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Abstract

Adjustable-rate mortgages (ARMs) expose households to rising payments, increasing
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find financial stability risks are U-shaped in mortgage fixation length. While FRMs benefit
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1 Introduction

Mortgage structure matters for macroeconomic outcomes. It affects the transmission of mon-

etary policy, since adjustable-rate mortgages (ARMs) reset more immediately compared to

fixed-rate mortgages (FRMs) (e.g. Calza et al., 2013; Di Maggio et al., 2017; Fuster and

Willen, 2017; Garriga et al., 2017). In this paper, we show that mortgage structure also di-

rectly shapes financial stability risks. Differences in mortgage structures across countries were

brought into sharp relief by the global monetary tightening cycle between 2022 to 2023. Despite

similar policy rate increases of approximately 400 to 500 basis points across major economies,

mortgage payments increased by 15 to 25% in countries with ARMs (U.K., Canada, and Euro

Area), while remaining stable in the U.S., where 30-year FRMs predominate (Figure 1).

Figure 1: Comparison of Policy Rates and Mortgage Payments, 2022–2023

(a) Policy Rates (b) Measure of Mortgage Payments

Notes: Panel (a) shows main monetary policy rates for the United States (US), United Kingdom (UK), Euro

Area (EA), and Canada (CA). Panel (b) shows measures of average mortgage payments. EA ARM aggregates

Finland, Italy and Portugal. Data sources: US: 2024Q2 revised mortgage debt service ratio (DSR) from FRED;

UK: total expected (incl. agreed changes in payments e.g. due to forbearance) monthly mortgage payment from

the Financial Conduct Authority (FCA); Euro Area: total DSR from BIS; Canada: average monthly scheduled

outstanding mortgage payments from the Canada Mortgage and Housing Corporation (CMHC).

The contrasting mortgage payment sensitivity to rate changes highlights distinct financial

stability risks and risk-sharing properties across mortgage structures. Rising interest rates in

ARM economies directly increase household mortgage payments, thereby raising household

defaults and bank credit losses. Conversely, FRMs shield households from rising payments but

potentially expose banks to greater interest rate risk.
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Given these competing forces, can we find a mortgage structure that is best for financial

stability and risk sharing between households and financial intermediaries? A natural starting

point might be to select a mortgage structure that offsets the cash flow sensitivity of bank

liabilities, particularly deposits, achieving a “zero duration” financial system that fully hedges

interest rate risk. However, such an approach overlooks several channels that likely arise in

equilibrium.1 First, interest rate changes also affect credit risk, as households make endoge-

nous default decisions that differ across macroeconomic environments and mortgage structures

(Campbell and Cocco, 2015). For instance, rising rates and ARM payments can trigger de-

faults among liquidity-constrained households, an effect absent under FRMs. Second, financial

intermediaries’ willingness to hold mortgages and their mortgage pricing, especially risk pre-

mia, depend on intermediary net worth. As a result, overall financial stability depends on both

interest rate risk and credit risk, and the correlation of these risks with intermediary capital.

To embed both rich household behavior and intermediary capital constraints in equilibrium,

we develop a quantitative macro-finance model with flexible mortgage contract structures, bor-

rowers who endogenously default, and a financial sector that funds itself with sticky deposits

and faces occasionally binding constraints. We calibrate the model to the U.S. FRM econ-

omy as a benchmark, and compare it to counterfactual economies with alternative mortgage

structures.

The model yields three main results. First, rising interest rates affect households and fi-

nancial intermediaries in opposite directions depending on mortgage structure: under FRMs,

intermediary net worth deteriorates; under ARMs, borrower defaults increase but intermedi-

ary net worth improves due to higher mortgage payments. Second, financial stability risks

exhibit a U-shaped relationship with mortgage fixation length. While the FRM economy is

rendered more stable by sticky deposit rates, ARMs provide inherent net worth hedging, which

is strengthened by deposit stickiness: defaults typically occur when intermediary net worth

is high due to interest income rising relative to the deposit funding cost. This novel hedging

force is evidenced by lower risk premia in constrained states relative to the FRM economy.

Intermediate fixation lengths of 3 and 5 years minimize intermediary net worth volatility and

optimize aggregate risk-sharing, respectively. Third, the optimal fixation length depends on

1We develop the intuition behind deviations from this interest rate “immunization” more formally in Ap-
pendix Section IV.
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the correlation of interest rates with aggregate incomes. In a procyclical rate environment, the

optimal fixation lengths are higher – rising to 3.5 and 5.5 years when calibrated to the 1987 to

2024 sample, for instance.

In the model, there are two types of households: borrowers who borrow to finance their

housing purchases, and savers, who own intermediaries (“banks”). Households face idiosyncratic

income shocks. Borrowers and banks trade in two financial markets: deposits and mortgages.

We model flexible mortgage payment structures informed by variation in mortgage contracts

across countries. FRMs have fixed payments. In the data, ARMs are typically issued with fixed

payments in an initial stage lasting several years, and subsequently convert to floating payments

(a fixed spread over the contemporaneous policy rate). Hence, payments that a lender receives

on its mortgage portfolio consist of some fixed and some floating cash flows. In the model, we

capture this by modeling ARM payments as being floating or fixed with some probability, and

map this probability to varying fixed-rate lengths in typical adjustable-rate mortgages.2

Motivated by our focus on borrowers’ default sensitivity to interest rate changes under ARMs,

the model incorporates a realistic notion of liquidity-driven default (Gerardi et al., 2018; Ganong

and Noel, 2022), where defaulting allows liquidity-constrained households to increase immedi-

ate consumption at the expense of future wealth, in addition to more traditional pure net-

worth-driven default motives. To do so, we follow Diamond et al. (2022) and model household

decision-making in two distinct stages with a cash-in-advance-type constraint. In the first

stage (“consumption stage”), households must rely on liquid assets – income and deposits –

to finance consumption, housing costs, and mortgage payments, and decide whether or not to

default. They cannot access illiquid housing wealth at this stage. Default provides immediate

liquidity but may reduce subsequent wealth. In the second (“trading”) stage, households make

portfolio decisions to allocate their wealth between deposits, housing, and stocks, and they

can adjust their mortgage balance by taking out a new mortgage. Banks lend in the mort-

gage market subject to a leverage constraint, financing their loan portfolios with savers’ equity

and deposits, which are risk-free one-period bonds held by households and also elastically de-

manded by outside investors. ARMs are indexed to the policy rate, while the deposit rate does

2We cast the model in real terms to study the redistributive effects of real interest rate changes on borrowers
and savers depending on mortgage structure. The effects of mortgage structure also operate through nominal
(Fisherian) channels, as studied by Garriga et al. (2017).
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not necessarily move one-for-one with the policy rate.3

To solve the model, we follow Diamond and Landvoigt (2022) and Diamond et al. (2022) and

show that, despite idiosyncratic and undiversifiable risks, borrowers make identical choices per

unit of wealth. This removes the borrower wealth distribution as an infinite-dimensional state

variable, making the model tractable.

We evaluate the U.S. fixed-rate mortgage regime relative to counterfactual adjustable-rate

mortgage economies with varying fixation lengths, starting with the main ARM counterfactual

where mortgage rates reset every year. The benchmark FRM economy and ARM counterfactual

produce empirically consistent responses to a rise in rates. In the FRM economy, mortgage

payments remain stable, slightly reducing defaults since holding on to the current mortgage

becomes more valuable, consistent with recent U.S. experience. In contrast, the ARM economy

experiences sharply higher mortgage payments, elevated defaults, and a reduction in house

values, similar to recent U.K. dynamics (illustrated in Appendix Figures IA.3-IA.4, with the

caveat that the model is calibrated to the U.S.).

