tokens at the time of the transaction; or c the swap transaction is paired
with a mint transaction. Each transaction can involve several addresses (both wallets and contracts). A
transaction is paired if all the addresses on both transactions match and the transactions both occur within
a three-minute interval. Data is pulled from all Uniswap v2 pools that were created prior to 2020-07-01 and
have more than 100,000 transactions. There are 31 pools. The sample period is from 2020-07-01 to 2024-06-
30. The total number of transactions is 19.2 million. A transaction is defined as a unique call to a Uniswap
pool contract as a swap, mint, or burn, and involves multiple addresses (wallets and contracts) and token
transfers.
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Figure 9: m against variance of v
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The break even proportion of uninformed trade for liquidity provision against the variance of the value
change of token A, given token B is a stable coin. It shows that the break even level goes down with the
variance, which suggests liquidity provision becomes more profitable as liquidity traders’ beliefs become
more disperse.
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Figure 10: Optimal Policy Functions

g
o

=
=)
|

4
©
o
©

o
o
o
o

°
IS
I
IS

o
)

Fraction of LP endowment deposited

Fraction of LP endowment deposited

—— Token A —— Token A
Token B Token B
0.0 4 0.0
0.0 0:2 074 0:6 0?8 1.0 0.0 012 0:4 OTG 0?8 1.0

XalXp XalXa
The figure displays the LP’s optimal deposit policy functions for various values of her state, represented as
the ratio of the value of her endowment of token A to the value of her endowment of token B at the start
of the period (or its inverse). Each panel displays the fraction of her endowment of tokens A and B that
she deposits at the AMM as a function of this state variable. These policy functions were obtained for a
numerical simulation. For detailed choices of parameters, see 17.

Figure 11: Inactivity of Liquidity Providers
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The figure displays the percentage of all swaps conducted by LPs in our numerical simulation as a function
of the extent of uninformed trading, . When this percentage is smaller than 0.5, it reflects periods in the
simulation where the LP does not adjust her portfolio following previous trade by the LT. In this numerical
simulation, token B is set as a stable coin and the values of token A follow a truncated normal distribution.
For detailed choices of parameters, see 17.
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Table 7: Price Impact of LPs and LTs by Pool.

Pool

Type

5%

50%

95%

Min

Max

CEL-WETH

LP

LT
Informed
Noise

-0.019008
-0.025152
-0.034065
-0.021682

-0.000088
-0.000095
-0.000158
-0.000083

0.019823
0.025556
0.033186
0.022608

-0.124251
-1.222129
-0.895435
-1.222129

0.101654
2.320158
2.320158
0.663037

COMP-WETH

LP

LT
Informed
Noise

-0.005833
-0.013155
-0.018981
-0.010440

0.000174
0.000013
-0.000000
0.000018

0.022375
0.013184
0.018419
0.010974

-0.076514
-7.496103
-4.216026
-7.496103

0.115606
2.783089
1.102276
2.783089

DAI-MKR

LP
LT
Informed

Noise

0.022853
-0.002773
-0.003569
-0.002496

0.024274
-0.000147
-0.000517
-0.000069

0.029212
0.002229
0.002788
0.002021

0.022695
-0.684456
-0.684456
-0.277409

0.029761
4.471649
0.499704
4.471649

DAI-USDC

LP

LT
Informed
Noise

-0.002194
-0.002277
-0.003420
-0.001842

0.000003
0.000001
0.000001
0.000001

0.006046
0.002241
0.003305
0.001835

-0.007676
-0.178995
-0.176501
-0.178995

0.011746
0.221806
0.221806
0.135151

DAI-USDT

LP

LT
Informed
Noise

-0.004179
-0.003262
-0.004558
-0.002826

-0.000004
0.000000
-0.000000
0.000000

0.003937
0.003272
0.004693
0.002788

-0.011912
-5.489722
-1.560066
-5.489722

0.007690
1.176629
1.176629
0.512787

DAI-WETH

LP

LT
Informed
Noise

-0.001208
-0.001548
-0.002662
-0.001064

-0.000000
-0.000000
-0.000000
-0.000000

0.001294
0.001594
0.002718
0.001103

-0.141629
-1.054344
-0.682491
-1.054344

0.144807
1.545626
0.419199
1.545626

HEX-USDC

LP

LT
Informed
Noise

-0.006601
-0.016694
-0.020806
-0.015019

0.001632
-0.000261
-0.000296
-0.000250

0.024926
0.018381
0.027118
0.015279

-0.060493
-6.502482
-6.498733
-6.502482

0.140660
6.977194
6.977194
2.701488

HEX-WETH

LpP
LT

-0.003425
-0.009227

-0.000030
-0.000206
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0.005687
0.010673

