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Abstract:
Central limit order books, such as those used on traditional exchanges, are impractical
with blockchain technology. Instead, DeFi exchanges like Uniswap and Curve use Auto-
mated Market Makers (AMMs) to facilitate trading. AMMs employ a predefined pricing
function based on token quantities to determine trade terms. To understand price discov-
ery and market impact in this setting, we characterize the optimal quantity provision of
liquidity providers. We find theoretically and empirically that price impact depends not
only on trade size but also on the dynamics of liquidity provision. Liquidity providers re-
spond to trading activity by adjusting their positions. Using data from 31 large Uniswap
v2 pools, we characterize the price-setting behavior of liquidity providers. Consistent
with our dynamic model, the price impact of active liquidity providers’ trade is in an
opposite direction to the prior trades of liquidity takers particularly when that liquidity
trade is likely to be uninformed.

*We thank Bruno Biais and Cyril Monnet and participants at conferences and seminar audiences at the
American Finance Association 2025 Meeting, CMU Secure Blockchain Summit, Ripple UBRI Partners Con-
ference, HEC Paris Blockchain and Digital Assets Conference, the Richmond Fed, the Finance Theory Group
Spring 2024 Meeting, the Federal Reserve Bank of Philadelphia, the Rice-Lemma Monetary Conference, the
2024 SFS Cavalcade, the 2024 Winter Meeting of the Society for Economic Dynamics, and the 2025 Annual
Meeting of the Society for the Advancement of Economic Theory for useful comments and discussions.
We are especially grateful to Nicolas Bonneton, Chuck Fang, Ji Hee Yoon, and Julien Prat for insightful
discussions. We are also grateful for the financial support of the Ripple Foundation. Contact authors at:
azj@andrew.cmu.edu.

1

azj@andrew.cmu.edu


1 Introduction

Centralized exchanges for cryptocurrencies like Binance, Coinbase, FTX, and Kraken in-

termediate trade with a central limit order book. A central limit order book is constructed

from participants’ posts of quantity and price pairs they are willing to trade. This facili-

tates price discovery through matching buy and sell orders. Like the similar mechanisms

we see for trading equities (NASDAQ for example), settlement of the trades happens later

and not directly on the cryptocurrency ledger. For example, Bitcoin trades at Coinbase are

recorded only by Coinbase. Updates to the Bitcoin ledger happen only infrequently when

traders deposit or withdraw from the exchange.

In contrast, decentralized finance (DeFi) exchanges facilitate trade directly using a

blockchain. The computer codes that control the DeFi exchange, called smart contracts,

and the messages traders use to execute transactions are recorded “on-chain” in the de-

centralized blockchain by the decentralized network of ledger validators (“miners”). This

technology is currently incapable of replicating a central limit order book. The volume

and speed of messages needed to implement a limit order book is not practical and is

prohibitively expensive with most decentralized blockchains. As a consequence, decen-

tralized exchanges, such as those developed by Uniswap or Curve, have created Auto-

mated Market Makers (AMMs) to intermediate trade. These alternatives to centralized

markets now account for a large volume of cryptocurrency trade. From January 2024 to

May 2025, decentralized exchanges processed an average of roughly $210 billion of cryp-

tocurrency spot transactions per month. As of May 2025, decentralized exchange spot

transaction volume is approximately 20% of the cryptocurrency spot transaction volume

on centralized exchanges.

To intermediate trade on blockchain with (far) fewer messages than a centralized

exchange, AMMs limit traders to posting only quantities. The smart contract code de-

fines trade in a liquidity pool with functions for adding (minting), removing (burning),

or exchanging (swapping) the two coins (or tokens) that constitute the pool. Liquidity

providers (LPs) supply a portfolio of two tokens to the AMM pool. Liquidity takers (LTs)
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may swap one token for the other. The rate of this swap—effectively, the relative price

of the two tokens—is a coded function of relative quantities of the tokens posted and

swapped to date. For example, the constant-product market maker (CPMM) implies the

marginal relative price of the two tokens is the ratio of the current balance of tokens.

To understand how DeFi markets facilitate price discovery and to measure price im-

pact of trades, we study the dynamic provision of cryptocurrency quantities to a liquidity

pool. Specifically, we focus on liquidity providers as they play an active role in price dis-

covery by choosing the liquidity they supply in response both to information about coin

values and to information about the distribution of future liquidity trades. Additionally,

through our model we see that liquidity providers play an important role in understand-

ing the price impact of AMM trades as their liquidity supply and thus prices respond

directly to trades conducted by liquidity takers.

To motivate our study of the strategic behavior of liquidity providers, we use data

from Uniswap v2 (“version 2")1 where the liquidity provision functions in the Uniswap

smart contract are particularly stark and limited to adding (“mint”) or removing (“burn”)

coins at the current ratio of coins in the pool. Here, liquidity mints or burns do not change

the marginal price of the coins in the pool. We document that many liquidity providers

are active in the price-setting process. Trades by LPs do constitute a small percent of the

overall trade as most of the trade is swaps by LTs. However, the majority of the liquidity

providers are active in the sense that a sizable proportion of their transactions involve

the swap transaction (liquidity taking). When liquidity providers swap against their own

pool, they directly impact prices faced by other liquidity takers at the AMM exchange.

To better understand how liquidity providers set prices and therefore explore the im-

pact of trades on liquidity providers’ price setting behavior, we build a dynamic model

of AMM liquidity provision. The basic tradeoff in our model for the liquidity provider is

familiar. We assume liquidity takers may be “informed” or “uninformed” giving rise to

1Uniswap has augmented their pricing functions to offer liquidity providers more direct control over
their liquidity in Uniswap v3 and most recently v4. We view the data from v2 as particularly insightful
since the limited choices liquidity providers allows us to measure their degree of activeness with their
swap transaction behavior.
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a classic form of adverse selection in asset markets (as in Glosten and Milgrom (1985)).

With AMMs, what creates this structure is timing. We posit that liquidity providers are

“slow.” They post their coins to an AMM and then a liquidity taker trades. Liquidity

takers are “fast” and able to attain priority for blockchain execution. The liquidity taker

may be trading for reasons that are orthogonal to the public information (akin to a private

value). Alternatively, the trader may be trading having seen an update to public informa-

tion about coin prices (a common value)—sometimes referred to as “impermanent loss”

in AMM documentation. In either case, the liquidity provider cannot avoid the “fast”

liquidity taker.

Introducing this conventional friction allows us explore how adverse selection dis-

torts the amount of liquidity contributed by providers who must balance profits they earn

from uninformed liquidity takers (noise traders) with the losses that arise from trading

with informed liquidity takers. Our results provide AMM analogs to those in Glosten and

Milgrom (1985) in a smart contract setting and offer a new interpretation of impermanent

loss—committing to trade with informed liquidity takers at “stale” prices—stemming

from a traditional notion of adverse selection. While in Glosten and Milgrom (1985) liq-

uidity providers distort prices to protect themselves from informed trading losses, such

distortions may only manifest in the quantities of deposits liquidity providers post in the

AMM.

The risk of trading against a better informed liquidity taker is an important consider-

ation for the liquidity provider. However, our model does not assume perfect and con-

tinuous “arbitrageurs” whose AMM trades reflect a single agreed-upon external “market

price.” In our setting, some traders may trade for reasons orthogonal to current market

prices should they require liquidity—i.e., the very reason the market might exist. Our

setting allows for traders’ beliefs to be updated by new information that, say, reflects

information from a posted price on a central exchange. If the risk of that happening is

sufficiently high, the liquidity provider will choose not to post liquidity. However, we

do not model that event as an arbitrage. The costs to moving tokens between exchanges

and decentralized exchanges (an on-chain transaction) is not trivial. Perhaps more im-
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portantly, a coin owned indirectly on an exchange is not a perfect substitute for owning

the same coin directly on a blockchain. The bankruptcy of an exchange (FTX and others)

or the loss of a private key are distinct risks. We are agnostic as to whether ownership

through an exchange is better or worse than ownership on-chain. Security, convenience,

and liquidity properties can all differ. Our point here is simply that they are not identical.

Lastly, there is a large number of tokens, some of which have a sizable implied market

capitalization, that are not listed on any centralized exchange. For these tokens, there is no

applicable “market price” from a centralized exchange and our theory provides guidance

on the price discovery process for such tokens.

Our model has interesting implications for the dynamics of liquidity provision. We

show that our model generates endogenous inactivity by liquidity providers. More pre-

cisely, even though the liquidity providers have the option to re-balance their liquidity

on deposit after each trade by a liquidity taker, often they optimally do not do so. This

endogenous inactivity arises because of our assumption that the LP is risk neutral and

(despite the convexity arising from the exogenous pricing function) finds it optimal to

supply her entire endowment of tokens for a range of relative prices—a maximal supply

region. If an LT trade leaves the LP in this maximal supply region, then she will not re-

balance her liquidity deposit. If an LT trade results in LP (ex post) balances outside of this

region, then the LP will re-balance back to the boundary of the maximal supply region.

While this inaction region does not respond to uninformed trades at the AMM, it does

shift when informed trades arrive. As a result, the extent of endogenous inaction depends

on the relative proportion of informed versus uninformed trading. Indeed, these model

dynamics give rise to predictions for the behavior of LPs. First, liquidity providers typi-

cally trade against liquidity takers; LP trades (when they happen) tend to move relative

prices at the AMM in the opposite direction of trades completed by LTs. Second, liquidity

providers are more likely to be active—are more likely to re-balance deposits—in markets

with more uninformed trade.

The empirical dynamics of liquidity provider behavior in Uniswap v2 are consistent

with these model predictions. Swaps—price setting behavior—completed by liquidity
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providers tend to impact relative prices in the opposite direction of (cumulative) trades

completed by liquidity takers. Further, we adopt an empirical strategy use to identify

informed trading in the Ethereum ecosystem as suggested by Capponi, Jia and Yu (2024)

and aligned with ideas from the high-frequency trading literature.2 The idea is that in-

formed traders are more likely to be price sensitive. As a result, they should demand

more blockchain priority and be more willing to pay (gas fees to) validators to prioritize

their transactions. In AMM periods and markets where liquidity takers lower average gas

fees—suggestive of less price sensitivity of traders and hence more uninformed trading—

we also find liquidity providers transact more frequently, consistent with our model.

We then use our model to explore how the shape of the pricing function impacts gains

to trade and liquidity provider’s profits. Analogous to results in Milionis, Moallemi and

Roughgarden (2023b), we find that in the presence of only uninformed traders, convex

prices impede ex-post trading volumes and reduce ex-ante profits of liquidity providers.

Hence, in such a case, linear pricing is optimal. However, the presence of informed

traders complicates this analysis because convex prices also limit the losses liquidity

providers realize from informed trades. Nonetheless, we show that reducing the (lo-

cal) convexity of the pricing function improves the liquidity provider’s profits as long as

liquidity provision is profitable. Specifically, we construct a perturbation of the pricing

function that decreases its convexity around the liquidity provider’s deposit point and

scales the gains from uninformed trades at the same rate as losses from adverse selection.

If the original constant-product market maker (CPMM) function induces positive ex-ante

gains for the liquidity traders, then less locally convex prices increase ex-ante gains for

both liquidity providers and liquidity traders, thus improving efficiency.

1.1 Related Literature

Much of the research on AMMs has focused on examining how AMMs perform alongside

the presence of deep, liquid, centralized exchanges. One of the earliest examples is An-

2See Aquilina, Budish and O’neill (2022) and Brugler and Hendershott (2023) for recent papers that
exploit the timing of trades or orders on centralized exchanges to identify high-frequency, informed trading.
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geris and Chitra (2020a) who obtain conditions under which a class of AMM mechanisms

reflect “true" prices—those observed on an infinitely deep centralized limit order book.

Angeris et al. (2021) presents a more specific analysis of the leading AMM Uniswap and

show that the exchange rate on Uniswap matches the exogenous prices up to the interval

of fee level. Aoyagi (2022) extends these frameworks to consider the effect of information

asymmetry in AMMs shows that the equilibrium liquidity supply is stable under the as-

sumptions that liquidity provision is perfectly competitive and one token in the pool is

stable (its value has zero volatility).

Also under the assumption of a known, true price of tokens, Fabi and Prat (2023)

demonstrates how to use consumer choice theory to study how liquidity providers and

liquidity takers exert externalities on each other. They use their framework to examine

how the shape of constant function market makers impacts adverse selection costs faced

by liquidity providers and execution costs faced by liquidity takers. More recently, Lehar

and Parlour (2023) show how AMM fees can balance losses imposed by liquidity traders

who conduct such an arbitrage. They argue that pool sizes should decrease with the

severity of this arbitrage risk and find empirical support for this observation.

Similar to our model, Aquilina et al. (2024) considers heterogeneity among liquidity

providers using size or external information to classify liquidity providers and study their

empirical behavior on UniSwap V3 data. They classify liquidity providers with excep-

tionally large token positions or identified as VCs, asset managers, etc., as “sophisticated"

and find that they provide majority of the liquidity, actively manage their positions, and

interact with multiple pools. In contrast, “unsophisticated" liquidity providers earn sig-

nificantly smaller fees, and struggle to adapt their liquidity strategies during periods of

high volatility. Lehar, Parlour and Zoican (2023), who also focus on UniSwap V3, find

that larger liquidity providers dominate low-fee pools, while small liquidity providers

dominate high-fee pools. As in our model, liquidity providers in their model adjust their

pool positions after trades as well but only because the structure of contracts in Uniswap

V3 prevents informed traders from fully arbitraging prices from centralized exchanges.

Directly supporting our assumption that trades can be categorized as informed and
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uninformed, Capponi, Jia and Yu (2024) provide empirical evidence showing that high-

fee DEX trades contain more private information. Informed traders bid high fees both

to mitigate execution risks from blockchain congestion and to secure execution priority.

We build on these important papers by showing how liquidity providers directly impact

decentralized exchange prices and then building a model where there is a role for liquid-

ity providers to set prices. One of our contributions is to relax the assumption of perfect

arbitrage with centralized exchanges and examine optimal liquidity provision when the

notion of equal values is not clear because perfect price discovery in some other market

is not possible.

A related literature has emerged studying the costs imposed by traders who arbitrage

between centralized exchange prices and AMM prices. For example, Capponi and Jia

(2021) studies competition for priority among traders who would like to conduct such an

arbitrage and characterizes the joint determination of gas fees and liquidity pool sizes.

Hasbrouck, Rivera and Saleh (2023) study the impact of trading fees on trading volume

and show how an increase in the fees, by attracting more liquidity provision and thus

reducing traders’ execution costs may lead to increased trading volumes. Milionis et al.

(2022) use a continuous-time Black-Scholes analysis to estimate these arbitrage losses for

liquidity providers using a stablecoin pool and decomposes the losses into risky and pre-

dictable components.