Under FRMs, banks face unchanged interest income and rising deposit expenses when policy

rates increase, reducing net interest margins and profitability despite slightly offsetting decreases

in credit losses. In addition, FRMs have a long duration. In response to higher rates, the

market value of bank assets falls (Jiang et al., 2024). With both lower cash flows and lower

asset values, the net worth of the banking sector declines. More constrained banks demand

higher compensation to take on mortgage risk, a key implication of intermediary-based asset

pricing models (He and Krishnamurthy, 2013; Brunnermeier and Sannikov, 2014; Elenev et al.,

2016; Diamond and Landvoigt, 2022).

Note that we model intermediaries to reflect the financial sector as a whole. While U.S.

banks have experienced a substantial reduction in on-balance sheet mortgage lending and sub-

stitution towards mortgage-backed securities (MBS) over recent decades (Buchak et al., 2018,

2024a,b), the banking sector remains the largest private holder of mortgage-backed securities

as a whole. In Appendix Figure IA.1, we show that more than half of all non-government

residential mortgages (MBS and portfolio loans) are held by the banking sector, and that share

3Our reduced-form model of imperfect pass-through is consistent with banks’ market power in deposit markets
(Drechsler et al., 2017) and time-varying liquidity premia due to the opportunity cost of holding money (Nagel,
2016; Krishnamurthy and Li, 2022).
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has remained relatively stable over the past decade.4 Conversely, in the ARM economy, the

net interest margin of banks increases as mortgage payments rise faster than deposit costs,

enhancing intermediary net worth despite higher defaults.5

We next evaluate how these dynamics translate into financial stability outcomes by evaluat-

ing counterfactual economies with mortgage fixation lengths ranging from pure ARMs (annual

resets) to the benchmark fully fixed-rate economy. Our headline measure of financial stability

is the volatility of intermediary net worth, since financial stability goals of central banks typi-

cally relate to the volatility and cost of credit provision,6 with alternative measures providing

similar results. The volatility of intermediaries’ return on equity (ROE) exhibits a “U-shaped”

relationship with mortgage structure. Volatility is highest in a pure ARM economy where in-

termediary net worth is very sensitive to interest changes, leading to large negative duration,

i.e., net worth increasing in rates. Volatility is somewhat lower in an FRM economy as sticky

deposits partially hedge the large positive duration of fixed-rate mortgages, reducing absolute

duration.

However, because mortgages carry credit risk, bank net worth sensitivity to interest rates

depends not only on policy rates but also on expected credit losses and time-varying risk

premia. We find that credit risk hedges interest rate risk in both FRM and ARM economies:

defaults rise when net worth is high – for FRMs when rates are low, for ARMs when rates

are high, since mortgage payments increase relative to deposit funding cost. But defaults are

more rate-sensitive in the ARM economy due to liquidity-driven motives. The stronger net

worth hedging effect of ARMs manifests as lower risk premia in constrained states of the world

compared to FRMs.

4We also conduct robustness exercises where we allow for greater pass-through of policy rates to deposit
rates, capturing the notion that other financial intermediaries and holders of MBS may have less sticky sources
of funding compared to banks.

5This is consistent with recent experiences in the Euro Area where policy rate rises led to net interest rate
margin increases, e.g. the ECB Financial Stability Review (May 2024) states: “In recent years, strong euro area
bank profitability has primarily been driven by rising net interest margins. This is because bank funding costs
adjusted more slowly than lending rates due to the automatic repricing of floating-rate loans.”

6For instance, the Federal Reserve monitors risks to the financial system “to help ensure the system
supports a healthy economy for U.S. households, communities, and businesses”, and is “resilient and able
to function even following a bad shock” (https://www.federalreserve.gov/financial-stability.htm). The Euro-
pean Central Bank aims to “[mitigate] the prospect of disruptions in the financial intermediation process that
are severe enough to adversely impact real economic activity” (https://www.ecb.europa.eu/paym/financial-
stability/html/index.en.html).
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How general is net worth hedging under ARMs? We characterize the sensitivity of mortgage

portfolio values to interest rates in closed form. We decompose the response to a rate rise into

an interest rate channel, capturing the effect of higher rates on mortgage payments and prices,

and a credit channel, reflecting higher rates of default and changes in recovery rates. We show

analytically under what conditions the credit channel has the opposite sign to the interest rate

channel, and a weaker absolute magnitude than the interest rate channel, generating net worth

hedging. Under conservative assumptions, we find that the default rate sensitivity to rate rises

for ARMs would have to be at least 14 to 15 times greater than generated by our baseline

calibration, for the positive cash flow effect from an increase in mortgage income on performing

loans to be offset by an increase in credit losses. Detailed derivations and calibration ranges

are provided in Appendix II. These results are supported by state-dependent impulse responses

evaluated across different points of the borrower wealth distribution, which do not switch sign

even when borrowers have very high mortgage-to-income ratios and default more frequently.

We thus show that net-worth hedging of ARMs arises robustly under a wide range of plausible

paths for interest rates and default, and borrower conditions.

The strength of the net worth hedging channel of ARMs works against the absolute duration

advantage of FRMs. An intermediate fixation length of around 3 years balances these opposing

forces and minimizes intermediary net worth volatility, reducing the sensitivity of defaults and

net worth to interest rate fluctuations.

We further assess how mortgage structure determines risk-sharing between households.7 To

quantify the degree of risk sharing, we measure borrower-saver aggregate risk-sharing by com-

paring borrower and saver aggregate consumption variance across fixation lengths. Borrower-

saver sharing of interest rate risk is optimized at a fixation length of around 5 years – slightly

longer than the volatility-minimizing fixation length, suggesting a modest trade-off between

financial stability and risk-sharing. In this economy with low effective mortgage duration and

default rates that respond little to interest rates, rate shocks have the weakest redistributive ef-

fect.8 However, low exposure to aggregate risk leads borrowers to borrow more, yielding a higher

exposure to idiosyncratic risk and highlighting a somewhat subtle downside in equilibrium.

7Our focus on interest rate risk sharing through mortgages of various fixation lengths is complementary to
Greenwald et al. (2019)’s study of contracts that share house price risks.

8See e.g. Auclert (2019).
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Lastly, we investigate how results vary with different macroeconomic scenarios, by introduc-

ing aggregate income shocks that are correlated with interest rate shocks. In the data, this

correlation is time-varying and depends on the sample period, reflecting underlying demand or

supply shocks (leading to a positive or negative correlation, respectively). We find that a pos-

itive correlation between aggregate income and interest rate shocks of 0.3 (its empirical value

in the 1987 to 2024 sample) makes FRM economies relatively more stable and ARM economies

relatively riskier.9 Intuitively, higher rates in an FRM economy come with even lower default

risks due to increased borrower incomes. Thus, a positive correlation between income and rate

shocks increases the optimal mortgage fixation length. Quantitatively, the fixation length that

minimizes intermediary net worth volatility rises from approximately 2.7 to 3.6 years as the

correlation increases from -0.3 to 0.3. Overall, these effects are modest and reinforce the cen-

tral finding that an intermediate fixation length (around 3 to 5 years) best balances financial

stability and risk sharing.

Our work has implications for monetary policy and macroprudential regulation of financial

stability risks. The paper provides a framework for quantifying how interest rate fluctuations

differentially affect financial stability depending on mortgage structure. It thus helps formalize

underlying mechanisms behind monetary policy and financial stability linkages. We propose

a flexible modeling framework to study the effect of mortgage structure on financial stability,

which takes into account endogenous household default decisions, interaction effects between

interest rate and credit risk, and the capitalization of the banking system. Our findings highlight

how intermediate fixation lengths, common in many countries, can balance sources of volatility

in both pure ARM and FRM structures.