-0.055129
-3.839029

0.060230
4.952318



Table 7 — continued from previous page

Pool

Type

5%

50%

95%

Min

Max

Informed

Noise

-0.013632
-0.007484

-0.000252
-0.000195

0.019413
0.008219

-2.526518
-3.839029

4.952318
2.466702

LINK-WETH

LP

LT
Informed
Noise

-0.001386
-0.004160
-0.005813
-0.003555

0.000022
0.000002
-0.000001
0.000002

0.001994
0.004120
0.005716
0.003497

-0.051710
-2.645252
-0.756233
-2.645252

0.058549
1.573756
0.891011
1.573756

LRC-WETH

LP

LT
Informed
Noise

-0.003021
-0.023721
-0.029764
-0.021543

0.000096
-0.000006
0.000258
-0.000015

0.017321
0.023445
0.032368
0.019676

-0.057972
-2.417452
-2.417452
-2.345306

0.057807
1.441687
1.441687
1.228012

MANA-WETH

LP
LT
Informed

Noise

-0.018598
-0.020260
-0.028621
-0.016974

0.003434
-0.000000
-0.000014
-0.000000

0.032088
0.020070
0.030003
0.016343

-0.053487
-2.960467
-2.960467
-2.687419

0.080270
1.719663
1.719663
1.711054

MATIC-WETH

LP

LT
Informed
Noise

-0.017385
-0.009910
-0.015221
-0.007794

-0.000073
-0.000025
-0.000027
-0.000025

0.012818
0.010137
0.016651
0.007464

-0.099014
-3.689463
-2.018141
-3.689463

0.084713
3.431068
3.431068
1.711428

MKR-WETH

LP

LT
Informed
Noise

-0.006637
-0.007169
-0.009965
-0.006113

-0.000598
0.000000
-0.000000
0.000000

0.049773
0.006948
0.009685
0.005965

-0.023171
-0.431381
-0.302546
-0.431381

0.080592
0.454065
0.454065
0.290323

PAXG-WETH

LP

LT
Informed
Noise

-0.022055
-0.009833
-0.013534
-0.008736

-0.000284
-0.000009
-0.000016
-0.000008

0.021186
0.010149
0.015665
0.008392

-0.059943
-0.372182
-0.312674
-0.372182

0.059336
0.386372
0.320812
0.386372

QNT-WETH

LP

LT
Informed
Noise

-0.019505
-0.028062
-0.036108
-0.024025

0.001533
-0.000339
-0.000500
-0.000308

0.028131
0.029270
0.039161
0.025175

-0.122191
-3.155449
-2.856490
-3.155449

0.218000
4.539785
4.539785
1.209371
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Table 7 — continued from previous page