Milionis, Moallemi and Roughgarden (2023a) extend the model to involve trading

fees and provide results on the arbitrager’s behavior and profits accordingly. They also

conduct a cost-benefit analysis on the LP’s side with the new features. In our model in

the absence of a true price, the AMM generates gains to trade and so liquidity provision

may be sustained even in the absence of direct fees. Cao et al. (2023) develop a structural

model where a platform sets the fee level to maximize liquidity in the pool with one

token as a stablecoin. Like much of the earlier literature, they study this problem under

an assumption that a true price is known and the fee is designed to maximize rents from

uninformed trades. They find that the optimal AMM fee structure dynamically adjusts to

volatility, leading to better trade.
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In terms of the design and efficiency of the price function, Park (2023) demonstrates

that constant function market makers may cause economically meaningless and costly

trading, such as front running. Front-running is a substantial concern that liquidity tak-

ers manage in practice by encoding a range of prices they are willing to trade at, known

as “slippage”, but we abstract from front-running in our model as we focus on the inter-

action between liquidity providers and (an aggregate of) liquidity takers. Bergault et al.

(2023) shows that the return of LP is always smaller than holding by duality theorem

and a constant product formula with a proportional fee is not efficient from the mean-

variance perspective. Goyal et al. (2023) focus on the design of convex pricing functions

that maximize the fraction of trades that with only uninformed trades. Milionis, Moallemi

and Roughgarden (2023b) uses the optimal auction framework to show that a linear price

curve maximizes the expected return of the liquidity provider when one token is a sta-

blecoin. Our results on the optimal shape of the design function are similar to those in

Milionis, Moallemi and Roughgarden (2023b) but hold under a wider set of assumptions

on traders’ beliefs about the token valuations.

The remainder of the paper is organized as follows. In Section 2, we look at the em-

pirical behavior of liquidity provider and document their active role in price setting on

AMMs. We describe our model in Section 3. In Section 4, we focus on the one period

model and analyze the resulting equilibrium and the welfare properties. Section 5 looks

at the dynamics of liquidity provision in our model and compares these dynamics to the

empirical evidence. Finally, Section 6 concludes.

2 Liquidity Provider Behavior

An AMM uses blockchain-based smart contracts so individuals can exchange cryptocur-

rencies (or tokens). Smart contracts are computer code stored on the blockchain. A feature

of the Ethereum Blockchain is that the functions in the code are transparent, verifiable,

and immutable.3 Traders post transactions, calls to functions in the smart contracts, that
3You can see the functions for a Uniswap contract at https://etherscan.io/address/

0x0d4a11d5EEaaC28EC3F61d100daF4d40471f1852#code.
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are then executed by a decentralized network of validators (or “miners”). The typical

AMM smart contract for a pool is specific to two coins. To characterize the empirical be-

havior of liquidity providers, we pull data for Uniswap v2 pools. Specifically, we look at

v2 pools created prior to 2020-07-01 that have more than 100,000 transactions. The sample

period is from 2020-07-01 to 2024-06-30 and contains 19.2 million transactions across 31

pools.4

For context, Figure 6 show the evolution of the volume of trade for the Uniswap v2 and

v3 contract pools (v1 and v4 both have negligible volumes). Note the volumes are denom-

inated in Bitcoin to help control for the large variation in the dollar-denominated value of

cryptocurrencies over this period. The data from v2 are particularly relevant since these

smart contracts limit the transaction space to a swap, a mint, or a burn. This limited

smart contract functionality allows us to explore the behavior of liquidity providers in

a straightforward and tractable fashion. Given the evidence we present below of active

liquidity management, the smart contract modifications that follow in v3 (and now v4)

that offer more active control for liquidity providers are understandable.

A transaction in a Uniswap v2 pool is a call to one of three functions defined by the

pool contract. The functions are a swap, a mint, or a burn. The most commonly called

AMM function is the swap transaction. Here, a trader deposits a quantity of one coin, say

A, and withdraws a quantity of the other coin, say B. The rate (or price) of this exchange

is calculated by the smart contract based on the reserve balance of coins currently on

deposit at the pool. To calculate the rate Uniswap v2 uses the constant product market

maker (CPMM). The rate of exchange is determined so that the product of the quantity of

coinsA and B before and after the exchange is constant. This implies the marginal rate for

the exchange depends only on the relative quantities of coinA and coin B in the pool. The

swap is “taking” liquidity from the pool in the sense that the swap necessarily changes

the relative quantities of coin A and coin B in the pool and thus distorts the marginal

exchange rate faced by subsequent traders. We refer to a trader who only uses the swap

function as a Liquidity Taker (denoted LT).

4We use the Etherscan API Pro Services to collect the data.
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The liquidity providing portions of the smart contract happen through the mint and

burn functions in the code. In a mint transaction, the trader deposits both coins A and B.

Here, the mint refers to the creation of pool tokens to denominate the traders proportional

claim to the liquidity in the pool. Since this provides more of the coins to the pool for use

in swap transactions, we call this trader a Liquidity Provider (LP). In a burn transaction,

the LP can use some or all of their pool tokens to withdraw some or all of their share

of coins from the pool’s liquidity reserves. Both of these functions, by design, increase

or decrease the size of the pool proportionally. This feature is hardcoded into the smart

contract: mints and burns do not change the ratio of the quantity of coin A to B and so do

not change the implied marginal price on offer at the pool.

Given the trading environment defined by these smart contract functions, how do

liquidity providers behave? The general view is that LPs are passive in that they trade

(post a transaction to the smart contract) infrequently and use only the liquidity provision

functions mint and burn. They are akin to “buy-and-hold” investors. Uniswap in their

documentation for v2, for example, highlights that the passive aspect is a feature that may

increase participation of liquidity providers by removing the need for the sophisticated

infrastructure and algorithms of a liquidity provider—a market maker—in a limit order

book market.5

Table 1 characterizes traders’ behavior with transaction counts. Note that in Section 5.3

below we also explore the price impact of these trades once we have used our model to

highlight relevant measures of price impact in the data. To construct the table, we tag

each transaction as coming from a liquidity provider (LP) or a liquidity taker (LT). We tag

a transaction as coming from an LP if the trader, at the time of the transaction, owns a

pool token. That is, the transaction is by someone who owns a proportionate claim to the

pool.6 LTs own no pool tokens at the time of the transaction. Since mints and burns both

5See https://docs.uniswap.org/contracts/v2/concepts/core-concepts/pools. See also the dis-
cussions in Malinova and Park (2024) and Lehar and Parlour (2023).

6Since the mint transaction creates the pool token, for timing, this is the definition of LP we use to
tag a transaction. A transaction is classified as belonging to an LP if: (a) it is a mint or burn; (b) any of
the addresses involved in the transaction have a positive balance of that pool’s tokens at the time of the
transaction; or (c) the swap transaction is paired with a mint transaction. We describe the process we use to
measure paired transactions below.
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imply pool token ownership, LT transactions are exclusively swaps.

Table 1: Transaction Counts

burn mint swap Total Percent

Full Sample: 2020-07-01 - 2024-06-30

LP 149, 911 196, 128 108, 802 454, 841 2.4%
LT 0 0 18, 742, 272 18, 742, 272 97.6%
Total 149, 911 196, 128 18, 851, 074 19, 197, 113 100.0%

v2 Dominant Contract: 2020-07-01 - 2021-05-31

LP 112, 762 157, 363 80, 696 350, 821 3.7%
LT 0 0 9, 142, 338 9, 142, 338 96.3%
Total 112, 762 157, 363 9, 223, 034 9, 493, 159 100.0%

v3 Dominant Contract: 2021-06-01 - 2024-06-30

LP 37, 149 38, 765 28, 106 104, 020 1.1%
LT 0 0 9, 599, 934 9, 599, 934 98.9%
Total 37, 149 38, 765 9, 628, 040 9, 703, 954 100.0%

A transaction is classified as belonging to an LP if: (a) it is a mint or burn; (b) any of the addresses
involved in the transaction have a positive balance of that pool’s tokens at the time of the transaction;
or (c) the swap transaction is paired with a mint transaction. Each transaction can involve several
addresses (both wallets and contracts). A transaction is paired if all the addresses on both transactions
match and the transactions both occur within a three-minute interval. Data is pulled from all Uniswap
v2 pools that were created prior to 2020-07-01 and have more than 100,000 transactions. There are 31
pools. The sample period is from 2020-07-01 to 2024-06-30. The total number of transactions is 19.2
million. A transaction is defined as a unique call to a Uniswap pool contract as a swap, mint, or burn,
and involves multiple addresses (wallets and contracts) and token transfers.

Focusing on the full sample for a moment (top panel), we can see that most of the

transactions are from LTs. LPs are passive in that across all transactions, they transact

infrequently. Trades by LPs are 2.4% of the total transactions. However, in contrast to the

“buy-and-hold” passive characterization, liquidity providers are not completely passive.

A significant proportion of liquidity provider transactions are swaps (108,802/454,841).

Since every swap directly impacts the token exchange rate offered by the pool, when liq-

uidity providers interact with their pools, 23.9% of the time they take actions that directly

impact the pool’s exchange rate. We view these swaps by liquidity providers as evidence

11



that at least some LPs play an active role in price setting and price discovery in AMM

markets. Finally, the different panels in Table 1 show the transaction counts across sub-

sample periods. The impact of the introduction of v3 on v2 volume is clear. However,

the activeness of the LPs (the percentage of transactions as swaps) is similar across the

subsamples.

Table 2: Uniswap LP Counts

Unique
Trader

ID Total
Transactions

Liquidity
Provisions

Liquidity
Takings

Full Sample: 2020-07-01 - 2024-06-30

LP Active 44, 636 201, 162 45.9% 54.1%
LP Passive 64, 127 253, 679 100.0% 0.0%

v2 Dominant Contract: 2020-07-01 - 2021-05-31

LP Active 37, 267 148, 115 45.5% 54.5%
LP Passive 53, 519 202, 706 100.0% 0.0%

v3 Dominant Contract: 2021-06-01 - 2024-06-30

LP Active 7, 743 51, 330 45.2% 54.8%
LP Passive 12, 318 52, 690 100.0% 0.0%

A transaction is classified as belonging to an LP if: (a) it is a mint or burn; (b) any of the addresses
involved in the transaction have a positive balance of that pool’s tokens at the time of the transaction;
or (c) the swap transaction is paired with a mint transaction. Active liquidity providers are defined
as having more than 1 percent of their trades as swaps. Data is pulled from all Uniswap v2 pools
that were created prior to 2020-07-01 and have more than 100,000 transactions. There are 31 pools.
The sample period is from 2020-07-01 to 2024-06-30. The total number of transactions is 19.2 million.
A transaction is defined as a unique call to a Uniswap pool contract as a swap, mint, or burn, and
involves multiple addresses (wallets and contracts) and token transfers.

The percentage of LP transactions that are swaps differs across traders. From Table

2, notice that 41.0% of LPs in our sample have swap transactions while the remainder

of traders are completely passive. Again, note the number of LPs is smaller after the

introduction of Uniswap v3, but the percentage of active LPs remains about the same at

38.6%. For the active LPs, about half of their trades are swaps. Figure 7(a) highlights that

the swap percentage for LPs also differs across pools. (We will return to 7(b) below.)
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While we describe behavior at the level of “traders” (LP or LT), we do not directly

observe individuals. On the blockchain, activity is recorded at the level of addresses

(public keys), and a given transaction typically involves multiple addresses. Addresses

on Ethereum can be wallets or smart contracts. For example, an individual might trade

by connecting her wallet to the Uniswap web-app. This creates a trade involving her wal-

let ID and a Uniswap router contract. Larger traders often trade using their own smart

contracts.7 We make the simplifying (and conservative) assumption of treating the set

of addresses involved in a transaction on a specific pool as a single unit (effectively con-

catenating pool address and all addresses in the the transaction to define a unique trader

ID). This approach will under-count liquidity providers who also use swap transactions

in cases where one trader (person) uses multiple wallets or modalities for different trans-

action types.

Using this conservative definition of a unique “trader” as the concatenation of all ad-

dresses used in the trade, we count how often an LP actively changes marginal pool prices

(with a swap) just prior to adding liquidity (with a mint). Specifically, we pair LP transac-

tions when a swap and a mint (or burn) occur in a three minute window.8 Table 6 shows

that almost all the paired transactions are swaps connected to mints. Focusing on the sub-

sample where Uniswap v2 was the dominant contract, 10.7% of the mints were preceded

by a swap transaction (by the same LP) and 21.0% of all swaps conducted by LPs were

in support of a subsequent mint transaction (again, by the same LP).9 Figure 7(b) shows

that the percentage of mints paired with a swap differs across pools similarly to the raw

frequency of swap transactions by LP. Many of the summary statistics we have calculated

here are similar across the subsample periods. Interestingly, this is not the case for paired

transactions. Figure 8 shows the percentage of mints paired with a swap is declining over

the Uniswap v2 era. After the introduction of v3 with more fine grained liquidity choices,

7This is done for many reasons. For example, this can add a layer of security to the trading where
first coins are transferred to a trader’s smart contract and then the smart contract is called in a second
transaction.

8Defining pairs as happening in a three-minute interval is arbitrary. The specific numerical results
change with different windows, say 0.5 to 5.0 minutes, but the general proportions are quantitatively simi-
lar.

9While not immediate from Table 6, almost all the paired transactions are where the swap precedes the
mint.
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the frequency of mints paired with a swap goes to near zero for most pools.10

In summary, we have presented evidence from Uniswap v2 that some liquidity providers

play an active role in setting (marginal) relative prices by swapping against their own liq-

uidity. Next, we build a dynamic model with frictions that provides liquidity providers

incentivers to actively set prices at an AMM. We use this model to develop insights into

optimal active liquidity provision and to establish a lens to study the dynamics of the

swap behavior of liquidity providers. We explore this dynamic behavior in Section 5.3

below.

3 Model

We develop a model where traders’ relative valuation of coins consists of both a private

and a common value component. The private value component motivates gains to trade.

The common value component is public information that evolves over time. We model

the arrival of trading opportunities as sequential and so some traders will be “informed”

in that they have arrived at the same time as new information. The public component

creates the potential for an “adverse selection” cost. This cost is sometimes called “im-

permanent loss” in the AMM setting. Due to the intrinsic properties of cryptocurrencies,

we will refer to coins and tokens interchangeably throughout the paper.

Our model is in discrete time, t = 0, 1, 2, . . . and features two types of agents: liquidity

takers (traders) and liquidity providers (or market makers). Liquidity takers are short-

lived, have deep pockets, and care about net trading profits. Liquidity providers are

long-lived, discount the future at rate δ ∈ (0, 1), and begin in period t = 0 with a fixed

endowment of tokens or coin balances. We focus on a representative liquidity taker (in

each period) and a representative liquidity provider.

10Oddly, in the brief window 2023/0/01 to 2022/06/30, in WETH-USDC and USDC-USDT the swap-
then-mint pair accounts for about 75% of the mint transactions. As we saw, there are also fewer overall
.transactions in this period.
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Information. We study a model with two coins, i ∈ {A,B} and coin i has a value at date

t given by exp(pi,t). We interpret the common value componenet, exp(pi,t), as either the

“price" of token i at time t or possibly the service flow attainable by holding 1 unit of coin

i. For example, 1 unit of the Ethereum cryptocurrency may be “spent” on the execution

of smart contracts on the Ethereum blockchain or 1 unit of the stablecoin USDC may be

redeemed for 1 US dollar by trading with the company Circle who issues USDC (Circle

(2023)). We assume the “price” or common payoff of coin i at time t evolves according to

pi,t =

t∑
s=0

di,s + ϵi

with the public information at each date di,s and the residual uncertainty, ϵi realized in

period t independently and satisfying E[exp(ϵi)] = 1.