Related Literature Our paper makes several contributions to the existing literature. First,

we assess macroeconomic implications of different mortgage contract designs, similar to Garriga

et al. (2017); Greenwald et al. (2019); Campbell et al. (2021); Guren et al. (2021), but focusing

on the novel channel of interest rate and credit risk sharing between households and banks.

Conceptually, we thus integrate features of existing quantitative macro-models with financial

9In the data, this correlation varies over time, taking positive or negative values in demand or supply-shock
driven macroeconomic contexts, respectively. In a finance context, Campbell et al. (2009, 2017, 2020) show that
inflation and monetary policy can explain this time variation and variation in the sign of stock-bond return
correlation.
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intermediaries (e.g. Elenev et al., 2016; Diamond et al., 2022; Sanchez Sanchez, 2023)10 into a

framework with flexible mortgage structures and liquidity-driven default, matching empirical

evidence (Gerardi et al., 2018; Ganong and Noel, 2022). Our mechanism is closely related to

Campbell and Cocco (2015) who show that fixed- and adjustable-rate mortgages default in dif-

ferent macroeconomic states of the world, and we integrate this intuition into a macroeconomic

framework with a banking sector.

Both Campbell et al. (2021) and Guren et al. (2021) focus on the role that mortgage structure

can play in providing liquidity to households in downturns when interest rates are low while

default rates are high, given the context of the 2008–2009 financial crisis. In contrast, we study

how mortgage structure affects household and intermediary outcomes in response to isolated

rate shocks given a low historical correlation of income with real rates overall and also given

the 2022–2023 rate hike cycle, where both rates and defaults rose in ARM but not in FRM

countries. Like Campbell et al. (2021), we study how different mortgage structures expose

not just borrowers but lenders to risk. These exposures not only affect the ex-ante prices of

mortgages but have implications for the stability of financial intermediary balance sheets, a

particular focus of our paper.

We uncover a novel net-worth-hedging channel due to the interaction of credit and interest

rate risk. Our paper is thus related to a large body of work that has studied interest rate expo-

sure of intermediaries,11 and our approach allows us to quantify the role of different mechanisms

and equilibrium effects across mortgage structures.

We contribute to existing work on mortgage choice12 as well as optimal mortgage contract

design.13 Liu (2022) studies household mortgage choice with intermediate fixation lengths

10These papers also study the effect of the Government-Sponsored Enterprises (GSEs). In case of default, they
guarantee to an MBS trust the “timely payments of principal and interest”, but typically repurchase a defaulted
mortgage loan within 24 months, meaning that default leads to missed interest payments akin to prepayment
(e.g. Fannie Mae, 2023). As a result, GSEs only partially protect intermediaries from cash flow shortfalls in our
framework. For FRMs, defaults are higher when rates are low, making prepayment costly. For ARMs, defaults
are higher when rates are high (i.e. when mortgage payments are high), also making prepayment costly.

11E.g. Hanson et al. (2015); Drechsler et al. (2017); Haddad and Sraer (2020); Drechsler et al. (2021); Gomez
et al. (2021); Jiang et al. (2024); Greenwald et al. (2024); DeMarzo et al. (2024); Drechsler et al. (2024); Begenau
et al. (2025).

12E.g.Campbell and Cocco (2003); Koijen et al. (2009); Badarinza et al. (2018); Liu (2022); Albertazzi et al.
(2024); Boutros et al. (2025).

13E.g. Piskorski and Tchistyi (2010); Campbell (2012); Eberly and Krishnamurthy (2014); Mian and Sufi
(2015); Piskorski and Seru (2018).
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where households trade off insurance benefits of longer fixation lengths against declining credit

spreads over time. We evaluate the macroeconomic implications of varying fixation length,

where rate rises lead to payment increases and household default. Boutros et al. (2025) study

the benefits of introducing a contract common in Canada which avoids this feature, increasing

contract maturity instead of payment amounts.

Our work is further related to papers that emphasize the role of the mortgage market14 and

financial intermediaries15 on monetary policy transmission. The paper offers a novel lens to

interpret linkages between monetary policy and financial stability,16 highlighting that mortgage

structure mediates how changes in interest rates affect financial stability. Lastly, we contribute

to a growing body of work on the financial stability implications (Jiang et al., 2024; Drechsler

et al., 2023; Haas, 2023; Varraso, 2023; Begenau et al., 2024) and transmission mechanism

(Fonseca and Liu, 2024; Bracke et al., 2024; De Stefani and Mano, 2025) of recent rate rises.

2 Motivating Facts on Mortgage Structure

This section illustrates variation in mortgage structure across a range of different countries. This

variation motivates the counterfactual mortgage structures that we study using our model.

2.1 Mortgage Structure Across Countries

There is substantial variation in mortgage market systems and contract structures across coun-

tries (Campbell, 2012; Badarinza et al., 2016).17 Figure 2 shows the average fixed-rate length

across countries from different data sources.

14E.g. Scharfstein and Sunderam (2016); Di Maggio et al. (2017); Fuster and Willen (2017); Greenwald (2018);
Chen et al. (2020); Di Maggio et al. (2020); Berger et al. (2021); Garriga et al. (2021); Eichenbaum et al. (2022);
Altunok et al. (2024).

15E.g. Wang (2018); Di Tella and Kurlat (2021); Wang et al. (2022); Diamond et al. (2024).
16E.g. Adrian and Shin (2008); Hanson et al. (2011); Stein (2012); Borio (2014); Jiménez et al. (2014); Garriga

and Hedlund (2018); Smets (2018); Caballero and Simsek (2019); Martinez-Miera and Repullo (2019); Ajello
et al. (2022); Boyarchenko et al. (2022); Gomes and Sarkisyan (2023).

17In this paper, we do not evaluate the drivers of underlying mortgage structure and take prevalent contract
structures as given. Reasons that have been put forward to explain cross-country heterogeneity in mortgage
structure include historical path dependence, the availability of long-term mortgage funding, historical inflation
experiences (Badarinza et al., 2018), as well as variation in underwriting standards and the role of credit risk
(Liu, 2022).
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A striking fact noted by Campbell (2012) is that the US appears as an outlier in international

comparison, with an average fixed-rate length of almost 25 years, driven by the reliance on 30-

year and 15-year FRMs.18 The U.S. is followed by a group of countries including Denmark,

Germany, Belgium, and the Netherlands, which offer mortgages with fixation lengths of up to

30 years, but where the average mortgage outstanding has a length closer to 10 years. For

Belgium, data is available only for new mortgage originations, whose maturity is close to 20

years. The vast majority of all other mortgage markets have fixed-rate lengths between two to

five years on average, including Australia, Canada, the U.K., Ireland, Portugal, Greece, and

Spain. Aside from Denmark, Scandinavian countries (Finland, Sweden, and Norway, the latter

with no data on average fixed-rate lengths) are typically considered to originate many pure

adjustable-rate mortgages, with rates resetting at least every year.