Pool

Type

5%

50%

95%

Min

Max

REN-WETH

LP
LT
Informed

Noise

-0.011550
-0.015423
-0.020305
-0.013353

-0.000028
-0.000038
-0.000120
-0.000031

0.009614
0.015180
0.020391
0.013068

-0.043950
-0.791739
-0.532673
-0.791739

0.026732
0.834232
0.834232
0.765245

RNDR-WETH

LP
LT
Informed

Noise

-0.045083
-0.056394
-0.072629
-0.049457

0.036478
-0.000467
-0.000059
-0.000547

0.157010
0.057643
0.079192
0.048709

-0.193828
-4.619541
-3.097615
-4.619541

0.299502
2.397623
1.758754
2.397623

RSR-WETH

LP

LT
Informed
Noise

-0.005970
-0.013662
-0.019359
-0.011294

-0.000041
-0.000151
-0.000202
-0.000139

0.008135
0.014059
0.017951
0.012153

-0.024516
-0.505260
-0.505260
-0.399528

0.096186
0.533010
0.533010
0.416920

SNX-WETH

LP
LT
Informed

Noise

-0.009840
-0.011296
-0.014557
-0.009860

-0.000063
-0.000029
-0.000031
-0.000029

0.006957
0.011529
0.015854
0.009867

-0.135156
-1.777572
-0.739633
-1.777572

0.141418
2.181157
0.635834
2.181157

STAKE-WETH

LP

LT
Informed
Noise

-0.006568
-0.015172
-0.019871
-0.012978

-0.000390
-0.000143
-0.000228
-0.000127

0.006901
0.015630
0.020297
0.013479

-0.060975
-0.661681
-0.661681
-0.407096

0.102807
1.390066
1.390066
0.374979

UBT-WETH

LP

LT
Informed
Noise

-0.013436
-0.023418
-0.028200
-0.021631

-0.000046
-0.000272
-0.000318
-0.000260

0.017058
0.024239
0.030909
0.021349

-0.056210
-2.173492
-2.173492
-0.611111

0.041197
0.684236
0.530942
0.684236

USDC-USDT

LP
LT
Informed

Noise

-0.003526
-0.001345
-0.002029
-0.001137

-0.000000
-0.000003
-0.000007
-0.000002

0.002146
0.001394
0.002096
0.001157

-0.016443
-0.415557
-0.415557
-0.154831

0.010921
0.396513
0.396513
0.145328

USDC-WETH

LpP
LT

Informed

-0.000452
-0.000362
-0.000828

-0.000001
-0.000000
-0.000000
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0.000285
0.000368
0.000936

-0.013262
-0.445412
-0.445412

0.044963
0.422483
0.422483



Table 7 — continued from previous page

Pool

Type

5%

50%

95%

Min

Max

Noise

-0.000253

-0.000000

0.000242

-0.351411

0.349653

WBTC-WETH

LP

LT
Informed
Noise

-0.001434
-0.001605
-0.002635
-0.001204

-0.000002
-0.000002
-0.000003
-0.000002

0.001369
0.001647
0.002659
0.001203

-0.038737
-2.622859
-2.622859
-1.056087

0.039957
1.285458
1.285458
0.848669

WETH-DMG

LP
LT
Informed

Noise

-0.015085
-0.015825
-0.018714
-0.014540

0.000169
0.000177
0.000306
0.000145

0.010431
0.014510
0.018980
0.012645

-0.050471
-4.025062
-0.769612
-4.025062

0.065274
0.618852
0.618852
0.564875

WETH-EN]

LP

LT
Informed
Noise

-0.011665
-0.020387
-0.028719
-0.017228

-0.000202
0.000021
0.000014
0.000023

0.010551
0.020311
0.027724
0.017054

-0.045953
-4.485019
-4.485019
-2.771008

0.034753
2.492653
1.763173
2.492653

WETH-FOX

LP
LT
Informed

Noise

-0.005538
-0.006630
-0.008960
-0.005380

-0.000014
-0.000054
-0.000053
-0.000054

0.000939
0.006748
0.008903
0.005436

-0.192240
-0.426760
-0.406457
-0.426760

0.239064
0.417105
0.357383
0.417105

WETH-HEX2T

LP
LT
Informed

Noise

-0.048888
-0.032260
-0.050251
-0.025834

0.000292
0.000276
0.000744
0.000207

0.051842
0.030335
0.049012
0.022002

-0.526232
-4.693004
-4.693004
-2.669469

0.326240
4.824305
4.824305
2.209537

WETH-USDT

LP

LT
Informed
Noise

-0.000361
-0.000330
-0.000737
-0.000241

0.000000
-0.000001
-0.000002
-0.000001

0.000535
0.000327
0.000700
0.000246

-0.278843
-0.232827
-0.232827
-0.230243

0.273400
0.322526
0.322526
0.234302

XOR-WETH

LP
LT
Informed

Noise

-0.011513
-0.070346
-0.055550
-0.075187

-0.000186
-0.000247

0.000024
-0.000353

0.009555
0.083216
0.119308
0.067829

-0.103902
-6.086125
-6.086125
-3.353420

0.096408
5.036696
5.036696
1.164287

XRT-WETH

LP

-0.043845

0.001514
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0.048237

-0.203818

0.209805



Table 7 — continued from previous page

Pool Type 5% 50% 95% Min Max

LT -0.025771 -0.000424 0.026596 -0.651707 0.575380
Informed -0.033454 -0.000695 0.033175 -0.651707 0.575380
Noise -0.021270 -0.000382 0.022934 -0.406637 0.455064

The table presents distributional statistics of price impact by LPs and LTs and by
Informed and Uninformed LT swaps for each AMM pool in our sample. Trades are
classified as informed if the gas fee associated with the swap transaction is in the top
25% quartile of gas fees paid for swaps over the prior (rolling) seven day window in that
pool. Data is pulled from all Uniswap v2 pools that were created prior to 2020-07-01 and
have more than 100,000 transactions. The sample period is from 2020-07-01 to 2024-06-30.
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