In particular, assume public information {di,t} arrives independently across time and

across tokens. For each token i, with probability π̂, di,t = 0. With probability 1 − π̂,

di,t ∈ {−∆l,+∆h} where each is equally likely. We assume ∆l,∆h are positive and 1
2e

−∆l +

1
2e
∆h = 1 such that the expected price after the realization of public information is the

same as it is before this information is realized. At the beginning of each period t, both

LPs and LTs have beliefs about the common value component of each token given by

µi,t−1 where

µi,t−1 = E[exp(pi,t)|d0, . . . ,dt−1] ≡ Et−1[exp(pi,t)].

Timing. At the beginning of each period, with probability β ∈ (0, 1), the LP exoge-

nously exits the game and realizes the current payoff of her endowment of tokens. If the

LP does not exit, then, before the arrival of any public information, the LP decides how

much of each token to deposit in the AMM smart contract. Once the LP deposits tokens,

public information is realized. After public information is realized, LTs value the tokens

according to

νi,t = E[exp(pi,t)|d0, . . . ,dt]exp(ηi,t) ≡ Et[exp(pi,t)]exp(ηi,t)
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where ηi,t reflects a private value component of owning token i realized by the LT that

trades in period t. The important timing assumption is that the LT trades before the LP

can adjust withdraw or adjust their deposits to the AMM. Once the LT trades, a new

period begins and the LP may re-balance the liquidity supplied to the AMM.

Next, we specialize the information setting of our model to highlight the key forces

at play. Note that in any period, before the arrival of public information, both the liq-

uidity providers and liquidity takers have the same beliefs given by µi,t−1. Once public

information arrives, the LT who trades in period t has valuation νi,t distinct from µi,t−1

because she has more public information and because of her private value shock. We im-

pose a particular correlation between the public information and the LT’s private value

shocks. Recall that with probability 1 − π̂2, the LT has superior public information since

di,t ∈ {−∆l,∆h} for some token i. For such realizations, we impose ηA = ηB = 0.

Under this specification, our model features two types of information events as in

Glosten and Milgrom (1985). The first type of information event—analogous to unin-

formed trading in Glosten and Milgrom (1985)—occurs when dA,t = dB,t = 0 and repre-

sents a case where the LT’s new beliefs of the tokens’ values, νi,t are uncorrelated with

the LP’s beliefs. That is, the LP believes the value of each token iwill yield terminal value

according to Et[exp(pi,t)] = Et−1[exp(pi,t)] while the LT believes the value of each token

i is distributed according to νi,t = Et[exp(pi,t)]exp(ηi,t). When ηi,t ̸= 0 under such an

event, there are gains to trade between the LP and the LT. Following the literature, we

interpret such an event as a “pure noise” trade where trade occurs for reasons orthogonal

to the LP’s beliefs about the potential returns to her tokens. We let π = π̂2 ∈ [0, 1] denote

the probability of this first type of information event which we describe as a trade for tastes

or uninformed trade.

Instead, the second type of information event—analogous to informed trading in Glosten

and Milgrom (1985)—occurs when di,t ∈ {−∆l,∆h} (for some token i) and represents a

case where the LT’s new beliefs are correlated with the LP’s new beliefs. In such a case

both the LP and the LT now believe the value of each token has mean νi,t = Et[exp(pi,t)]

and hence there are no gains to trade between the LT and the LP. For notational simplicity,
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we assume νi,t follow the same distributions under the two events.11 Following the litera-

ture, we interpret such an event as pure information event that we describe as an informed

trade. The correlation between the information arrival and private values of the LT that

we impose allows us isolate the idea that liquidity takers may trade for “information” or

may trade for “tastes.”

Denote (EA,t−1,EB,t−1) as the amount of tokens the LP owns at the end of each period

t− 1. If the LP does not exit in period t, she chooses the amount of tokens (eA,t, eB,t) to

deposit in the AMM. After her deposit, public information is realized and the LT trades

in the AMM. Let (xA,t, xB,t) denote the amount of tokens remaining in the AMM after the

LT’s trade. Post-trade, the LP owns (EA,t,EB,t) = (EA,t−1 − eA,t + xA,t,EB,t−1 − eB,t + xB,t)

tokens.

With probability π̂, the LT’s trade is uninformed and the LP’s valuation of each token

remains unchanged. Alternatively, with probability 1 − π̂, the trade is informed and the

LP’s valuation of each token updates to that of the LT.

Suppose that the LP has deposited a portfolio (eA,t, eB,t) with the smart contract of

the AMM. We let G(·) be the embedded pricing function. That is, if the LT wishes to de-

posit (withdraw) qA units of token A then the function specifies an amount qB units of

token B that the LT may withdraw (deposit) where qB = G(qA|eA, eB). The most com-

mon implementation of automated markets imposes the constant product market maker

(CPMM):

(eA + qA)(eB − qB) = eAeB (1)

where we have ignored fees charged to traders. This particular function was originally

proposed Angeris and Chitra (2020b) (see also Bergault et al. (2023)) and was then adopted

in Uniswap-V2 (2023). Although ad-hoc, the simple function has the attractive properties

that marginal prices are convex (the more you withdraw, the higher the marginal price).

The CPMM also ensures that the contract cannot “run out” of either token since marginal

prices approach infinity and aggregate token supplies are finite.

11Allowing νi,t to follow different distributions does not substantively change our theoretical results. We
do allow for different distributions in our numerical results in Section 5.2 below.
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Next, we define the problem of the liquidity provider and liquidity taker working

backwards from the LT’s problem in each period. We maintain the Constant Product

Market Making rule specified in Equation (1) through Section 3.1, 3.2, 4, and 5 below.

3.1 The Liquidity Taker’s Problem

In each period, the LT—whether uninformed or informed—observes liquidity on deposit

at the AMM as well as the realization of νi. From their perspective, the LT perceives a

favorable trading opportunity as prices in the AMM do not automatically adjust to their

own valuation. Since the LT is short-lived, we omit time subscripts when describing the

LT’s behavior.

The LT maximizes the expected value of her tokens:

max
qA,qB

− νAqA + νBqB (2)

s.t. (eA + qA)(eB − qB) = eAeB.

When qA > 0, the LT’s problem given in (2) represents a case where the LT “buys”

token B from the AMM by depositing token A. She may wish to set qA < 0 in which

case she buys token A from the exchange by depositing some amount of token B. The

constraint represents the effective price that she faces in any trade. Under the Constant

Product rule, the LT would have to deposit infinitely much of one token to withdraw all

of the other (i.e. setting qB = eB, requires qA → −∞) and hence the implicit capacity

constraints are slack under such a rule.

The solution to the LT’s problem is straightforward, and, in terms of ex-post reserves

remaining in the pool after the LT’s trade implies

eA + qA =

√
νB
νA
eAeB, eB − qB =

√
νA
νB
eAeB. (3)

More succintly, for any beliefs νi, the LT will trade up until the relative price at the AMM
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Figure 1: Liquidity Taker’s Optimal Trade
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1The liquidity taker’s optimal trade is characterized by the tangency of their relative valuations (red line)
and the constant product market making curve (orange line).

equals her relative valuation of the tokens or

νB
νA

=
eA + qA
eB − qB

. (4)

Notice that xA = eA+qA and xB = eB−qB which are the post-trade AMM positions, then

(1) and (4) imply that the post-trade positions satisfy

xAxB = eAeB (5)

νAxA = νBxB. (6)

The liquidity provider internalizes that for any realization of beliefs of the LT, νi, her

ex-post portfolio will satisfy (5)–(6). We may represent this behavior graphically as in

Figure 1.

The convex curve represents the constant product market-making rule, and the point

(eA, eB) represents the liquidity deposited by the LP. Any trade by the LT will move the

LP’s ex-post portfolio along the convex curve. Once the LT realizes her beliefs νi, she will
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trade up until the relative price at the AMM equals her relative valuation of the tokens

(represented by the dashed line with slope −νA/νB).

3.2 The Liquidity Provider’s Problem

Given µA,0,EA,0,µB,0,EB,0, the problem of the LP at time 0 can be written as:

max
{eA,t,eB,t}

∞
t=1

∞∑
t=0

δtβ (1 −β)t E [µA,tEA,t + µB,tEB,t] (7)

where for t = 1, 2, 3...

xA,txB,t =eA,teB,t

νA,txA,t =νB,txB,t

Ei,t =xi,t + (Ei,t−1 − ei,t)

µi,t =

µi,t−1 with prob π

νi,t with prob 1 − π

0 ⩽ei,t ⩽ Ei,t−1

The first two constraints embed the LT’s behavior in each period. The third and fourth

constraints reflect the law of motion for the LP’s endowments and her beliefs. The final

set of constraints reflect feasibility constraints for the LP.

We now formulate the LP’s problem as a stationary, dynamic program. Suppose the

LP starts a given period with endowments (EA,EB) and beliefs about these token’s values,

(µA,µB). Then the Bellman equation is given by

V(EA,EB;µA,µB) =β [µAEA + µBEB]

+ (1 −β)δmax
ea,eb

(
πEV(E ′

A,E ′
B;µA,µB) + (1 − π)EV(E ′

A,E ′
B;νA,νB)

)
(8)
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subject to

0 ⩽ ei ⩽ Ei (9)

xAxB = eAeB (10)

νAxA = νBxB (11)

E ′
i = xi + (Ei − ei) . (12)

With probability β, the LP exits and enjoys the expected utility of her endownment.

Should the LP not exit, then she chooses the quantities of tokens to deposit on the ex-

change, ei, subject to the feasibiliy constraints (9). The constraints (10) and (11) summa-

rize the behavior of the liquidity taker for any realization of the public information or the

private taste shock (νA,νB) which in turn dictate how the LP’s endowment will evolve

into the subsequent period as summarized in (12). Given her liquidity deposits (ea, eb),

with probability π there is no public ifnormation event so that the LP’s beliefs remain

constant at (µA,µB). Alternatively, if there is a public information event, which occurs

with probability (1 − π), then the LP’s beliefs evolve and are consistent with those of the

LT given by (νA,νB).

4 AMM Liquidity: Insights from a One-Shot Model

In this section, we focus on a one-period model to highlight the key results that emerge

from our dynamic model. Exactly as in the dynamic model, at the beginning of the pe-

riod, the LP deposits a portfolio (eA, eB) with the AMM given a pricing function G(·) and

her beliefs (µA,µB). Next, the type of information event is realized according to π and the

LT realizes a shock to her beliefs specified by (νA,νB). With probability π the LT is unin-

formed and the LP’s beliefs remain (µA,µB). With probability 1−π the LT is informed and

the LP’s beliefs also shift to (νA,νB). In either case, once information is realized the LT

then chooses an amount to trade with the AMM. Finally, values and payoffs are realized

according to the terminal portfolios of the LP and LT. Here we set δ = 1 (no discounting)

and β = 1 (the LP exits and enjoys the terminal value of the tokens after one period.).
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In the one-shot game, we solve for the LP’s optimal liquidity supply and show how

it depends on the LP’s beliefs about the probability of informed versus uninformed trad-

ing. We use this simple model to examine the usefulness of the conventional wisdom

from existing automated marketplaces—that liquidity providers should deposit liquidity

in equal (dollar) values—and find that such behavior is typically suboptimal. It is optimal

for the representative liquidity provider only when informed trading is so severe that the

liquidity provider prefers to supply no liquidity. We demonstrate how adverse selection

distorts the quantities of liquidity deposited by providers on automated exchanges. Fi-

nally, we examine how the shape of the AMM pricing function impacts gains to trade

realized by liquidity providers.

4.1 The Liquidity Provider’s Problem in the One-Shot Model

Anticipating the behavior of the liquidity taker, the LP chooses her liquidity deposit to

solve the following program.

max
eA,eB

π(µAE[xA − eA] + µBE[xB − eB])+ (13)

(1 − π)(EνA[xA − eA] + µBEνB[xB − eB])

s.t. (5)–(6),

0 ⩽ ei ⩽ Ei, ∀i

where π is the probability of an uninformed trading event. Notice, regardless of whether

the LP experiences an uninformed or informed trading event, the beliefs of the liquidity

taker will result in an ex-post portfolio of the LP according to (5)–(6). These events differ,

however, in how the LP perceives the value of these ex-post portfolios. When the LT

represents an uninformed trade, the LP continues to value her ex-post portfolio according

to her prior beliefs, µi. Instead, when the LT represents an informed trade, the LP values

her ex-post portfolio according to the realized beliefs of the LT, νi. As we show below, the

LP will trade off profits she earns on uninformed trades with losses on informed trades.

Unlike in standard models of exchange subject to adverse selection where market makers
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post prices that reflect the extent of adverse selection, blockchain market makers must

distort their quantity choices for liquidity provision to protect themselves from possible

adverse selection.

4.2 Liquidity Provision with Uninformed Trade Only

Suppose first that π = 1 so that there are only uninformed trades. The LP’s problem (13)

simplifies to

max
eA,eB

µA

(
E

√
νB
νA
eAeB − eA

)
+ µB

(
E

√
νA
νB
eAeB − eB

)
s.t. 0 ⩽ ei ⩽ Ei, ∀i.

Since the LP’s deposit quantities, ei, are not random, her objective may be written as(
Eω+ E

1
ω

− 2
)√

µAeA
√
µBeB − (

√
µAeA −

√
µBeB)

2 (14)

where ω =
√
νA/µA
νB/µB

. Equation (14) shows how an LP facing only uninformed trade

chooses the optimal liquidity to provide. By changing the quantities of tokens A and B

she deposits, she adjusts the position of the pricing curve the LT will face ex-post.

To better understand (14), consider one possible (suboptimal) deposit choice for the

LP: an equal value deposit, or eA and eB that satisfy µAeA = µBeB. Notice that all possible

ex-post portfolios for the LP lie on the constant product price function that runs through

the point (eA, eB). Moreover, at (eA, eB), the constant product price function has slope

−µA/µB. Since the constant product price function is convex, any trade by the LT will

appear to happen at favorable prices from the perspective of the LP—that is, terms of

trade are better than −µA/µB for the LP regardless of whether the LT is buying token A

or token B. As a result, for such a deposit choice, the LP only stands to gain and suffers

no losses.

Panel (a) of Figure 2 illustrates this result. Given the LP’s beliefs are fixed, facing only

uninformed trades, the straight (blue) line with slope −µA/µB reflects the LP’s indiffer-
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ence curve. Since all terminal portfolios lie on the constant product price function, and

this function lies above the LP’s preferences, such a deposit choice by the LP ensures the

LP only stands to gain from trade.

Figure 2: Liquidity Provider’s Deposit Choice
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êA
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3(b) Optimal Deposit

Panel (a) illustrates a deposit choice of the LP that ensures zero losses if she only faces uninformed liquid-
ity takers. The straight (blue) line shows the indifference curve an LP assuming her beliefs are given by
(µA,µB) and do not change when trade takes place. The (orange) curve shows the set of possible ex-post
allocations. Panel (b) shows an LP’s optimal deposit is (typically) not a no loss deposit.