Even within the common currency euro area, countries vary from longer-term fixed-rate

mortgage systems (such as Germany and France) to largely adjustable-rate mortgage systems

such as Finland, Greece, Ireland and Portugal, consistent with the divergence in mortgage

payments in 2022 in Figure 1.19

In sum, mortgages exist on a spectrum from fully adjustable-rate mortgages common in

countries such as Finland and Sweden to intermediate fixation periods of two to five years

common in many countries, to the 30-year fixed-rate mortgage common in the U.S. We think of

mortgages with intermediate fixation periods as sitting between pure ARM and FRM structures

from an interest rate risk perspective, as these allow households to fix their mortgage rate for

some, but often not all, of the term over which the mortgage is repaid.20

Of course, mortgage structure is not the only economic fundamental that differs across coun-

tries. To assess how differential mortgage structures lead to differences in economic outcomes,

financial stability, and risk-sharing properties more formally, we develop and calibrate a quan-

titative model of an FRM economy in the next section, and evaluate counterfactual economies

18France is typically considered the only country with a comparable average fixed-rate term. Although precise
data on France’s average fixation lengths aren’t available, the European Mortgage Federation notes that the
standard French mortgage carries a 30-year fixed rate.

19Spain has seen much longer fixation lengths in recently originated mortgages compared to past originations,
likely a result of government interventions in 2022 that allow conversion of adjustable to fixed-rate mortgages,
aimed at protecting vulnerable borrowers from interest rate rises, see e.g. Financial Times, November 2022.

20Thus fixation length is a distinct feature and different from the choice of the loan repayment window, which
is generally 30 years on average in most countries (see Liu (2022) for a more detailed discussion).
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Figure 2: Average Mortgage Fixed-Rate Lengths Across Countries

Notes: This figure shows the average mortgage fixation length in years across countries. “Outstanding” reflect

data on outstanding mortgages from Badarinza et al. (2016) as of 2013, while “New Originations” reflect

data from the European Mortgage Federation (EMF) on new mortgage originations in 2023Q1, from the EMF

Quarterly Review of European Mortgage Markets 2023 Q2. “Other” reflects general official data sources that

indicate a range of fixation lengths for Australia and Canada. EMF data for the Netherlands reflects information

as of 2022 Q4. Average fixation length from EMF data is computed using the binned frequency distribution

reported by EMF multiplied by the mid-point of 1-year, 1 to 5-year, 5 to 10 year, and 10-year or greater

(assumed to be 10 to 30 year) bins. For Sweden and Finland, only pooled bins from 5 to 10 and 10-year or

greater are reported, and thus an average of both bin mid-points is used. For Greece, the unreported remaining

distribution is assumed to be 1 to 5 years. Countries are sorted in descending order by “Outstanding” fixation

length, or, if missing, by “New Originations”.

with a pure ARM structure as well as varying intermediate fixation lengths.

3 Model

In this section, we develop a rich quantitative dynamic model of lending and borrowing in the

mortgage market.

Time is infinite and discrete with t = 0, 1, . . .. The economy is populated by continua of

two types of households with preferences over housing and non-durables – borrowers labeled B
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indexed by i ∈ [0, ℓ] and savers labeled S indexed by i ∈ (ℓ, 1].

Households’ utility function is given by

∞∑
t=0

βtu(cit, h
i
t−1)

u(cit, h
i
t−1) =

(
(cit)

1−θ(hi
t−1)

θ
)1−γ − 1

1− γ

where β is the discount factor, θ governs the share of housing in the utility function, and γ is

the coefficient of relative risk aversion.

The aggregate supply of houses is exogenous and fixed at H̄, with a fraction αH owned by

borrowers while the remaining fraction 1−αH belongs to savers. Only borrowers trade houses.

Each unit of housing requires a maintenance payment of δh every period to prevent its full

depreciation.

Non-durable goods are produced by a continuum k ∈ [0, 1] of Lucas trees, whose aggregate

yield each period is given by Yt. Borrowers own a total of α trees, while savers own the remaining

1− α. Each type of agent can trade trees within their type, but not across types. The yield of

borrower-owned trees is subject to an idiosyncratic shock εit, which is i.i.d. across borrowers and

time. Saver-owned trees are not subject to idiosyncratic shocks. Therefore, each household’s

income is given by

yit = sit−1(Yt + εit) ∀i ∈ [0, ℓ]

yit = sit−1Yt ∀i ∈ (ℓ, 1]

where sit−1 is the share of trees owned by household i at the start of period t, so that markets

clear when
∫ ℓ

0
sit−1di = α and

∫ 1

ℓ
sit−1di = 1− α.

In addition to trading houses, borrowers trade in two financial markets – deposits and mort-

gages. Deposits are one-period risk-free bonds, while mortgages are long-term, defaultable, and

may have fixed or adjustable payments.

Their counterparties in these markets are banks labeled I (short for “intermediaries”). Banks

are firms who issue equity to saver households.
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3.1 Borrowers

Following Diamond et al. (2022), we split each period into two stages – consumption and

trading. In the consumption stage, shocks are realized, and borrowers make mortgage payments

or default, subject to a cash-in-advance type constraint, which allows them to only access their

liquid wealth, not their illiquid housing wealth. In the trading stage, all households make

portfolio choices.

Borrowers enter the period with trees sit−1, housing h
i
t−1, a mortgage with outstanding balance

mi
t−1, and deposits dit−1. Their trees yield income yit after the realization of aggregate and

idiosyncratic income shocks.

Mortgage Structures To flexibly characterize payment structures under different mortgage

regimes, we introduce πτ as the probability of a mortgage being in the floating stage, with

1 − πτ the probability of a mortgage being in the fixed stage. The implied duration of the

fixed stage, or “fixation length,” is 1
πτ
. To avoid tracking the fixed vs. floating status of every

borrower’s mortgage, in the numerical solution of the model we let the floating indicator 1i
τ be

an i.i.d. Bernoulli random variable, which takes a value of 1 (floating) with probability πτ for

each borrower in each period. Thus, a pure fixed-rate mortgage (FRM) would have πτ = 0,

and a pure adjustable-rate mortgage (ARM) that resets annually would have πτ = 1.

In the fixed stage, the outstanding balance of the mortgage implies a fixed mortgage payment

xi
t = ιf + δmq̄

m per unit of mortgage mi
t−1, where ιf denotes the interest component and the

principal component is normalized to fraction δm of the steady-state mortgage price q̄m.

In the floating stage, the mortgage payment is determined by the policy rate rpt plus the

spread ιa on adjustable-rate mortgages. To summarize:

xi
t =

ιf + δmq̄
m, 1

i
τ = 0

rpt + ιa + δmq̄
m, 1

i
τ = 1.

After payments are made, the mortgage balance decreases by δm, such that the remaining

balance is (1− δm)m
i
t−1.

13



Consumption Stage In the consumption stage, households use income yit and their deposits

holdings dit−1 to make mortgage payments xi
tm

i
t−1, housing maintenance payments δhh

i
t−1, and

to consume.

Households can choose to default by failing to make the mortgage payment. If they default,

they lose their house and their mortgage balance is written off. They also lose a fraction λ of

their endowment of Lucas trees and face a continuous idiosyncratic shock to their post-default

value function. In other words, default carries both a pecuniary and a non-pecuniary cost.

A household that repays the mortgage faces a consumption-stage budget constraint given by:

ci,ndt + xi
tm

i
t−1 + δhh

i
t−1 + ait = yit + dit−1

where ait ≥ 0 denotes holdings of intra-period deposits that a household can bring into the

trading stage in lieu of consuming. It enters the trading stage with wealth:

wi,nd
t = ait − (1− δm)mt−1q

m
t + pht h

i
t−1 + psts

i
t−1

where qmt is the price of the mortgage, pht is the price of housing, and pst is the price of the Lucas

trees. The nonnegativity constraint ait ≥ 0 operates similarly to cash-in-advance or working

capital constraints, requiring borrowers to have enough liquidity to finance their consumption

before being able to rebalance their portfolios by selling assets or borrowing.

A household that defaults faces a budget constraint given by:

ci,dt = yit + dit−1

Having expunged their mortgage, lost their house, and given up a fraction of future income, it

enters the trading stage with wealth:

wi,d
t = (1− λ)psts

i
t−1

The default decision depends on the utility of consumption plus the continuation value as

represented by the trading stage value function V i
t (w

i
t,Zt), where Zt denotes state variables

14



exogenous to an individual borrower – aggregate borrower wealth WB
t , saver wealth W S

t , and

the exogenous process states Yt and rpt .

Denote the value of default by V i,d and the value of repayment by V i,nd. The value of making

the mortgage payment is given by:

V i,nd
t (dit−1,m

i
t−1,1

i
τ , h

i
t−1, ϵ

i
t,Zt) = max

ait≥0
u(ci,ndt , hi

t−1) + V (wi,nd
t ,Zt)

while the value of default is given by:

V i,d
t (dit−1,m

i
t−1,1

i
τ , h

i
t−1, ϵ

i
t,Zt) = u(ci,dt , hi

t−1) + V (wi,d
t ,Zt)

subject to the budget constraints and wealth evolution equations above. Households default iff:

ηitV
d
t (·) > V nd

t (·)

where ηit is the household’s idiosyncratic default shock.

Trading Stage In the trading stage households make portfolio decisions. They allocate their

wealth wi
t between deposits dit, housing hi

t, and Lucas trees sit. They can also revise their

mortgage balance from (1− δm)m
i
t−1 to mi

t at current price qmt .
21

Borrowers are subject to a cost of deviating from a target loan-to-value ratio, given by

Φ
(

qmt mi
t

pht h
i
t
− LTV

)
. This cost, rebated as Ri

t to the household in proportion to wealth to neu-

tralize income effects, captures the notion of a mortgage rate schedule in reduced form and rules

out equilibria in which borrowers take on LTV ratios >> 1 at very high rates in the expectation

that they will likely default.

The trading stage budget constraint is given by:

wi
t +Ri

t =
dit

1 + rdt
+ qmt m

i
t + pht h

i
t + psts

i
t + Φ

(
qmt m

i
t

pht h
i
t

− LTV

)
21This formulation does not allow households to prepay the mortgage at par, i.e., refinance. Granting house-

holds an option to prepay would make FRMs less attractive to intermediaries by limiting intermediary gains
from rate cuts in the FRM economy (e.g. Hanson, 2014; Diep et al., 2021).
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and the value function is:

V (wi
t,Zt) = max

dit,h
i
t,s

i
t,m

i
t

βEt

[
max

{
max
ait≥0

u(ci,ndt+1 , h
i
t) + V (wi,nd

t+1 ,Zt), η
i
t

(
u(ci,dt+1, h

i
t) + V (wi,d

t+1,Zt)
)}]

where the innermost maximization indicates the optimal consumption-savings choice in next

period’s consumption stage, the middle maximization indicates the default decision, and the

outermost maximization indicates portfolio choices in the current period.

The model characterizes two types of default: when households have ample liquid assets,

they equalize the marginal utility of consumption and wealth. As a result, default is net-worth

driven and occurs to increase net wealth.22 In contrast, when households have low liquid assets,

they may prefer to give up wealth in the trading stage to consume in the consumption stage.

Given the constraint, the only way to increase liquid assets at that point is to default, and thus

household default can also be liquidity-driven even if at a cost to future wealth. Liquidity-driven

default is particularly relevant for ARMs, where mortgage payments can increase together with

policy rates.

3.2 Banks

Banks frictionlessly issue equity to savers and so maximize the stream of dividends discounted

at the saver’s stochastic discount factor.

They lend in the mortgage market, financing their loan portfolios with equity and deposits.

Deposits are risk-free one-period bonds held by borrowers and outside investors. Outside in-

vestors have perfectly elastic demand for deposits at a price of 1
1+rdt

. The deposit rate rdt differs

from the policy rate rpt to which adjustable mortgages are indexed. Recent work has shown

that changes to policy rates do not pass through one-for-one to deposits, complicating banks’

exposure to interest rate risks.23 We model the relationship in reduced form as

rdt = (r̄ − αd) + βd(r
p
t − r̄)

22This has been referred to as “strategic” default in the literature (Gerardi et al., 2018; Ganong and Noel,
2022), but in our framework both types of default are optimal decisions by households.

23E.g., Nagel (2016), Drechsler et al. (2017), and Krishnamurthy and Li (2022)
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with αd ≥ 0 and βd ∈ (0, 1]. The parameter αd captures the average spread between policy and

deposit rates, while βd capture the degree of deposit rate sensitivity to policy rate deviations

from its mean. When αd = 0 and βd = 1, the two rates are always equal.24

Bank portfolios are perfectly diversified and hence identical across banks, so we can write

the bank’s problem without i subscripts. They enter a period with a stock of outstanding

mortgages mI
t−1, of which a fraction F η

t default. On mortgages that do not default, banks

receive a payment xt per unit of mortgage mI
t−1 and have an ex-payment value (1− δm)q

m
t .

Mortgage defaults lead lenders to seize the house, on which they must make a maintenance

payment before selling it in foreclosure at a price pt(1 − ζ) per unit, where ζ represents a

foreclosure cost. The total foreclosure proceeds are

∫ ℓ

0

1
i
defaulth

i
t−1pt((1− ζ)− δh)di

The payoff per unit of mortgage is therefore:

Xt = (1− F η
t )(xt + (1− δm)q

m
t ) +

∫ ℓ

0

1
i
default

hi
t−1

mI
t−1

pt((1− ζ)− δh)di

Running the intermediation technology is costly. Banks must pay a fraction ν of the value of

their mortgage portfolio as intermediation costs. Their net worth is then given by:

wI
t = (1− ν)Xtm

I
t−1 + dIt−1

where negative values of dIt represent borrowing by the lender.

Banks use their equity deposits to finance dividends and mortgage purchases, maximizing

24Because savers own banks, when banks are unconstrained rdt = 1/Et[MS
t,t+1] − 1 ≡ rft , i.e. the deposit

rate emerges as the risk-free rate, the rate at which the saver discounts risk-free cash flows in the next period.
However, when banks are constrained, the savers’ risk-free rate rft would be greater than rdt , capturing the
shadow cost of relaxing bank constraints. As a result, the risk-free rate is not generally equal to the policy rate
rpt . Note that the discounted present value of all future “deposit spreads” rft − rdt has been referred to as (gross)
franchise value in the literature (e.g. Drechsler et al., 2017, 2023; Haddad et al., 2023; DeMarzo et al., 2024;
Jiang et al., 2024). In our framework, rpt governs the “loan spread” (mortgage rates less deposit rates) in the
ARM economy by serving as the indexation rate for floating mortgage payments, but is not generally equivalent
to rft as explained above. Instead, the value of rpt − rdt is priced when pricing the mortgage with the saver’s
SDF.
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max
mI

t ,d
I
t

Et

[
∞∑
s=t

MS
t,sDivt

]

subject to a budget constraint:

wI
t =

dIt
1 + rdt

+ qmt m
I
t +Divt

and a capital requirement:

−dt ≤ ξ(κq̄m + (1− κ)qmt )m
I
t

where ξ represents the maximum leverage ratio and κ represents the fraction of the mortgage

portfolio that is carried at book value on the lender’s balance sheet. A value of κ = 1 indicates

that mark-to-market losses on the mortgage portfolio do not tighten leverage constraints, while

κ = 0 indicates a fully mark-to-market regime.