Should the LP provide liquidity different from an equal value deposit, then for small

differences in beliefs from her own, the constant produce price function will provide

prices that appear unfavorable from the perspective of the LP and yield second-order

losses. For this reason, the LP faces a loss function—the second term in (14)—that de-

pends on how her portfolio differs from an equal value (µAeA = µBeB) portfolio.

To the extent νi differs from µi, there are gains to trade. The value of these gains

depend on the term Eω + E 1
ω − 2 ⩾ 0. (The inequality follows directly from Jensen’s

inequality.) As a result, from any equal value deposit, a small perturbation that raises

eA or eB on the margin will induce second-order losses but incur first-order gains by

supporting more trading with uninformed LTs at typically favorable pricing. As a result,

equal-value deposits are generically not optimal for the LP. In general, the LP desires

to provide as much liquidity as possible to facilitate gains to trade, and thus, her budget

constraint must bind (either eA = EA or eB = EB). We then have the following proposition.
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Proposition 1: Optimal Liquidity with only Uninformed Trade. With only uninformed

trade, the optimal liquidity deposit satisfies:

e∗A = EA, e∗B = min

{(
Eω+E 1

ω
2

)2
µA
µB
EA,EB

}
, if µAEA ⩽ µBEB

e∗A = min

{(
Eω+E 1

ω
2

)2
µB
µA
EB,EA

}
, e∗B = EB, if µAEA > µBEB.


e∗A = EA, e∗B = min

{(
Eω+E 1

ω
2

)2
µA
µB
EA,EB

}
, if µAEA ⩽ µBEB

e∗A = min

{(
Eω+E 1

ω
2

)2
µB
µA
EB,EA

}
, e∗B = EB, if µAEA > µBEB.

Generically, then, the LP will prefer a deposit choice different from the equal value

portfolio to maximize intermediation profits with uninformed traders. Such a choice is

illustrated in Panel (b) of Figure 2 where, according to Proposition 1 typically, we expect

either eA = EA or eB = EB.

4.3 Liquidity Provision with Informed Trade Only

Suppose next that π = 0 so that there are only informed trades. The LP’s problem (13)

simplifies to

max
eA,eB

EνA

(√
νB
νA
eAeB − eA

)
+ EνB

(√
νA
νB
eAeB − eB

)
(15)

s.t. 0 ⩽ ei ⩽ Ei, ∀i (16)

If we impose a mild assumption that νi is a mean preserving spread of µi, i.e. E
νi
µi

= 1,

the LP’s objective in this case may be written as

(2Eψ− 2)
√
µAeA

√
µBeB − (

√
µAeA −

√
µBeB)

2 (17)

where ψ =
√
νA
µA

νB
µB

. Equation (17) shows how an LP facing only informed trade chooses

the optimal liquidity to provide.
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Since the LP and the LT hold the same ex-post belief, any gains of the LT must reflect

losses borne by the LP. Moreover, since the LT only trades when it is beneficial for herself,

all trades hurt the LP. As a result, the case of only informed trading reflects a case of pure

adverse selection and induced losses for the LP relative to what the value of her wealth

would have been had she simply held her portfolio rather than providing liquidity.12

The Cauchy-Schwarz inequality implies Eψ ⩽
√

E
νA
µA

E
νB
µB

and holds with equality

only when νA and νB are perfectly correlated. Since we impose Eνi/µi = 1, the above

inequality implies Eψ ⩽ 1. Therefore, the LP’s objective function is necessarily non-

positive for any deposit amount, yielding our next proposition.

Proposition 2: No Liquidity Provision with Only Informed Trade. The optimal liquidity

deposit satisfies:

e∗A = e∗B = 0.

One interpretation of Proposition 2 is consistent with the conventional view in the

nascent literature on AMMs: if arbitrageurs have frictionless access to a centralized ex-

change where price discovery for the tokens takes place as well as the AMM, then in the

absence of fees LPs can only lose by supplying liquidity to the AMM. Fees must then

be imposed by the AMM to make liquidity provision sustainable. In contrast, when arbi-

trageurs face frictions—in our model, this interpretation assumes π is not too small—then

the market may be sustainable even in the absence of fees.

4.4 Liquidity Provision with Uninformed and Informed Trading

We now use these results to understand better the general problem (13) with arbitrary π.

We once again simplify the LP’s objective function as[
π

(
Eω+ E

1
ω

)
+ (1 − π)2Eψ− 2

]√
µAeA

√
µBeB − (

√
µAeA −

√
µBeB)

2 (18)

12Since we implicitly assume LPs are “slow” traders, we do not consider the opportunity cost of trading
at an AMM herself. See Milionis et al. (2022) for such an analysis.
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As before, we may write the LP’s objective as the sum of a revenue function less losses that

depend on how the LP’s deposit portfolio differs from an equal value portfolio. The rev-

enue function now reflects the probability of realizing an informed versus an uninformed

trade. Similar to the previous cases, when uninformed trades occur the LP realizes profits

and when informed trades occur, the LP realizes losses. If the gains from uninformed

trades are larger than the loss from informed trades, i.e. π
(
Eω+ E 1

ω

)
+ (1 − π)2Eψ ⩾ 2,

then the LP will be willing to provide as much liquidity as possible—up to their ex-ante

resource constraint. Otherwise, the LP will optimally choose to provide no liquidity. We

summarize this result in the next proposition.

Proposition 3: Optimal Liquidity. The optimal liquidity deposit with π proportion of

uninformed trade and 1 − π proportion of informed trade satisfies
e∗A = EA, e∗B = min

{(
π

(
EUω+EU

1
ω

2

)
+ (1 − π)EIψ

)2
µA
µB
EA,EB

}
, if µAEA ⩽ µBEB

e∗A = min

{(
π

(
EUω+EU

1
ω

2

)
+ (1 − π)EIψ

)2
µB
µA
EB,EA

}
, e∗B = EB, if µAEA > µBEB

if π
(
Eω+ E 1

ω

)
+ (1 − π)2Eψ ⩾ 2 and

e∗A = e∗B = 0

otherwise.

We write Π = π

(
EUω+EU

1
ω

2

)
+ (1 − π)EIψ to represent the LP’s expected profit mar-

gin from liquidity provision. According to Proposition 3, if Π > 1, then the optimal value

ratio µAe∗A/µBe
∗
B satisfies

µAe
∗
A

µBe
∗
B

=



1
Π2 if EA ⩽ 1

Π2
µB
µA
EB

µAEA
µBEB

if 1
Π2
µB
µA
EB < EA < Π

2 µB
µA
EB

Π2 if Π2 µB
µA
EB ⩽ EA

. (19)

We illustrate Proposition 3 in Figure 3 for cases where the optimal deposit is strictly
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Figure 3: Liquidity Provider’s Optimal Deposit Choice
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The figures illustrate different cases of the optimal liquidity deposit (e∗A, e∗B) described in Proposition 3 for
various possible initial endowment points (EA,EB). Moving from Panel A to Panel C, we slowly increase
the LP’s initial endowment of token A making it relatively more plentiful and highlighting how according
to Propostion 3, differences in her relative endowments impacts which token she supplies completely.

positive (so Π > 1). We slowly vary the LP’s endowments of tokens (EA,EB) making

token A relatively more plentiful as we move from Panel A to Panel C. Initially, when

the LP’s endowment of token A is relatively scarce (shown in Panel A), she deposits all

of token A and an interior amount of token B. When the LP’s endowments are tokens

are relatively balanced (near µAEA = µBEB shown in Panel B), she deposits all of both

tokens. When the LP’s endowment of token A is relatively abundant (shown in Panel C),

she deposits all of token B and an interior amount of token A.

Next, we use Proposition 3 to explore the optimality of the conventional wisdom that

liquidity providers should deposit portfolios with equal values. Notice that when Π > 1,

the optimal deposit ratio, µAEA/µBEB is only 1 if the LP’s endowments are relatively

balanced (as in Panel B of Figure 3) and her endowment satisfies µAEA = µBEB. This

suggests that the conventional wisdom the liquidity providers should deposit portfolios

with equal values is typically not profit maximizing for liquidity providers. Furthermore,

Proposition 3 reveals that as Π → 1 then µAe∗A → µBe
∗
B for all values of EA,EB. In other

words, only when the gains from uninformed trades exactly offset the losses from in-

formed trades, then it is optimal for the LP to deposit a portfolio with equal values.

Proposition 3 also suggests an important feature of optimal liquidity provision in our
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model. The liquidity provider optimally supplies her entire endowment to the AMM

when the ratio of her endowments (in token quantities) EA/EB lies in a region that de-

pends on her relative value of tokens µA/µB as well as the profit margin Π. If we inter-

pret the LP’s endowment in the static model as having arisen from past trades by liquid-

ity takers, then should her endowment lie in this region, she will not “re-balance” her

deposits—she will simply leave her entire endowment on the AMM. We return to this

point in Section 5 when we study dynamics of liquidity provision below.

Note also that the LP’s expected profit margin Π is increasing in the probability that

trades are uninformed, π. Hence, there is a minimal value π such that Π = 1. We then

have the following Corollary.

Corollary 1: Optimal Value Share. Let π be such that Π = 1 and assume µAEA ̸= µBEB.13

The equal value deposit µAeA = µBeB is optimal only when π = π.

4.5 Break Even Proportion of Uninformed Trading

The threshold π also sheds light on the extent to which liquidity provision is profitable.

The value of π such that Π = 1 depends critically on the distribution of the LT’s beliefs

specified by Hi. Since the term ω + 1
ω is not globally convex in νi, a mean preserving

spread of the LT’s beliefs νi could increase or decrease the threshold π. We instead explore

how the profitability of liquidity provision varies with the distribution of the LT’s beliefs

via a numerical example.

To simplify the numerical analysis, consider a special case where one token is a sta-

blecoin whose value does not fluctuate over time such as USDC or Tether.14 We let token

B represent the stable coin and set νB = µB = 1 and hB(νB) = 1 if νB = 1. Then we

have ω = ψ =
√
νA
µA

. We assume νA
µA

is a log-normally distributed random variable with

13If the LP happens to be endowed with an equal value portfolio and profits from liquidity provision
are increasing, then she may deposit in equal value simply because she is constrained. We rule out this
uninteresting case with this assumption.

14In practice, the value of stablecoins do fluctuate at specific points in time, such as when USDC de-
pegged for a short window in April 2023. For our example, we assume liquidity providers and takers
believe the stablecoin peg will hold with certainty.
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E[νA/µA] = 1 and Var[νA/µA] = σ2
A. As a benchmark, we impose σ2

A = 0.8 consis-

tent with variation in the daily price of ETH–the native cryptocurrency of the Ethereum

blockchain–over the past five years.15 Around this benchmark, we explore how changes

in the variance of beliefs about ETH prices change the threshold probability for liquid-

ity provision to be profitable, π. We plot how this threshold varies with the variance

of the LT’s beliefs in Figure 9, which shows that increases in variance typically decrease

this threshold. 16 In other words, liquidity provision becomes more profitable (LPs can

tolerate more informed trading) as ETH price risk increases.

4.6 Efficiency Losses from Constant Product Market Making

Finally we examine how the shape of the AMM pricing function impacts gains to trade

realized by liquidity providers. We focus on the (local) convexity of the CPMM price

function and leave a full mechanism design perspective for future work (see Milionis,

Moallemi and Roughgarden (2023b) for such an approach applied in an environment with

only one risky token and limit pocket for the traders.) Specifically, we consider perturbing

the CPMM price formula and study a class of pricing functions given by

(eA + (1 − τ)qA) (eB − (1 − τ)qB) = eAeB (20)

where τ ∈ [0, 1). Notice that this class of price functions admits the CPMM function

when τ = 0. For values of qi close to zero, an increase in τ reduces the convexity of the

price function. For larger values of qi, it is possible that the price function becomes more

convex. Moreover, for any τ > 0, there exist values of qi such that the implied ex-post

portfolio of the LP would have a negative amount of token A or B so we must impose

the boundary conditions, eA ⩾ qA and eB ⩾ qB. Such boundary conditions also tend to

increase the global convexity of the price function.

We illustrate how an increase in τ impacts the price function locally in Figure 4 below.

15Based on the Coinbase ETH index price obtained from fred.stlouis.org.
16We experimented with several other distributional assumptions for νA

µA
and found similar results. De-

tails are available upon request.
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The solid curve represents the standard CPMM with τ = 0. Around a given deposit point,

(eA, eB), the dashed curve represents how the CPMM function changes when τ increases.

If we impose the LP’s ex-post token holdings (xA = eA + qA and xB = eB − qB) then we

may re-write (20) as

((1 − τ)xA + τeA) ((1 − τ)xB + τeB) = eAeB. (21)

The price function (20) is convex and smoothly decreasing when x > 0. The convexity of

the function is decreasing in τ. The boundary conditions on qi simply imply xi ⩾ 0.

Figure 4: CPMM with change in local convexity

The figure illustrates a perturbation of the CPMM curve that decreases the (local) convexity at the LP’s
deposit point. The CPMM curve with τ = 0 is displayed as the solid, orange curve while the CPMM curve
with τ > 0 is displayed as the dashed, blue curve.

For a given the realization of the LT’s beliefs, (νA,νB), the LP’s net proceeds from trade

satisfy

x− eA =
1

1 − τ

[√
νB
νA
eAeB − eA

]
, y− eB =

1
1 − τ

[√
νA
νB
eAeB − eB

]
. (22)

Since net proceeds for both tokens scale by the same factor 1/(1 − τ), the LP’s expected

31



returns also scale by 1
1−τ . Moreover, gains from uninformed trading and losses from

informed trading scale by the same ratio so that the break-even proportion π does not

change with τ. As a result, increased (local) convexity of the CPMM hinders trading

volume and reduces gains to trade for both the LP and the LT.

However, eliminating (global) convexity of the CPMM is not costless. When τ > 0,

equation 21 has finite positive intercepts: (0, 1+τ
τ eB) and (1+τ

τ eA, 0). For such values of τ,

trading volume cannot increase beyond the two intercepts, even for more extreme beliefs

of the LT. Holding the LP’s choice of liquidity fixed, we argue that relaxing the local

convexity of the pricing function may be detrimental to the LP’s ex-ante profits.

To illustrate this, it is simplest to consider a piece-wise linear approximation to the

convex pricing function that runs through the LP’s (fixed) choice of liquidity deposit.

With piece-wise linear prices, liquidity takers either do not trade or trade up to one of the

intercept points. For example, suppose ph represents the (minus the) slope of the price

function for values of xA between 0 and eA the amount of token A deposited by the LP.

If the beliefs of the LT are more optimistic than ph (so if νA/µA > ph), then the LT will

trade up to the intercept where xA = 0—the LT will buy all of token A in the pool at the

prevailing price, ph. Otherwise, for ph > νA/µA > 1, the LT will not trade.

Consider a marginal increase in ph (in absolute value). Such a change increases the

region of no trade by the LT and thus reduces trading volume on the extensive margin.

Recall that the LP only loses expected value from informed trades (and earns exactly zero

losses on the marginal informed LT who is just indifferent between trading at ph and not

trading). Therefore, decreasing the volume of trade reduces the LP’s expected losses from

informed trading. Among uninformed trades, reducing volume is costly on the extensive

margin, but raising the intercept implies the LP realizes increased gains to trade for all

beliefs where the LT continues to trade. An analogous argument occurs if beliefs of the

LT are sufficiently low so that the LT trades to the point where xB = 0. Consequently, it

is possible that the gains from increasing the global convexity of a piece-wise linear price

function outweigh the costs, implying some degree of convexity is desirable. We show

this result both for piece-wise linear prices as well as for the continuously differentiable
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price function in (20) in Appendix B.