3.3 Savers

Saver households have the same preferences as borrowers, but receive income from their shares of

Lucas trees free from idiosyncratic risk. As owners of bank equity, they also receive net dividends

from the banks. Finally, they are rebated lump-sum the costs associated with mortgage default

– both the pecuniary cost of default faced by borrowers and the foreclosure cost faced by banks

– as well as the cost of intermediation. Their budget constraint is simply:

cst = Divt +
α

ℓ
Yt +Rebatest.
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3.4 Equilibrium

Given the exogenous processes for aggregate income Yt and policy rate rpt and given the id-

iosyncratic income shocks εit, ARM reset shocks 1i
τ , and idiosyncratic default shocks ηit, an

equilibrium is a set of borrower household allocations {cit, hi
t, s

i
t,m

i
t, d

i
t, a

i
t}∞t=0, borrower default

decisions {1defaulti}∞t=0 bank allocations {Divt,mI
t , d

I
t}∞t=0, saver allocations {cSt }∞0 , and prices

{pht , pst , qmt }∞t=0 such that each agent maximizes their value function subject to their constraints,

and the following market-clearing conditions hold:

1. The mortgage market clears:

(1− ℓ)mI
t = MB

t ≡
∫ ℓ

0

mi
tdi

2. The borrower housing market clears:

αHH̄ = HB
t ≡

∫ ℓ

0

hi
tdi

3. The market for borrower Lucas tree shares clears:

α =

∫ ℓ

0

sitdi

Note that the elastic demand for deposits by outside investors at rate rdt implies that the

deposit market within the model does not need to clear.

Appendix III contains the derivation of the equilibrium conditions and the solution to the

model.

4 Calibration

We calibrate the model at an annual frequency in two steps. Table 1 displays parameters whose

values we choose outside the model based on external sources. Table 2 displays “internally”

calibrated parameters, whose values are chosen so that the model with fixed-rate mortgages

(πτ = 0) matches moments estimated in the data. We discuss each set of parameters in turn.
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Stochastic Environment Aggregate dynamics of the model are governed by shocks to ag-

gregate income Yt and the policy rate rpt . In our baseline calibration, we abstract away from

income shocks, setting Yt = 1. The mean policy rate r̄ is set to the average 1-year Treasury

Constant Maturity rate from 1987 to 2024. Its deviations from the mean are parameterized

by an AR(1) process with standard deviation σr, and persistence ρr, calibrated to match the

dynamics of the 1-year real rate, from the Cleveland Fed, over the same sample. We estimate

a mean rate of 0.034, an unconditional standard deviation of 0.014, and a persistence of 0.724.

The standard deviation and persistence parameters imply the standard deviation of interest

rate shocks.

We normalize the idiosyncratic income shocks to have a mean of 0, which means that they

are governed by two parameters. The probability of a low income realization πL is set to 0.058,

which is the average post-war unemployment rate. The magnitude of the low income shock ϵL

is set based on the Ganong and Noel (2019) estimates of the income loss from unemployment.

They find that income loss occurs gradually over the first year as unemployment insurance

expires. Since our model is annual, we average the income loss in months after UI kicks in as

reported in Figure 2, Panel A of that paper, producing a value of -0.456. The high income

shock ϵH is set to ensure that the expected value of the idiosyncratic income shock is zero.

Deposit Rates Bank deposit rates are lower than policy rates, such as T-Bill and Fed Funds,

on average and adjust less than one for one with those rates. We estimate deposit rates using

quarterly Call Reports data from 1987 to 2024 as the ratio of interest expense to previous

quarter’s balance on all non-time deposits. The main role deposits play in our model is that they

provide liquidity – they are the only asset that can be liquidated to finance consumption in the

consumption stage. Time deposits incur penalties for liquidation before maturity, motivating

their exclusion. We set αd to the average spread between the Fed Funds rate and the deposit

rate of 0.018.

It often takes multiple quarters for deposit rates to adjust after a change in the Fed Funds

rate. Our specification of rdt as a linear function of rpt does not allow for such inertia, and

contemporaneous responses of deposit rates may understate the sensitivity of the deposit rate

to policy rate. We estimate a VAR(1) of Fed Funds and deposit rates and set βd = 0.340, the
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Table 1: Externally Calibrated Parameters

Parameter Value

Panel A: Stochastic Processes

Mean of policy rate process µr 0.034
Std. dev. of policy rate process σr 0.014
Persistence of policy rate process ρr 0.724
Probability of low idiosyncratic income shock (ϵL) πL 0.058
Idiosyncratic income drop in low state ϵL -0.456
Idiosyncratic income increase in high state ϵH Set such that E[ϵ] = 0

Panel B: Deposit Rates

Deposit spread w.r.t. policy rate αd 0.018
Deposit sensitivity w.r.t. policy rate βd 0.340

Panel C: Borrowers and Savers

Borrower population share ℓ 0.400
Borrower income share α 0.600
Borrower housing share αh 0.500
Risk aversion γ 1.5

Panel D: Housing, Mortgages and Banks

Housing maintenance payment δh 0.020
Mortgage rate reset probability πτ 0.000
Deviation from target LTV cost ϕ 0.050
Max. leverage ratio ξ 0.920
Share at book value κ 0.000

peak of the deposit rate impulse response to a one-unit shock to the Fed Funds rate.

Population, Income, and Housing Shares Using 2023 SCF data, we set ℓ = 0.400 to

the approximate share of homeowners that have a mortgage LTV of at least 30%. Given this

definition of borrowers, α = 0.600 and and αh = 0.500 are set to the approximate shares of

income and housing, respectively, held by borrowers in the SCF data.

Banks Banks are subject to a capital requirement that limits their leverage. We set the

maximum leverage ratio ξ to 0.920, which is the maximum Tier 2 capital ratio for banks under

Basel III. This calibration effectively assumes a mortgage risk weight of 100%, which is the

standard risk weight for residential mortgages. In the baseline calibration, we set the book

value share κ to zero,meaning that mortgages are held at market value.

Borrower Preferences, Housing, and Defaults Housing maintenance payments as a frac-

tion of housing are set to 0.020 based on the post-war average residential housing depreciation
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Table 2: Internally Calibrated Parameters

Parameter Value Target Model (FRM) Data

Panel A: Borrowers

Patience β 0.969 Mortgage/income 150.37 151
Housing utility weight θ 0.183 Housing/income 255.56 253
Std. dev of idiosyncratic default shock ση 0.045 Default rate 2.32 2.45
Income loss upon default λ 0.148 Deposits/income 24.49 28

Panel B: Intermediaries

Foreclosure cost ζ 0.530 LGD 21.00 20.8
Intermediation cost ν 0.034 Mortgage rates 5.90 5.88
Principal payment share δm 0.085 Mortgage duration 6.92 6.91

rate. Our model does not include housing investment, so the maintenance payment can be

thought of as investment needed to offset depreciation and maintain housing stock at its steady-

state value.

We set household risk aversion γ to 1.5, a standard value in the literature.

The remaining set of borrower preference and default-related parameters are calibrated in-

ternally. Panel A of Table 2 displays four parameters that must be calibrated jointly. We set

patience β to 0.969, which yields a mortgage/income ratio of 150.37% given the values of other

parameters, matching its value in the 2023 SCF. The value of housing to income is determined

in equilibrium by the present value of user costs parameterized by the utility weight on housing

θ, discounted at the rate implied by β and the probability of losing the house in foreclosure (i.e,

default rate). We set θ to 0.183 such that, at the target default rate and given the calibrated

value of β, the value of housing/income 255.56% matches 253% in the SCF.

Housing- and mortgage-to-income ratios imply a LTV ratio of approximately 60%. The

mapping of this ratio into default rates depends on two parameters – the standard deviation

of the idiosyncratic default shock ση and the share of future income lost in default λ. The

pecuniary cost of default motivates agents to hold deposits so that they can decrease their

default probability in the event of a low income realization. We set ση to 0.045 and λ to 0.148

to match the average 2003-2023 flow into 90-day delinquency in the New York Fed’s Quarterly

Report on Household Debt and Credit (QRHDC) of 2.45%, and the deposits-to-income ratio

of 28% in the SCF.
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Mortgages In our model, there are no idiosyncratic shocks to home values, so in the cross-

section defaulting households have the same LTV ratios as non-defaulting households. Given

the LTV ratio implied by the calibration of housing and mortgage-to-income ratios, we set

foreclosure cost ζ to 0.530, which implies a loss given default (LGD) of 21.00%. This is consistent

with the average LGD in the data, computed as average charge-off rate on mortgages held by

depository institutions from the St. Louis Fed FRED database, divided by the average default

rate from the NY Fed QRHDC.

The mortgage interest payment in the FRM economy ιf is set so that the steady-state mort-

gage price q̄m is equal to 1, and thus ιf can be interpreted as the steady-state mortgage yield,

or par rate. The historical average rate is 0.059. In the model, the mortgage yield, defined

as the discount rate which discounts expected future cash flows to par, depends on (1) the

intermediary’s cost of funding, a leverage-weighted average of the equity cost of capital implied

by β and the deposit cost of capital r̄ − αd, (2) expected losses, a function of the default rate

and LGD, and (3) the cost of intermediation parameterized by ν. Given a calibration that

matches target default rates and LGD, we set ν to 0.034 so that q̄m = 1 at ιf = 0.059. In

counterfactual exercises with adjustable rate mortgages, we set ιa = ιf − r̄, making payments

the same on average in both stages.

Borrowers in our model do not endogenize the effect of their demand on their, rather than the

equilibrium, mortgage rate.25 As a result, at low equilibrium rates, they may face an incentive

to take on a large mortgage that implies a high default probability and hence a low expected

cost of borrowing. One way to address this issue is to set a maximum LTV constraint that

would be slack in steady state but bind in some states of the dynamic model. To simplify

model solution, we follow a different approach and impose a per-housing-dollar quadratic cost

of deviating from the steady-state book LTV ratio ϕ
2

(
qmt
pthi

t
− LTV

)2
. We set ϕ to a small

positive value of 0.050. It has negligibly small effects on equilibrium dynamics but improves

our ability to solve the model by ruling out equilibria with counterfactually high LTV ratios.

The last mortgage contract feature is the fraction of the principal paid in each period, δm.

This parameter determines the duration of the mortgage, which we set to match the duration

25Models with an endogenous debt schedule and long-term debt must tackle dilution incentives and the
optimal contract can be difficult to solve. In our framework, such a model would be intractable.
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of a 30-year fixed rate mortgage in the data. Our model generates an endogenous reduction in

duration relative to its contractual value that occurs because of default, but we do not capture

the reduction due to moving-induced prepayments. To calculate the correct target duration in

the data, we compute an amortization schedule for a 30-year fixed rate mortgage with a rate

of ιf and an annual prepayment probability of 6%, close to the unconditional annual moving

probability of mortgage borrowers reported by Fonseca and Liu (2024). This procedure yields

δm equal to 0.085, which implies a duration of 6.9 years.26

4.1 Model Solution

The model is solved numerically using the global Transition Function Iteration method of

Elenev et al. (2021). Our main experiments compare the performance of the economy across a

range of mortgage fixation lengths parameterized by πτ . When this parameter is equal to 0, the

economy is in a fully fixed-rate mortgage (FRM) regime. At the other extreme when πτ is equal

to 1, the economy is in an adjustable-rate mortgage (ARM) regime where mortgage payments

reset every year. For each economy considered below, we simulate 16 paths of 5,000 periods

each after discarding the first 1,000 and report unconditional moments of the long simulation.

We also consider impulse responses to interest rate shocks. To compute impulse responses, we

initialize the economy at the stochastic steady state of a long simulation at t = 0 and compute

its t = 1 transition given a particular realization of exogenous variables. Subsequently, we let

the economy evolve stochastically, simulating 5,000 paths of 25 years each. The average path

constitutes the reported impulse response.

5 Results

We first show that rising interest rates affect households and financial intermediaries in op-

posite directions depending on mortgage structure, using impulse responses to an increase in

rates. Under FRMs, intermediary net worth deteriorates; under ARMs, borrower defaults in-

crease but intermediary net worth improves due to higher mortgage payments. Second, we

26Appendix II shows the duration of a FRM to be 1/(ιf+δm), implying the mapping between δm and duration
for a given ιf .
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show outcomes for financial stability and risk-sharing based on unconditional moments of long

simulations across a range of counterfactual mortgage structures. We find that mortgages with

intermediate fixation lengths balance sources of volatility in pure ARM and FRM structures,

minimizing intermediary net worth volatility and optimizing aggregate risk sharing. Lastly, we

show that the optimal fixation length depends on the macroeconomic environment, captured

by the correlation of interest rate risk with aggregate income risk.

5.1 FRM vs. ARM Economies Respond Differently to Rate Shocks:

Impulse Responses and Mechanisms

First, to understand how mortgage structure modulates interest rate shocks, we analyze impulse

responses of the pure FRM and ARM economies to a positive shock to the policy rate rpt , which

raises it from 3.1% to 6%. Figure 3 displays the results for borrower variables, while Figure 4

displays the results for banks.

Borrowers When rates are fixed (“FRM”), total mortgage payments remain unchanged on

impact and borrower liquidity is unaffected. Mortgage rates go up, but existing borrowers are

shielded from the increase. In contrast, when mortgage payments reset every year (“ARM”),

borrowers face higher payments immediately. The liquidity burden of higher payments causes

a spike in default rates with higher defaults persisting as long as rates and hence payments

remain higher. With FRMs, higher rates raise the opportunity cost of default because holding

on to the current mortgage with a lower rate becomes more valuable, as captured by the decline

in mortgage value and hence borrower LTV. As a result, borrowers are less likely to default

for strategic reasons. At the same time, new borrowers face higher mortgage rates and are less

likely to take out a loan, decreasing the aggregate mortgage balance and driving down demand

for housing, leading to a slight decrease in house prices. However, the persistent decrease in

default rates due to lower LTVs raises house prices subsequently.27 For ARMs, the need to

spend a larger share of their liquid assets on mortgage payments disproportionately reduces

borrower consumption relative to wealth. The desire to smooth consumption raises demand for

27We do not model explicit mortgage lock-in effects (Fonseca and Liu, 2024) and their impact on house prices
in an FRM economy, see e.g. Fonseca et al. (2024).
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Figure 3: Impulse Responses to a Positive Interest Rate Shock: Borrowers
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Notes: Impulse Response Functions for a positive shock to the interest rate rpt . ”FRM” (blue) denotes an

economy in which mortgage payments remain fixed at ιf + δmq̄m. ”ARM” (orange) denotes an economy with a
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credit, resulting in larger mortgage balances relative to the FRM economy.

Banks The different dynamics of default and credit demand have consequences for the finan-

cial sector. The top row of Figure 4 plots banks’ net interest margin and its components in

output units, to aid comparison. When rates go up, the cost of deposit funding – the banks’

interest expenses – also increases, though less than one for one. When mortgage rates are fixed,

interest income remains unchanged, leading to a drop in banks’ net interest margin. Banking

becomes less profitable, despite the slight offsetting decrease in credit losses discussed above

(borrowers default less because their low-rate mortgage becomes more attractive). Moreover,

fixed-rate mortgages have a long duration. The bottom row of Figure 4 plots asset pricing

moments. In response to higher rates, the price and market value of long-dated bank assets

falls. With both lower cash flows due to smaller net interest margins, and lower asset values due

to higher discount rates, the net worth of the banking sector declines. More constrained banks

demand higher compensation to take on mortgage risk, a result common to intermediary-based
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Figure 4: Impulse Responses to a Positive Interest Rate Shock: Banks
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asset pricing models. The spike in risk premia, i.e. expected excess returns on mortgages, am-

plifies mortgage duration, further contributing to market value losses of banks as it increases

discount rates.