If the distribution of the LT’s beliefs has bounded support, then the potential losses

from reduced (global) convexity for extremal beliefs may be limited with an appropriate

choice of τ. In other words, when the LT’s beliefs have bounded support, then there exists

τ > 0 that increases the LP’s expected returns. In fact, we generalize these results beyond

the CPMM formula in the next Proposition (proved in Appendix A).

Proposition 4: Pareto Improvement. Consider a convex and smoothly decreasing price

function y = G(x). Assume the distributions of the LT’s valuations of the tokens (νA,νB)

have bounded support such that a trade that exhausts one token never happens under

the price function G(x). Then there exists τ = τ̂ ∈ (0, 1) such that the new price function

(1 − τ̂)y+ τ̂eB = G((1 − τ̂) x+ τ̂eA) is less convex at (eA, eB), the LP’s optimal deposit is

the same at τ = τ̂ as at τ = 0, and τ = τ̂ increases both the LP’s and the LT’s expected

returns proportionally by τ
1−τ .

In particular, if G(x) is the CPMM function and if
[
µi,µi

]
is the support of the distri-

bution of νi, then the result of Proposition 4 hold for all τ ⩽ τ̄ = min
{√

µBeB
µAeA

,
√
µAeA
µBeB

}
with τ̄ > 0.

We see that with bounded beliefs, convexity hurts the LP’s expected returns. In fact,

with some additional conditions, the optimal price function for the LP is the linear price

function: plxA + xB = pleA + eB, x ⩾ eA

phxA + xB = pheA + eB, x < eA
(23)

where again ei are the LP’s deposit and xi are the tokens left in the pool after the LT’s

trading. Similar to the results in Milionis, Moallemi and Roughgarden (2023b), we have

the following proposition (proved in Appendix C).

Proposition 5: LP’s Optimal Pricing Function Assume the distributions of the values of

the tokens have bounded support and the LT has a budget limit on at least one token, i.e.

x or y can’t go to infinite. Given the LP’s deposit (eA, eB), the optimal pricing formula is

the linear pricing formula is one of the following conditions is satisfied:
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1. All trades are uninformed trading, i.e. π = 1;

2. The LT’s value (νA,νB) follows the same distribution for both informed and unin-

formed trading. And one of the two tokens is a stablecoin. In the case of token A is

stable, it implies νA = µA for sure. Also, there exists some uninformed trading, i.e.

π ̸= 0.

5 AMM Liquidity: Insights from the Dynamic Model

In this section, we solve for and simulate the optimal supply of liquidity in the dynamic

model. We show how the LP’s dynamic problem, which is a function of four state vari-

ables (her endowment of each token and her beliefs about the value of each token), may

be simplified using an auxiliary dynamic problem with a single endogenous state vari-

able and a single exogenous state variable. We use this approach to solve and simulate

the dynamic supply of liquidity.

We use our simulations to study the dynamics of optimal liquidity—that is, we study

how optimal liquidity responds to trading by liquidity takers. First, we show that LP’s

responses typically feature action and inaction regions. For trades (informed or unin-

formed) that have little price impact, LPs typically do not re-balance their liquidity. For

large trades, however, LPs typically re-balance. Moreover, LPs are more likely to re-

balance when trading is uninformed. Finally, we explore our empirical evidence on AMM

trades and liquidity provider behavior and demonstrate similar findings exist in the data.

5.1 The Dynamic Model Solution

Although the liquidity provider has linear (risk-neutral) preferences, the evolution of her

endowments is not immediately linear given the convex pricing curveG and the behavior

of the liquidity takers in each period. Nonetheless, we are able to simplify our dynamic

model which naturally has four state variables.
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Towards this end, observe that EA,t,EB,t,µA,t,µB,t only show up in the objective func-

tion (7) as products µA,tEA,t and µB,tEB,t. We now show that the same holds in the LP’s

constraints in each period. Define (rA,t, rB,t) =
(
νA,t
µA,t−1

, νB,t
µA,t−1

)
as the rates of change in

the LT’s valuations relative to the LP’s. Let Xi,t = µi,tEi,t represent the expected value

of each token the LP has at the end of each period t and Yi,t = µi,t−1ei,t represent the

expected value of each token the LP deposits into the pool at the beginning of period t.

Now, suppose that (rA,t, rB,t) follows the distribution Ht, which is independent of

the current beliefs (µA,t−1,µB,t−1). Then, there is a one-to-one mapping from the initial

values {EA,0,EB,0,µA,0,µB,0} and the sequence of {EA,t,EB,t,µA,t,µB,t, eA,t, eB,t}
∞
t=1, to the

initial values {XA,0,XB,0,µA,0,µB,0} and a sequence of {XA,t,XB,t, rA,t, rB,t, YA,t, YB,t}
∞
t=1.

Ei,t =
Xi,t
µi,t

µi,t = µi,0

t∏
s=1

ri,t

ei,t =
Yi,t
µi,t−1

.

In other words, assuming the change in beliefs is independent of the level of beliefs ren-

ders the LP’s optimal liquidity supply in each period independent of the level of beliefs.

Her payoffs, of course, depend on these levels so we must track their values, but they do

not influence the LP’s optimal supply.

Using notation similar to that from the one-shot model,ωt =
√
rA,t
rB,t

andψt =
√
rA,trB,t,

we may re-write the LP’s dynamic problem as

max
{YA,t}

∞
t=1,{YB,t}

∞
t=1

∞∑
t=0

δtβ (1 −β)t E [XA,t +XB,t]
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where for t = 1, 2, 3...

(
XA,t

XB,t

)
=



 1
ωt

√
YA,tYB,t + (XA,t−1 − YA,t)

ωt
√
YA,tYB,t + (XB,t−1 − YB,t)

 with prob π ψt
√
YA,tYB,t + rA,t (XA,t−1 − YA,t)

ψt
√
YA,tYB,t + rB,t (XB,t−1 − YB,t)

 with prob 1 − π

0 ⩽ Yi,t ⩽ Xi,t−1

given µA,0,XA,0,µB,0,XB,0. We leave a detailed proof in Appendix D. This result implies

that we may re-write the sequential problem as a dynamic program with value function

V (XA,t,XB,t) (rather than as V (EA,t,EB,t|µA,t,µB,t)).

Next, we argue that this value function is homogeneous with degree one (constant

return to scale).

Proposition 7: Constant Return to Scale For any XkA,0 = kXA,0 and XkB,0 = kXB,0, it must

be V
(
XkA,0,XkB,0

)
= V (kXA,0,kXB,0) = kV (XA,0,XB,0) for any k > 0.

Proposition 7 implies that we may use two one-dimensional functions V i : (0, 1] → R+

to represent the value function instead of one two-dimensional function V : R2
+ → R+.

V (XA,0,XB,0) =

XA,0V
(

1, XB,0
XA,0

)
XA,0 ⩾ XB,0

XB,0V
(
XA,0
XB,0

, 1
)

XA,0 < XB,0

≡

XA,0V
B
(
XB,0
XA,0

)
XA,0 ⩾ XB,0

XB,0V
A
(
XA,0
XB,0

)
XA,0 < XB,0

. (24)

Being able to reduce the value function into the form of a two-dimensional function with

domain (0, 1] allows us to numerically solve the value functions and policy functions

through policy function iteration.

5.2 Simulated Dynamics of Liquidity Provider Behavior

We now explore the features of the dynamics of optimal liquidity using simulated data

from our model. Specifically, we consider the case of one risky coin and one stable coin.
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We assume the rate of change of beliefs of the risky coin follows a truncated normal dis-

tribution. We first examine what fraction of each token the LP deposits as a function of

the ratio of the expected value of each token the LP has at the beginning of each period.

Numerical experiments across a wide range of parameters suggest that at least one corner

constraint is always binds as in our static model.17

Figure 10 displays an illustration of the LP’s optimal deposit strategy for a typical

numerical example (we provide the numerical details in the figure’s description). In the

example, tokenA is a risky coin and token B is a stable coin whose values never fluctuate.

On the left-hand side of the panel, the LP owns risky coins with lower expected value rel-

ative to the stable coins she owns. In this case, she deposits all of her risky coins with the

AMM and retains a portion of her stable coins. The fraction of stable coins she deposits on

the AMM grows as the ratio of the value of her endowment of token tends towards one.

We see the inverse behavior when instead the LP owns risky coins with greater expected

value relative to the stable coins she owns. In this case, she deposits all of her stable coins

and only a fraction of her risky coins. In this example, the full deposit region—when the

LP deposits all of her endowment of both tokens—is when the expected value of her risky

coin endowment is slightly bigger than that of her stable coin endowment (when XB/XA

is close to 1).

Using numerically solved dynamic optimal policy functions, we conduct Monte Carlo

experiments to simulate the dynamic behavior of the LP under different parameteriza-

tions. As shown in Section 2, liquidity providers transact at the AMM rarely compared

to liquidity takers. Our model generates this inactivity endogenously since an LP who

deposits their whole endowment may still do so even after a trade by the liquidity taker.

To understand this inaction, recall from our discussion following Proposition 3 that

there is a range of relative token endowments (given the LP’s beliefs) where the LP finds

it optimal to deposit her entire endowment. Suppose in some period t the LP deposits
17 Our simulation results below (Figures 5, 10, 11) assume π = 0.8, rB,t = 1 (token B is a stable coin),

rA,t follows a normal distribution where the distribution for uninformed trades has mean 1 and standard
deviation 0.5 while for informed trades has mean 1 and standard deviation 0.25 (both distributions are
truncated to a range of 0.5 to 1.5), δ = 0.99, β = 0.01. We simulate conduct 20,000 simulations of activity at
the AMM in our model with each simulation lasting for 500 periods.

37



her entire endowment and there is subsequently an uninformed trade. If this trade is

small—it shifts the LP’s ex-post endowment very little—then the LP is likely to remain in

the region where she finds it optimal to supply her entire endowment. (With uninformed

trades, the LP’s relative valuations µA,t and µB,t do not adjust.) When a large uninformed

trade takes place, the LP is likely to find herself outside of the maximal supply region

and will adjust her balance. However, when a large informed trade takes place, the LP’s

maximal supply region also shifts (simulations suggest this shift is typically in the same

direction as the LT’s trade) and so sometimes the LP will remain in the (new) maximal

supply region. This result suggests that LP’s will trade more frequently when there is

more uninformed trade.

Figure 11 explores this inactivity numerically by examining how the extent of the LP’s

inaction depends on the severity of informed trading. This figure shows that an increase

in π—the degree of uninformed trade—leads to a higher probability that the LP will re-

balance her deposits in any given period.18 In other words, we should expect more LP

transactions in pools that feature less informed trading (or less adverse selection).

Regardless of whether the LP faces informed or uninformed trades, when trades are

sufficiently large we expect the liquidity provider to re-balance her deposits in such a

way that adjusts relative prices in the opposite direction of the liquidity taker’s realized

trades. Moreover, it is more likely for the LP to re-balance her deposits following an LT

swap after an uninformed trade relative to an informed trade.

To study how LPs adjust prices empirically, we construct measures of price impact by

LTs and LPs at AMMs. Recall, that the ratio of the quantity of coin A to coin B defines the

marginal price in the liquidity pool. Motivated by this feature of the AMM, we define the

price impact of an LT trade at time t as

λLTt = log (xA,t/xB,t) − log (eA,t/eB,t) (25)

18While we display the percent of periods the LP trades, the level of this value is not determined in
our model as we may assume an arbitrary amount of trades by LTs in each period before the LP has the
opportunity to re-balance.
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where ei,t are the quantities prior to the trade and xi,t are quantities immediately after the

trade, as in 7. Similarly, we define the price impact of the LP swap after an LT trade at

time t as

λLPt = log (eA,t+1/eB,t+1) − log (xA,t/xB,t) . (26)

We expect these measures of price impact to be negatively correlated and that the cor-

relation is more negative for uninformed trades than informed trades. Figure 5 illustrates

this result in our numerical simulations. Each panel displays the scatter plot of λLPt against

λLTt (panel (a) shows this relationship following informed trades and panel (b) shows this

relationship following uninformed trades). In a given period, the LT experiences a shock

to her valuation of token A relative to the LP’s beliefs at the start of the period rA,t (recall

token B in this simulation is a stable coin). When rA,t is larger than 1, the LT becomes

relatively optimistic about tokenA and so withdraws tokenA from the pool and deposits

token B. From (25), this swap induces a negative price impact (λLTt < 0). Conversely,

when rA,t is smaller than 1, the LT is relatively pessimistic about token A and will induce

a positive price impact (λLTt > 0).

In the figure, darker colors with larger positive LT price impact are associated with

lower values of rA,t (more pessimistic views of the LT) while lighter colors with larger

negative LT price impact are associated with higher values of rA,t (more optimistic views

of the LT). There is variation in the implied price impact for a given level of rA,t because

the state of the AMM at the time of the shock varies (and because the colors represent

bins of the belief update distribution).

For a given level of rA,t, whether trades are informed or uninformed, we observe

a negative correlation between the LT’s price impact and the LP’s price impact caused

through deposit re-balancing. (In both plots for a given color, we see a strong negative

relationship.) However, for any level of rA,t, when trades are informed, the LP is less

likely to re-balance their deposits, and, as a result, the distribution of LP price impacts is

(roughly) centered at no price impact. Instead, LPs respond more aggressively to large

trades by uninformed LTs. When examining the overall correlation of the price impact of
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swaps by LTs and LPs, we expect a much weaker correlation for informed trading than

for uninformed trading as shown in Figure 5.

Figure 5: LP Swap Slope against LT Trade Slope

(a) Informed Trade (b) Uninformed Trades

Scatterplot of price impact of LT swaps (λLT ) with price impact of subsequent LP swaps (λLP) from numer-
ical simulation where the value of token A follows a truncated normal distribution and the value of token
B is fixed or stable. Different colors represents different rates of change in the LT’s valuation of token A
relative to the LP’s at the beginning of each period (rA,t). Panel (a) shows the cases of informed trades.
Panel (b) shows the cases of uninformed trades. For detailed choices of parameters, see 17.

5.3 Empirical Dynamics of Liquidity Provider Behavior

In Section 2, we used data from Uniswap v2 contract to show that even with a limited

set of actions, many liquidity providers are actively involved in price setting. Specifically,

we observed that many liquidity providers execute swap transactions in pools where

they had also provided liquidity. We also found that many mint transactions, which add

liquidity to a pool, were preceded by swaps that adjust the marginal price in the pool.

In our dynamic model, building on the static framework shown in Figure 3, we charac-

terized how liquidity providers “set prices” (by posting quantities) based on their beliefs.

As liquidity takers post swap transactions, liquidity providers may want to adjust their

positions. Whether they do so depends on the nature of the LT trade. Any LT swap, by
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definition, changes the relative quantities of pool tokens and, given the CPMM function,

the relative marginal token price. If the swap came from a LT who is a noise trader, the

beliefs of the LP are unchanged. So, to move the pool back towards the LP optimal posi-

tion, they would need to swap in the opposite direction. In contrast, if the LT trade came

from an informed trade, then the beliefs of the LP have updated. In this case, the LP may

wish to swap to to attain the optimal position. However, given the new beliefs centered

at those motivating the last LT trade, there is no bias for the LP to swap in one direction

or the other.

We can use the transaction data for the Uniswap v2 data to examine this behavior em-

pirically. We begin by defining an empirical counterpart to our measures of price impact

as

λt = log
(
qa,t1/qb,t1

)
− log

(
qa,t0/qb,t0

)
where t0 are the quantities prior to a swap and t1 are quantities immediately after the

swap. We are interested in the price impact of the swap of an LP, λLPt , and how that

compares to LT swaps prior to t.

In Table 3 we present summary statistics on the typical size of LP and LT price impacts

in our Uniswap data. Note in this table we focus on individual rather than cumulative

trades.

Table 3: Price Impact

Standard
Mean Deviation Min Max

LP 0.002958 0.010522 -0.526232 0.326240
LT 0.001911 0.014523 -7.496103 6.977194

The table presents the average and standard deviation of the absolute value of price impact by LPs
and LTs. The table also includes the smallest and largest price impacts by LPs and LTs. Data is
pulled from all Uniswap v2 pools that were created prior to 2020-07-01 and have more than 100,000
transactions. There are 31 pools. The sample period is from 2020-07-01 to 2024-06-30.

Given our focus on transaction counts in Section 2 above, it is interesting to note that
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a typical swap by an LP is of a comparable size (by price impact) to a typical swap by an

LT. We view this as supporting evidence that LP swap behavior is meaningful for overall

price discovery at AMMs.

Additionally, our model suggests that the response of the LP to LT trade as measured

by the correlation between λLPt and λLTt should vary with the extent of informed trading

in the market. We pursue an approach to identify the extent of informed trading behavior

in AMMs motivated by ideas in Capponi, Jia and Yu (2024) who use blockchain gas fees

(transaction costs) paid for swaps to categorize informed and uninformed trades. The

logic is that a LT with information that is short-lived will pay a higher mining (gas) fee to

increase the priority of her transaction and ensure it is added to the blockchain quickly.19

Building on this idea, here we categorize a transaction by an LT as an informed trade if

the gas fee is “high.” We define high as a gas fee paid in a specific pool that is in the top

25% decile over the prior (rolling) seven day window in that pool.

Using this categorization, we find that the average (absolute) price impact of an in-

formed trade is roughly 0.0029 and of the same order of magnitude as an LP swap as

reported in Table 3 while the average (absolute) price impact of an uninformed trade is

slightly smaller and roughly 0.0016. Focusing on one specific pool, Table 4 shows the

distribution of the size of trades in the largest pool in our sample, the WETH–USDT pool

where traders may swap WETH for the Tether stable coin USDT.20

Table 7 shows similar results for all pools in our sample. Consistently, we observe the

price impact of a typical swap by an LP is comparable to the price impact of a typical swap

by an LT. While this result holds across most pools for a wide range of the distribution,

from the 5th to the 95th percentile, for some pools we do observe that the LT swaps with

the largest price impact in absolute value tend to be larger than those for LP swaps. We

view this evidence as consistent with our assumption that a typical liquidity provider is

19To expedite the processing of an Ethereum transaction, an LT can increase the gas fee, effectively offer-
ing a higher amount of ETH as an incentive for miners to include it in the next block. This prioritization
mechanism ensures that, during periods of network congestion, transactions with higher fees are processed
ahead of those with lower fees.

20WETH represents “wrapped” ETH which is a smart-contract based representation of the native cryp-
tocurrency of the Ethereum blcockchain, ETH.
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Table 4: Price Impact in the WETH-USDT Pool.

Trader Type 5% 50% 95% Min Max

LP -0.000361 0.000000 0.000535 -0.278843 0.273400
LT -0.000330 -0.000001 0.000327 -0.232827 0.322526
Informed -0.000737 -0.000002 0.000700 -0.232827 0.322526
Noise -0.000241 -0.000001 0.000246 -0.230243 0.234302

The table presents distributional statistics of price impact by LPs and LTs. The table also shows
distributional statistics of price impact by LT trades classified as Informed trades compared to those
classified as uninformed trades. Trades are classified as informed if the gas fee associated with
the swap transaction is in the top 25% quartile of gas fees paid for swaps over the prior (rolling)
seven day window in that pool. Data is pulled from all Uniswap v2 pools that were created prior to
2020-07-01 and have more than 100,000 transactions. There are 31 pools. The sample period is from
2020-07-01 to 2024-06-30.

“slow”—they wish to trade less often and would obtain less transactional priority should

they trade—compared to the typical trader.

We now use this evidence to understand if the dynamics of LP behavior in the data

are consistent with our theory. In our data, we typically have multiple LT swaps in a

row (recall from Table 1 that LT transactions are, by far, the most common). Instead of

focusing on the price impact of a single trade by a liquidity taker, then, we define λLTt
as the cumulative price impact of LT trades after the previous LP trade and prior to t.

In other words, the impact of all the LT swaps between two LP swaps. More precisely,

recall that we have labeled all swap transactions as coming from a LP or a LT. Define

TLT = {τ | the trade at time τ is by an LT} and TLP = {t | the trade at time t is by an LP}.

So, the date of the last swap by an LP prior to t is ρ(t) = max{τ ∈ TLP | τ < t}. Hence, the

cumulative price impact of all intervening LT trades prior to date t is

λLTt =
∑

τ∈TLT : ρ(t)<τ<t

λτ.

Then the price impact λLTt is informed if any of the intervening LT swaps were informed.

This is captured in the indicator function It as:

It =

{
1 if ∃ τ ∈ TLT : ρ(t) < τ < t and gasτ is high
0 otherwise
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Table 5 reports the results of the following regression

λLPt = b0 + b1It + b2λ
LT
t + b3λ

LT
t It + ϵt.

Table 5: LP swap reaction to LT trade

Sample Period Full v2 era v3 era Full v2 era v3 era Full Full

Intercept b0 0.00010 0.00009 0.00030 – – – –
(0.00008) (0.00008) (0.00030)

Intercept Informed b1 0.00010 0.00010 −0.00008 0.00010 0.00020 −0.00030 0.00010 0.00006
(0.00008) (0.00009) (0.0003) (0.00008) (0.00009) (0.0003) (0.00009) (0.00008)

LT Price Impact b2 −0.2284 −0.2302 −0.1725 −0.2204 −0.2227 −0.1422 −0.2200 −0.2063
(0.0170) (0.017) (0.096) (0.017) (0.017) (0.080) (0.017) (0.018)

LT Price Impact × has_informed b3 0.2264 0.2053 0.1721 0.2187 0.1985 0.1422 0.2184 0.2039
(0.017) (0.019) (0.096) (0.010) (0.019) (0.080) (0.017) (0.018)

Pool fixed effect No No No Yes Yes Yes Yes No
Month fixed effect No No No No No No Yes No
Pool – Month fixed effect No No No No No No No Yes

# of observations 75,047 64,312 10,735 75,047 64,312 10,735 75,047 75,047
R2 0.025 0.036 0.007 0.045 0.054 0.081 0.046 0.156

λLPt is the price impact of LP swap at t. λLTt is the price impact of all LT swaps at between the last LP swap
and prior to t. It is an indicator that is one if the LT swap is identified to be informed. LT swaps are tagged
as informed if their gas fee (transaction cost) is high (top 25% decile of past seven days, by pool). Standard
Errors (in parentheses are heteroscedasticity-robust (HC2). A transaction is classified as belonging to an LP
if: (a) it is a mint or burn; (b) any of the addresses involved in the transaction have a positive balance of
that pool’s tokens at the time of the transaction; or c the swap transaction is paired with a mint transaction.
Each transaction can involve several addresses (both wallets and contracts). A transaction is paired if all
the addresses on both transactions match and the transactions both occur within a three-minute interval.
Data is pulled from all Uniswap v2 pools that were created prior to 2020-07-01 and have more than 100,000
transactions. There are 31 pools. The sample period is from 2020-07-01 to 2024-06-30. The total number of
transactions is 19.2 million. A transaction is defined as a unique call to a Uniswap pool contract as a swap,
mint, or burn, and involves multiple addresses (wallets and contracts) and token transfers.

The focus of our analysis is the reaction of the LP to prior trades of the LT. For LT trades

classified as noise trades, this reaction is b2 and for LT trades classified as informed, the

reaction is b2 +b3. Notice in the table that b2 is negative. The LT actively adjusts marginal

prices in a direction opposite that of the noise trader LT. Also, b2 + b3 is approximately

zero. When the intervening swaps were informed, the LP swap is, on average, direction-

less. (See table 5 for results using the full sample as well as on partial samples that include

the periods before and after the introduction of Uniswap v3.) Additionally, we run the

regression with fixed effects for pools, months, and the pool-month combination. The

main result that b2 < 0 and b2 + b3 ≈ 0 is consistent across all these specifications.
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These findings on the dynamic behavior of liquidity providers in Uniswap v2 are con-

sistent with our theoretical model’s predictions for this same behavior. The fact that there

is systematic variation in how liquidity providers actively set prices on AMMs suggests

the importance of better understanding the role liquidity providers in AMMs play in aid-

ing price discovery for cryptocurrencies.

6 Conclusion

Blockchain technology has spawned a very large variety of cryptocurrency tokens. Given

the large disagreement about their speculative value and heterogeneity about any util-

ity of the tokens, trading the tokens is important. Over the past decade, a large number

of new centralized exchanges have been successful (and unsuccessful) at both generat-

ing large volumes and innovating. The perpetual futures contract is one example of in-

novation (Soska et al. (2021), Christin et al. (2023)). Similarly, Automated Market Mak-

ers (AMM) have innovated trade by designing smart contracts (automated code on the

blockchain) to conduct trade directly on a blockchain.

In this paper, we have explored the key design characteristic of AMM technology,

the pricing curve. Specifically, we look at two aspects related to the pricing curve, G.

First, what is the optimal ratio for deposits? Contrary to conventional AMM wisdom,

depositing tokens in equal value (measured through the lens of the liquidity provider)

is not optimal. Second, we explore the convexity of G and its impact on the liquidity

provider profits. The trade-off is subtle since convexity impacts the profits from trading

with both informed and uninformed liquidity takers.

There are, of course, several important areas we have left for future research. Our

model treats the G function as given. This, along with the “deep pockets” assumption

for the liquidity takers, means the liquidity provider’s decision can be made in isolation

(i.e., atomistic with respect to liquidity takers). In practice, there are multiple AMM ex-

changes. So, thinking about competition across the design of theG function is interesting.
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Second, our model takes a simplified view of the timing of transactions – first, the LP posts

and then the LT trades. Again, in practice, the timing of transactions in a decentralized

blockchain is complicated and potentially strategic.
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A Proof of Optimal Liquidity Provision

LP’s optimal deposit problem is

max
eA,eB

π(µAE[xA − eA] + µBE[xB − eB])+

(1 − π)(EνA[xA − eA] + µBEνB[xB − eB])

s.t. (5)–(6),

0 ⩽ ei ⩽ Ei, ∀i

Based on equation (5)–(6), we can write down the post-trade portfolio of the LP as

xA =

√
νB
νA
eAeB, xB =

√
νA
νB
eAeB

Then we can write the post-trade net value gains from each token in the hand of the
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LP by depositing as

µA(xA − eA) =

√
νB/µB
νA/µA

µAµBeAeB − µAeA

µB(xB − eB) =

√
νA/µA
νB/µB

µAµBeAeB − µBeB

for uninformed trades and

νA(xA − eA) =

√
νAνB
µAµB

µAµBeAeB − νAeA

νB(xB − eB) =

√
νAνB
µAµB

µAµBeAeB − νBeB

for informed trades.

Denoteω =
√
νA/µA
νB/µB

and ψ =
√
νA
µA

νB
µB

. With assumptions that Eνi = µi, LP’s optimal

deposit problem becomes

max
eA,eB

[
π

(
Eω+ E

1
ω

)
+ (1 − π)2Eψ

]√
µAeA

√
µBeB − µAeA − µBeB

s.t. 0 ⩽ ei ⩽ Ei, ∀i

Further denote Π = π
Eω+E 1

ω
2 + (1 − π)Eψ. We can use the standard Lagrangian method

to solve the above constraint optimization problem. The FOCs are

∂L

∂eA
: µA

(
Π

√
µBeB
µAeA

− 1
)
+ ηA − ξA = 0

∂L

∂eB
: µB

(
Π

√
µAeA
µBeB

− 1
)
+ ηB − ξB = 0

where ηi is the Lagrangian multiplier for 0 ⩽ ei and ξi is the Lagrangian multiplier for

ei ⩽ Ei.

If Π < 1, the above FOCs only hold when eA = eB = 0. In this case ηi > 0 and ξi = 0.

If Π > 1, the solution is always at the corner, i.e. at least one of the ξi > 0. To see

this, consider the interior cases where ηi = 0 and ξi = 0. For the FOCs to hold, we

need Π
√

µBeB
µAeA

= Π
√
µAeA
µBeB

= 1, which is impossible. Since Π > 1, if one of Π
√

µBeB
µAeA
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and Π
√
µAeA
µBeB

equals to 1, then the other one must be bigger than 1. And it needs the

corresponding ξi to be positive for the FOCs to hold.

Therefore, we have the following optimal deposit of the LPe
∗
A = EA, e∗B = min

{
Π2 µA

µB
EA,EB

}
, if µAEA ⩽ µBEB

e∗A = min
{
Π2 µB

µA
EB,EA

}
, e∗B = EB, if µAEA > µBEB

if Π > 1 and

e∗A = e∗B = 0

if Π < 1.

B Proof of Pareto Improvement

Let y = G(x) be a convex and smoothly decreasing price function where eB = G(eA).

Consider a uniform stretch of the function around the initial deposit point (eA, eB): (1 −

τ)y + τeB = G((1 − τ)x + τeA) where τ ∈ (0, 1). Then the second order derivatives is
d2y
dx2 = (1− τ)2G ′′((1− τ)x+ τeA). Therefore, the transformation is less convex around the

initial deposit point (eA, eB) as τ increases.

Now we can write the LT’s problem as:

max
eA,eB

νA(eA − x) + νB(eB − y)

s.t. (1 − τ)y+ τeB = G((1 − τ)x+ τeA)

Assume the distributions of the LT’s values of the tokens (νA, νB) have bounded support

such that a trade that exhausts one token never happens. Then the first order condition

becomes G ′((1 − τ)x+ τeA) = −νA
νB

. Similar to the CPMM case, the LP’s post-trade port-
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folio satisfies

(1 − τ)y+ τeB = G((1 − τ)x+ τeA)

G ′((1 − τ)x+ τeA) = −
νA
νB

Let (x0,y0) be the post-trade portfolio for the original function, i.e., when τ = 0. Let

(xτ,yτ) be the portfolio for some τ ∈ (0, 1). Then given νA
νB

, the ex post portfolios satisfies

(1 − τ)xτ + τeA = x0

(1 − τ)yτ + τeA = y0

which can be written as

xτ − eA =
1

1 − τ
(x0 − eA)

yτ − eB =
1

1 − τ
(y0 − eB)

Therefore, the trading volume is proportionally increased by 1 − 1
1−τ = τ

1−τ for every ex

post scenario.

Given the probability of uninformed trading π, the LP’s expected return with the

transformed price function is

Rτ =E[(πµA + (1 − π)νA)(xτ − eA) + (πµB + (1 − π)νB)(yτ − eB)]

=
1

1 − τ
E[(πµA + (1 − π)νA)(x0 − eA) + (πµB + (1 − π)νB)(y0 − eB)]

Since the objective is just scaled up by a constant, the optimal deposit decision (e∗A, e∗B)

shouldn’t change as well.
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C Cost of Convexity

Again let token B represent a stable coin and set νB = µB = 1 and hB(νB) = 1 if νB = 1.

Denote rA = νA/µA. Assume rA follows a distribution with CDF F(rA). For simplicity,

assume µAeA
µBeB

= 1. The results still go through when µAeA
µBeB

equals to some constant other

than 1.

C.1 Piece-wise Linear

Consider the piece-wise linear prices 23. The region of belief where a trade happens with

price ph is when rA ⩾ ph. From the LP’s perspective, the trading volume in this region

is −eA for token A and pheA for token B. The expected return of the LP from uninformed

trading is ∫∞
ph

(ph − 1)dF(rA)µAeA

with derivative as [1− F(ph)− (ph− 1)f(ph)]µAeA. The first term represents the increased

gains to trade for all beliefs where the LT continues to trade. The second term represents

the reduced trading volume on the margin.

On the other hand, the expected return (negative) of the LP from informed trading is∫∞
ph

(ph − rA)dF(rA)µAeA

with derivative as (1 − F(ph))µAeA. Since on the marginal informed LT is just indifferent

between trading and not, the second term in the case of uninformed trades is not here.

Given the proportion of uninformed trades π, the marginal benefits of increasing ph

(increasing convexity) is

[1 − F(ph) − π(ph − 1)f(ph)]µAeA

which has finite number of roots. It implies that some degree of convexity is desirable.
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C.2 Continuously Differentiable Price

Now consider the continuously differentiable price function in 21. Similarly, the region of

belief where a trade happens with price ph is when rA ⩾ 1
τ2 . From the LP’s perspective,

the trading volume in this region is −eA for token A and 1
τeB for token B. Denote c = 1

τ ∈
(1,∞). So, increasing c increases the local convexity. The expected return of the LP from

uninformed trading is ∫∞
c2
(c− 1)dF(rA)µAeA

with derivative as [1 − F(c2) − (c− 1)f(c2)]µAeA. Again the first term represents the in-

creased gains to trade for all beliefs where the LT continues to trade. The second term

represents the reduced trading volume on the margin.

On the other hand, the expected return (negative) of the LP from informed trading is∫∞
c2
(c− rA)dF(rA)µAeA

with derivative as [1 − F(c2) + c(c− 1)f(c2)]µAeA. Since c > 1 there is an additional gain

for the LP from reducing the trading volume further.

Given the proportion of uninformed trades π, the marginal benefits of increasing ph

(increasing convexity) is

[1 − F(c2) + (c− 1)((1 − π)c− π)f(c2)]µAeA

which is always positive for c ⩾ π
1−π . In these cases, increasing (local) convexity is always

beneficial for trades induced by extremal beliefs. However, it reduces the trading volume

and the returns from mild beliefs.

D Proof of Optimal Pricing Function

We can consider the optimal design problem as the LP post the ending position of the

pool given the new valuation of the LT (νA,νB) such that the LT is willing to participate

54



(Individual Rational) and truthfully report the values (Incentive Compatible).

Assume the LT’s value (νA,νB) follows the same distribution for both informed and

uninformed trading. Also, assume the LT has at most lB token B to trade in.

Let tA = eA − x and tB = eB − y be the net amount of token the LP loses by trading.

With the percentage of uninformed trading π, the problem can be written as:

max
x,y

E{νA,νB} [− (πµA + (1 − π)νA) tA (νA,νB) − (πµB + (1 − π)νB) tB (νA,νB)]

s.t. νAtA (νA,νB) + νBtB (νA,νB) ⩾ νAtA
(
ν ′
A,ν ′

B

)
+ νBtB

(
ν ′
A,ν ′

B

)
νAtA (νA,νB) + νBtB (νA,νB) ⩾ 0

tA (νA,νB) ⩽ eA, −lB ⩽ tB (νA,νB) ⩽ eB

Since only p = νB
νA

eB
eA

matters in the constraints, the problem can be written as

max
tA,tB

Ep

[(
−
tA (p)

eA
−

(πµB + (1 − π)νB)

(πµA + (1 − π)νA)

eB
eA

tB (p)

eB

)
(πµA + (1 − π)νA)

]
eA

s.t.
tA (p)

eA
+ p

tB (p)

eB
⩾
tB (p̂)

eB
+ p

tB (p̂)

eB
tA (p)

eA
+ p

tB (p)

eB
⩾ 0

tA (p)

eA
⩽ 1, −

lB
eB

⩽
tB (p)

eB
⩽ 1

Under one of the two conditions, i.e. π = 0 or νA = µA for sure, we know πµA +

(1 − π)νA is a constant. So the objective can be simplified. Let −
tA(p)
eA

+ 1 = y (p),
tB(p)
eB

= x (p) and (πµB+(1−π)νB)
(πµA+(1−π)νA)

eB
eA

= π (p0,p). The problem then has the same expres-

sion as Milionis, Moallemi and Roughgarden (2023b).

max
x,y

Ep [y (p) − π (p0,p) x (p)]

s.t. px (p) − y (p) ⩾ px (p̂) − y (p̂)

px (p) − y (p) ⩾ 0

y (p) ⩾ 0, −c ⩽ x (p) ⩽ 1
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E Dimension Reduction of the Dynamic Model

E.1 Proof of Total Value Equivalence

We see that EA,t,EB,t,µA,t,µB,t only show up in the objective function (7) as products

µA,tEA,t and µB,tEB,t. We need to show that this is also the case for the constraints.

Remember that (rA,t, rB,t) =
(
νA,t
µA,t−1

, νB,t
µA,t−1

)
are the rate of belief change, Xi,t = µi,tEi,t

are the total value of each token LP has at the end of time t and Yi,t = µi,t−1ei,t are the

total value of each token LP deposits into the pool at the beginning of time t. We also

assume that (rA,t, rB,t) follows the distribution Gt, which is independent of the current

belief of valuations (µA,t−1,µB,t−1). Then we have the following mappings:

Ei,t =
Xi,t
µi,t

µi,t = µi,0

t∏
s=1

ri,t

ei,t =
Yi,t
µi,t−1

First we can pin down (xA,t, xB,t)–the pool position after trade at time t–using Con-

stant Product and LT’s optimality:

(
xA,t

xB,t

)
=

 √
νB,t
νA,t

eA,teB,t√
νA,t
νB,t

eA,teB,t

 =


1

µA,t−1

√
νB,t/µB,t−1
νA,t/µA,t−1

√
µA,t−1eA,tµB,t−1eB,t

1
µB,t−1

√
νA,t/µA,t−1
νB,t/µB,t−1

√
µA,t−1eA,tµB,t−1eB,t


Combining with Accounting, we have the post-trade token in the hand of LP as

(
EA,t

EB,t

)
=

 √
νB,t
νA,t

eA,teB,t + (EA,t−1 − eA,t)√
νA,t
νB,t

eA,teB,t + (EB,t−1 − eB,t)



Similar to the static problem, we can write the post-trade values of each token in the
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hand of LP as

(
µA,tEA,t

µB,tEB,t

)
=


√

νB,t/µB,t−1
νA,t/µA,t−1

√
µA,t−1eA,tµB,t−1eB,t + µA,t−1 (EA,t−1 − eA,t)√

νA,t/µA,t−1
νB,t/µB,t−1

√
µA,t−1eA,tµB,t−1eB,t + µB,t−1 (EB,t−1 − eB,t)


for uninformed trades, and

(
µA,tEA,t

µB,tEB,t

)
=

 √
νA,t
µA,t−1

νB,t
µB,t−1

√
µA,t−1eA,tµB,t−1eB,t +

νA,t
µA,t−1

µA,t−1 (EA,t−1 − eA,t)√
νA,t
µA,t−1

νB,t
µB,t−1

√
µA,t−1eA,tµB,t−1eB,t +

νB,t
µB,t−1

µB,t−1 (EB,t−1 − eB,t)


for informed trades.

Therefore, with the assumption that (rA,t, rB,t) =
(
νA,t
µA,t−1

, νB,t
µB,t−1

)
is independent of

the state variables EA,t−1,EB,t−1,µA,t−1,µB,t−1, we can use a notation similar to that of the

static model,ωt =
√
rA,t
rB,t

and ψt =
√
rA,trB,t. And the constraints become:

(
µA,tEA,t

µB,tEB,t

)
=

(
1
ωt

√
µA,t−1eA,tµB,t−1eB,t + (µA,t−1EA,t−1 − µA,t−1eA,t)

ωt
√
µA,t−1eA,tµB,t−1eB,t + (µB,t−1EB,t−1 − µB,t−1eB,t)

)

for uninformed trades, and(
µA,tEA,t

µB,tEB,t

)
=

(
ψt

√
µA,t−1eA,tµB,t−1eB,t + rA,t (µA,t−1EA,t−1 − µA,t−1eA,t)

ψt
√
µA,t−1eA,tµB,t−1eB,t + rB,t (µB,t−1EB,t−1 − µB,t−1eB,t)

)

for informed trades.

Now we have that EA,t,EB,t,µA,t,µB,t only show up both in the objective function and

the constraints as products µA,tEA,t and µB,tEB,t. By changing the sequence of variables

{EA,t,EB,t,µA,t,µB,t, eA,t, eB,t}
∞
t=1 to {XA,t,XB,t, rA,t, rB,t, YA,t, YB,t}

∞
t=1 as we define above, the

problem can be written as:

max
{YA,t}

∞
t=1,{YB,t}

∞
t=1

∞∑
t=0

δtβ (1 −β)t E [XA,t +XB,t]
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where for t = 1, 2, 3...

(
XA,t

XB,t

)
=



 1
ωt

√
YA,tYB,t + (XA,t−1 − YA,t)

ωt
√
YA,tYB,t + (XB,t−1 − YB,t)

 with prob π ψt
√
YA,tYB,t + rA,t (XA,t−1 − YA,t)

ψt
√
YA,tYB,t + rB,t (XB,t−1 − YB,t)

 with prob 1 − π

0 ⩽ Yi,t ⩽ Xi,t−1

given µA,0,XA,0,µB,0,XB,0.

E.2 Proof of Constant Returns to Scale

We need to show that for any XkA,0 = kXA,0 and XkB,0 = kXB,0, it must be V
(
XkA,0,XkB,0

)
=

V (kXA,0,kXB,0) = kV (XA,0,XB,0) for any k > 0.

To do that, we can show that for any realization of {rA,t, rB,t}
∞
t=1, we have

{
XkA,t,X

k
B,t

}∞
t=1

=

{kXA,t,kXB,t}
∞
t=1, then the objective function implies the above statement directly.

Notice that the assumption of {rA,t, rB,t}
∞
t=1 is an independent process of the pool posi-

tion and LP’s move is needed here.

Let
{
Y∗A,t, Y

∗
B,t

}∞
t=1

be the optimal deposits forXA,0,XB,0, {rA,t, rB,t}
∞
t=1 and together they

induce {XA,t,XB,t}
∞
t=1.

We can do this by two steps.

1. The first step is to show that
{
kY∗A,t,kY

∗
B,t

}∞
t=1

is a feasible sequence of deposit for

XkA,0,XkB,0, and they induce {kXA,t,kXB,t}
∞
t=1, which implies that V

(
XkA,0,XkB,0

)
⩾

kV (XA,0,XB,0);

2. The second step is to show that there’s no other deposit forXkA,0,XkB,0 that can achieve

higher value than kY∗A,t,kY
∗
B,t induce, i.e. V

(
XkA,0,XkB,0

)
⩽ kV (XA,0,XB,0).
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Let us first show that V
(
XkA,0,XkB,0

)
⩾ kV (XA,0,XB,0).

Given {rA,t, rB,t}
∞
t=1, it is easy to see that kY∗A,t,kY

∗
B,t is feasible given

(
XkA,t−1,XkB,t−1

)
=

(kXA,t−1,kXB,t−1).

0 ⩽ Y∗i,t ⩽ Xi,t−1 ⇒ 0 ⩽ kY∗i,t ⩽ kXi,t−1

then it implies for next period

(
XkA,t

XkB,t

)
=



 √
rB,t
rA,t
kY∗A,tkY

∗
B,t +

(
kXA,t−1 − kY

∗
A,t

)
√
rA,t
rB,t
kY∗A,tkY

∗
B,t +

(
kXB,t−1 − kY

∗
B,t

)
 with prob π

 √
rA,trB,tkY

∗
A,tkY

∗
B,t + rA,t

(
kXA,t−1 − kY

∗
A,t

)
√
rA,trB,tkY

∗
A,tkY

∗
B,t + rB,t

(
kXB,t−1 − kY

∗
B,t

)
 with prob 1 − π

=

(
kXA,t

kXA,t

)

Therefore, we construct a feasible sequence
{
XkA,t,X

k
B,t

}∞
t=1

= {kXA,t,kXB,t}
∞
t=1 by de-

positing
{
kY∗A,t,kY

∗
B,t

}∞
t=1

for any realization {rA,t, rB,t}
∞
t=1. We don’t know if this is opti-

mal for XkA,0,XkB,0. But at least it implies that V
(
XkA,0,XkB,0

)
⩾ kV (XA,0,XB,0).

Next we show that V
(
XkA,0,XkB,0

)
⩽ kV (XA,0,XB,0). In other words, no deposit can

achieve higher value.

Suppose for some realization {rA,t, rB,t}
∞
t=1, there exist

{
Y∗kA,t, Y

∗k
B,t

}∞
t=1

, such that the

corresponding X∗k
i,t yields

∞∑
t=0

δtβ (1 −β)t
(
X∗k
A,t +X

∗k
B,t

)
>

∞∑
t=0

δtβ (1 −β)t (kXA,t + kXB,t)

Then for (XA,0,XB,0), we can use deposit 1
kY

∗k
i,t , which by the same logic as in step one, is

feasible and yields
(

1
kX

∗k
A,t,

1
kX

∗k
B,t

)
. And it gives

∞∑
t=0

δtβ (1 −β)t
(

1
k
X∗k
A,t +

1
k
X∗k
B,t

)
>

∞∑
t=0

δtβ (1 −β)t (XA,t +XB,t)
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which is contradicted to the definition that
{
Y∗A,t, Y

∗
B,t

}∞
t=1

is optimal.

Therefore, together we have V (kXA,0,kXB,0) = kV (XA,0,XB,0).

F Additional Tables and Figures

Table 6: LP Transactions - Paired

burn mint swap

Full Sample: 2020-07-01 - 2024-06-30

Naked 149, 855 169, 015 81, 686
Paired 56 27, 113 27, 116
Total 149, 911 196, 128 108, 802

v2 Dominant Contract: 2020-07-01 - 2021-05-31

Naked 112, 719 140, 452 63, 789
Paired 43 16, 911 16, 907
Total 112, 762 157, 363 80, 696

v3 Dominant Contract: 2021-06-01 - 2024-06-30

Naked 37, 136 28, 563 17, 897
Paired 13 10, 202 10, 209
Total 37, 149 38, 765 28, 106

A transaction is classified as belonging to an LP if: (a) it is a mint or burn; (b) any of the addresses involved
in the transaction have a positive balance of that pool’s tokens at the time of the transaction; or (c) the swap
transaction is paired with a mint transaction. Each transaction can involve several addresses (both wallets
and contracts). A transaction is paired if all the addresses on both transactions match and the transactions
both occur within a three-minute interval. Data is pulled from all Uniswap v2 pools that were created
prior to 2020-07-01 and have more than 100,000 transactions. There are 31 pools. The sample period is from
2020-07-01 to 2024-06-30. The total number of transactions is 19.2 million. A transaction is defined as a
unique call to a Uniswap pool contract as a swap, mint, or burn, and involves multiple addresses (wallets
and contracts) and token transfers.
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Figure 6: Uniswap Volume for v2 and v3
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Uniswap Trade Volume − Volume in BTC

Volume of trade on Uniswap across all pools measured in BTC. Uniswap v2 has mint and burn liquidity
functions to add or remove coins from a pool. Uniswap v3 allows LPs to specify custom price ranges in
which their liquidity is active. Volume for Uniswap v1 and v4 is negligible. Source: https://dune.com/.
Monthly trading volume in dollars is converted to BTC using the average monthly USD/BTC exchange
rate, computed from daily price data provided by the Federal Reserve Economic Data (FRED).
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Figure 7: Swap Trades by LPs

(a) Swaps

(b) Swaps Paired with Mints

Panel (a) shows the proportion of LP transactions that are swaps. Panel (b) shows the proportion of mint
transactions that are paired with a swap transaction. A transaction is classified as belonging to an LP if:
(a) it is a mint or burn; (b) any of the addresses involved in the transaction have a positive balance of that
pool’s tokens at the time of the transaction; or c the swap transaction is paired with a mint transaction.
Each transaction can involve several addresses (both wallets and contracts). A transaction is paired if all
the addresses on both transactions match and the transactions both occur within a three-minute interval.
Data is pulled from all Uniswap v2 pools that were created prior to 2020-07-01 and have more than 100,000
transactions. This subsample is the period where v2 was the dominant contract. There are 31 pools. The
sample period is from 2020-07-01 to 2021-05-31. The total number of transactions is 9.5 million. A transac-
tion is defined as a unique call to a Uniswap pool contract as a swap, mint, or burn, and involves multiple
addresses (wallets and contracts) and token transfers.
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Figure 8: Share of Paired Transactions

The proportion of mint transactions that are paired with a swap transaction by month. A transaction is
classified as belonging to an LP if: (a) it is a mint or burn; (b) any of the addresses involved in the transaction
have a positive balance of that pool’s tokens at the time of the transaction; or c the swap transaction is paired
with a mint transaction. Each transaction can involve several addresses (both wallets and contracts). A
transaction is paired if all the addresses on both transactions match and the transactions both occur within
a three-minute interval. Data is pulled from all Uniswap v2 pools that were created prior to 2020-07-01 and
have more than 100,000 transactions. There are 31 pools. The sample period is from 2020-07-01 to 2024-06-
30. The total number of transactions is 19.2 million. A transaction is defined as a unique call to a Uniswap
pool contract as a swap, mint, or burn, and involves multiple addresses (wallets and contracts) and token
transfers.
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Figure 9: π against variance of νA

The break even proportion of uninformed trade for liquidity provision against the variance of the value
change of token A, given token B is a stable coin. It shows that the break even level goes down with the
variance, which suggests liquidity provision becomes more profitable as liquidity traders’ beliefs become
more disperse.
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Figure 10: Optimal Policy Functions

The figure displays the LP’s optimal deposit policy functions for various values of her state, represented as
the ratio of the value of her endowment of token A to the value of her endowment of token B at the start
of the period (or its inverse). Each panel displays the fraction of her endowment of tokens A and B that
she deposits at the AMM as a function of this state variable. These policy functions were obtained for a
numerical simulation. For detailed choices of parameters, see 17.

Figure 11: Inactivity of Liquidity Providers

The figure displays the percentage of all swaps conducted by LPs in our numerical simulation as a function
of the extent of uninformed trading, π. When this percentage is smaller than 0.5, it reflects periods in the
simulation where the LP does not adjust her portfolio following previous trade by the LT. In this numerical
simulation, token B is set as a stable coin and the values of token A follow a truncated normal distribution.
For detailed choices of parameters, see 17.
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Table 7: Price Impact of LPs and LTs by Pool.

Pool Type 5% 50% 95% Min Max

CEL-WETH

LP -0.019008 -0.000088 0.019823 -0.124251 0.101654
LT -0.025152 -0.000095 0.025556 -1.222129 2.320158

Informed -0.034065 -0.000158 0.033186 -0.895435 2.320158
Noise -0.021682 -0.000083 0.022608 -1.222129 0.663037

COMP-WETH

LP -0.005833 0.000174 0.022375 -0.076514 0.115606
LT -0.013155 0.000013 0.013184 -7.496103 2.783089

Informed -0.018981 -0.000000 0.018419 -4.216026 1.102276
Noise -0.010440 0.000018 0.010974 -7.496103 2.783089

DAI-MKR

LP 0.022853 0.024274 0.029212 0.022695 0.029761
LT -0.002773 -0.000147 0.002229 -0.684456 4.471649

Informed -0.003569 -0.000517 0.002788 -0.684456 0.499704
Noise -0.002496 -0.000069 0.002021 -0.277409 4.471649

DAI-USDC

LP -0.002194 0.000003 0.006046 -0.007676 0.011746
LT -0.002277 0.000001 0.002241 -0.178995 0.221806

Informed -0.003420 0.000001 0.003305 -0.176501 0.221806
Noise -0.001842 0.000001 0.001835 -0.178995 0.135151

DAI-USDT

LP -0.004179 -0.000004 0.003937 -0.011912 0.007690
LT -0.003262 0.000000 0.003272 -5.489722 1.176629

Informed -0.004558 -0.000000 0.004693 -1.560066 1.176629
Noise -0.002826 0.000000 0.002788 -5.489722 0.512787

DAI-WETH

LP -0.001208 -0.000000 0.001294 -0.141629 0.144807
LT -0.001548 -0.000000 0.001594 -1.054344 1.545626

Informed -0.002662 -0.000000 0.002718 -0.682491 0.419199
Noise -0.001064 -0.000000 0.001103 -1.054344 1.545626

HEX-USDC

LP -0.006601 0.001632 0.024926 -0.060493 0.140660
LT -0.016694 -0.000261 0.018381 -6.502482 6.977194

Informed -0.020806 -0.000296 0.027118 -6.498733 6.977194
Noise -0.015019 -0.000250 0.015279 -6.502482 2.701488

HEX-WETH

LP -0.003425 -0.000030 0.005687 -0.055129 0.060230
LT -0.009227 -0.000206 0.010673 -3.839029 4.952318
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Table 7 – continued from previous page

Pool Type 5% 50% 95% Min Max

Informed -0.013632 -0.000252 0.019413 -2.526518 4.952318
Noise -0.007484 -0.000195 0.008219 -3.839029 2.466702

LINK-WETH

LP -0.001386 0.000022 0.001994 -0.051710 0.058549
LT -0.004160 0.000002 0.004120 -2.645252 1.573756

Informed -0.005813 -0.000001 0.005716 -0.756233 0.891011
Noise -0.003555 0.000002 0.003497 -2.645252 1.573756

LRC-WETH

LP -0.003021 0.000096 0.017321 -0.057972 0.057807
LT -0.023721 -0.000006 0.023445 -2.417452 1.441687

Informed -0.029764 0.000258 0.032368 -2.417452 1.441687
Noise -0.021543 -0.000015 0.019676 -2.345306 1.228012

MANA-WETH

LP -0.018598 0.003434 0.032088 -0.053487 0.080270
LT -0.020260 -0.000000 0.020070 -2.960467 1.719663

Informed -0.028621 -0.000014 0.030003 -2.960467 1.719663
Noise -0.016974 -0.000000 0.016343 -2.687419 1.711054

MATIC-WETH

LP -0.017385 -0.000073 0.012818 -0.099014 0.084713
LT -0.009910 -0.000025 0.010137 -3.689463 3.431068

Informed -0.015221 -0.000027 0.016651 -2.018141 3.431068
Noise -0.007794 -0.000025 0.007464 -3.689463 1.711428

MKR-WETH

LP -0.006637 -0.000598 0.049773 -0.023171 0.080592
LT -0.007169 0.000000 0.006948 -0.431381 0.454065

Informed -0.009965 -0.000000 0.009685 -0.302546 0.454065
Noise -0.006113 0.000000 0.005965 -0.431381 0.290323

PAXG-WETH

LP -0.022055 -0.000284 0.021186 -0.059943 0.059336
LT -0.009833 -0.000009 0.010149 -0.372182 0.386372

Informed -0.013534 -0.000016 0.015665 -0.312674 0.320812
Noise -0.008736 -0.000008 0.008392 -0.372182 0.386372

QNT-WETH

LP -0.019505 0.001533 0.028131 -0.122191 0.218000
LT -0.028062 -0.000339 0.029270 -3.155449 4.539785

Informed -0.036108 -0.000500 0.039161 -2.856490 4.539785
Noise -0.024025 -0.000308 0.025175 -3.155449 1.209371
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Table 7 – continued from previous page

Pool Type 5% 50% 95% Min Max

REN-WETH

LP -0.011550 -0.000028 0.009614 -0.043950 0.026732
LT -0.015423 -0.000038 0.015180 -0.791739 0.834232

Informed -0.020305 -0.000120 0.020391 -0.532673 0.834232
Noise -0.013353 -0.000031 0.013068 -0.791739 0.765245

RNDR-WETH

LP -0.045083 0.036478 0.157010 -0.193828 0.299502
LT -0.056394 -0.000467 0.057643 -4.619541 2.397623

Informed -0.072629 -0.000059 0.079192 -3.097615 1.758754
Noise -0.049457 -0.000547 0.048709 -4.619541 2.397623

RSR-WETH

LP -0.005970 -0.000041 0.008135 -0.024516 0.096186
LT -0.013662 -0.000151 0.014059 -0.505260 0.533010

Informed -0.019359 -0.000202 0.017951 -0.505260 0.533010
Noise -0.011294 -0.000139 0.012153 -0.399528 0.416920

SNX-WETH

LP -0.009840 -0.000063 0.006957 -0.135156 0.141418
LT -0.011296 -0.000029 0.011529 -1.777572 2.181157

Informed -0.014557 -0.000031 0.015854 -0.739633 0.635834
Noise -0.009860 -0.000029 0.009867 -1.777572 2.181157

STAKE-WETH

LP -0.006568 -0.000390 0.006901 -0.060975 0.102807
LT -0.015172 -0.000143 0.015630 -0.661681 1.390066

Informed -0.019871 -0.000228 0.020297 -0.661681 1.390066
Noise -0.012978 -0.000127 0.013479 -0.407096 0.374979

UBT-WETH

LP -0.013436 -0.000046 0.017058 -0.056210 0.041197
LT -0.023418 -0.000272 0.024239 -2.173492 0.684236

Informed -0.028200 -0.000318 0.030909 -2.173492 0.530942
Noise -0.021631 -0.000260 0.021349 -0.611111 0.684236

USDC-USDT

LP -0.003526 -0.000000 0.002146 -0.016443 0.010921
LT -0.001345 -0.000003 0.001394 -0.415557 0.396513

Informed -0.002029 -0.000007 0.002096 -0.415557 0.396513
Noise -0.001137 -0.000002 0.001157 -0.154831 0.145328

USDC-WETH

LP -0.000452 -0.000001 0.000285 -0.013262 0.044963
LT -0.000362 -0.000000 0.000368 -0.445412 0.422483

Informed -0.000828 -0.000000 0.000936 -0.445412 0.422483
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Noise -0.000253 -0.000000 0.000242 -0.351411 0.349653

WBTC-WETH

LP -0.001434 -0.000002 0.001369 -0.038737 0.039957
LT -0.001605 -0.000002 0.001647 -2.622859 1.285458

Informed -0.002635 -0.000003 0.002659 -2.622859 1.285458
Noise -0.001204 -0.000002 0.001203 -1.056087 0.848669

WETH-DMG

LP -0.015085 0.000169 0.010431 -0.050471 0.065274
LT -0.015825 0.000177 0.014510 -4.025062 0.618852

Informed -0.018714 0.000306 0.018980 -0.769612 0.618852
Noise -0.014540 0.000145 0.012645 -4.025062 0.564875

WETH-ENJ

LP -0.011665 -0.000202 0.010551 -0.045953 0.034753
LT -0.020387 0.000021 0.020311 -4.485019 2.492653

Informed -0.028719 0.000014 0.027724 -4.485019 1.763173
Noise -0.017228 0.000023 0.017054 -2.771008 2.492653

WETH-FOX

LP -0.005538 -0.000014 0.000939 -0.192240 0.239064
LT -0.006630 -0.000054 0.006748 -0.426760 0.417105

Informed -0.008960 -0.000053 0.008903 -0.406457 0.357383
Noise -0.005380 -0.000054 0.005436 -0.426760 0.417105

WETH-HEX2T

LP -0.048888 0.000292 0.051842 -0.526232 0.326240
LT -0.032260 0.000276 0.030335 -4.693004 4.824305

Informed -0.050251 0.000744 0.049012 -4.693004 4.824305
Noise -0.025834 0.000207 0.022002 -2.669469 2.209537

WETH-USDT

LP -0.000361 0.000000 0.000535 -0.278843 0.273400
LT -0.000330 -0.000001 0.000327 -0.232827 0.322526

Informed -0.000737 -0.000002 0.000700 -0.232827 0.322526
Noise -0.000241 -0.000001 0.000246 -0.230243 0.234302

XOR-WETH

LP -0.011513 -0.000186 0.009555 -0.103902 0.096408
LT -0.070346 -0.000247 0.083216 -6.086125 5.036696

Informed -0.055550 0.000024 0.119308 -6.086125 5.036696
Noise -0.075187 -0.000353 0.067829 -3.353420 1.164287

XRT-WETH

LP -0.043845 0.001514 0.048237 -0.203818 0.209805
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LT -0.025771 -0.000424 0.026596 -0.651707 0.575380
Informed -0.033454 -0.000695 0.033175 -0.651707 0.575380

Noise -0.021270 -0.000382 0.022934 -0.406637 0.455064

The table presents distributional statistics of price impact by LPs and LTs and by
Informed and Uninformed LT swaps for each AMM pool in our sample. Trades are
classified as informed if the gas fee associated with the swap transaction is in the top
25% quartile of gas fees paid for swaps over the prior (rolling) seven day window in that
pool. Data is pulled from all Uniswap v2 pools that were created prior to 2020-07-01 and
have more than 100,000 transactions. The sample period is from 2020-07-01 to 2024-06-30.
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