In contrast, in the ARM economy, higher rates lead to higher mortgage payments. Since

mortgages are indexed to the policy rather than the deposit rate, the net interest margin of

banks (cash flows) increases as mortgage income received rises by more than deposit expense

paid. Banks become more profitable even though credit losses rise due to an increase in defaults.

Intuitively, banks’ credit losses in the ARM economy partially offset higher cash flows from

mortgage payments, which act as a hedge. Stronger cash flow news than discount rate news

raise mortgage values. This implies that adjustable-rate mortgages effectively have negative

duration. With higher cash flows and higher asset values, the net worth of the banking sector

increases. The increase in intermediary net worth lowers mortgage risk premia. But risk premia

are nonlinear in intermediary net worth. An improved capital position of already healthy banks
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in the ARM economy does not reduce risk premia much, but a deterioration in bank balance

sheets in the FRM economy leads to a sharp spike in risk premia.

Cross-Country Evidence Do these model predictions have empirical support? We show

illustrative evidence consistent with predicted differences in FRM and ARM economies using

differential developments in US and UK delinquencies, house prices, and bank equities over 2022

to 2024, as well as in other ARM economies. Appendix Figure IA.3 shows that delinquencies

in the UK rose by more than 60% from their 2022 levels by the beginning of 2024, whereas

US delinquencies actually declined by almost 20% (albeit from a higher level). Figure IA.6

shows that US real house prices outperformed house prices in ARM economies by 10 to 15%

between 2022 and 2024. Similarly, UK, Australia, and Euro Area bank equities outperformed

bank equity indices in the US (and also Canada) by almost 40 per cent.

While merely suggestive since the model ARM economy is a U.S. counterfactual, not a calibra-

tion, e.g., to the U.K., we consider the differential cross-country evidence in outcomes following

the 2022 to 2023 rate tightening cycle as highly consistent with our model’s predictions.

5.2 Financial Stability

We start by building intuition for mechanisms in the full FRM and ARM economies, before

evaluating financial stability across a broader range of mortgage structures. We measure finan-

cial stability as the volatility of intermediary net worth, reflecting that financial stability goals

by central banks relate to the volatility and cost of credit provision.

5.2.1 Interest Rate Levels, Intermediary Net Worth, and Default

The impulse responses suggest that intermediary net worth is differentially correlated with

interest rates depending on the underlying mortgage structure. Figure 5 confirms this intuition,

showing average levels of intermediary net worth to GDP by interest rate levels from long

simulations of each economy (Panel a). Intermediary net worth is strongly increasing in interest

rates for ARM economies, meaning it has large negative net worth duration. Interest income

rises by more than deposit funding cost increases, which outweighs the rise in defaults (Panel
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Figure 5: Intermediary Net Worth and Default By Level of Interest Rate
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b). Conversely, net worth is somewhat decreasing in interest rates for FRM economies, meaning

it has positive net worth duration.

Deposit Sensitivity Figure 5a also shows that the level of intermediary net worth is more

sensitive to interest rate changes in the pure ARM economy, i.e., its absolute duration is larger.

The lower sensitivity in the FRM economy is due to the calibrated degree of deposit stickiness

with βd = 0.34. βd ≤ 1 governs the pass-through of interest rate changes to deposit rates and

thus interest expense. In a counterfactual where deposits are more responsive to policy rates

(βHigh
d = 0.67, shown in dashed lines in Figure 5a), FRM intermediary net worth becomes

more sensitive as well. Intuitively, higher deposit sensitivity aligns the duration of liabilities

more with the duration of assets under an ARM structure, while the reverse is true in an FRM

regime, consistent with findings by Drechsler et al. (2017, 2021).

Mortgage Default and Risk Premia Figure 5b, which shows average default rates by

interest rate levels, suggests a hedging mechanism in both economies: defaults are high when

intermediary net worth tends to be high. Figure 6 illustrates this further by comparing default

rates across simulations by interest rate level (color) and intermediary net worth (x-axis). In

both ARM and FRM economies, defaults are positively correlated with net worth.

However, Figure 6 also reveals substantial differences between FRM and ARM economies.
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Figure 6: Default Rates By Level of Interest Rate and Intermediary Net Worth

Notes: This figure shows simulation scatter plots of default rates by the level of intermediary net worth (x-axis)

and interest rates (color: blue is low, yellow is medium, orange is high). The left plot shows the ARM economy,

while the right plot shows the FRM economy.

Consistent with Campbell and Cocco (2015), default occurs in different macroeconomic states

across mortgage structures, and is more rate-sensitive in the ARM economy. In the ARM

economy (orange), defaults are high when interest rates are high – precisely when intermediaries’

net worth is bolstered by wider net interest margins. Thus, ARM defaults are net-worth hedged :

interest rate gains offset credit losses. In the FRM economy, defaults rise when rates fall,

another period of strong intermediary balance sheets, but the overall sensitivity of defaults

to rate swings is much lower. Consequently, the net worth hedging channel is weaker under

fixed-rate mortgages.

The relative strength of net worth hedging forces manifests in risk premia. Figure 7 shows

that the weaker FRM net-worth hedging channel makes risk premia (left y-axis) more sensitive

to intermediary net worth (x-axis) at low values, when intermediaries are constrained. In the

FRM economy (blue), impaired intermediary balance sheets lead to high risk premia, while

ARM economy (orange) risk premia are only moderately elevated in the same region. However,
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Figure 7 also shows that pure ARMs make intermediary net worth more volatile on average given

the large absolute duration exposure, with a higher probability of being in the low intermediary

net worth region compared to the FRM economy (shown as frequency distribution of simulation

periods on the right-hand y-axis). As a result, risk premia in the pure ARM economy are not

necessarily lower on average.

Figure 7: Mortgage Risk Premia Decrease with Intermediary Net Worth
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Notes: This figure shows conditional means of mortgage excess returns by the level of intermediary net worth,

for ARM and FRM economies.

5.2.2 Net Worth Duration and Volatility Across Mortgage Structures

So far, we have examined the pure FRM and ARM economies at opposite ends of the mortgage-

structure spectrum. To explore the full range of mortgage structures, we now compare financial-

stability outcomes in our benchmark FRM economy with a series of counterfactual economies

featuring varying mortgage fixation lengths. To do so, we solve the model and simulate outcomes

for economies with values of πτ ∈ [0, 1] where πτ reflects the annual probability of the loan being

in the floating stage, and 1/πτ the (implied) fixation length. For instance, a full ARM economy

has a rate that resets every year with πτ = 1.0, a 10-year fixed-rate mortgage economy has

πτ = 0.1, while the full FRM economy has πτ = 0.

Figure 8a plots the duration of intermediary net worth δ across mortgage structures, where

duration is measured as the negative of the regression coefficient of log wealth on interest rates,
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Figure 8: Measures of Financial Stability Across Mortgage Structures
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Notes: This figure shows the duration of intermediary net worth as the negative regression coefficient δ from

a regression of log wealth on interest rates: logW I
t = const. − δrpt + ϵwt (Panel (a)) and the volatility of

intermediary return on equity, measured as the standard deviation of net income over net worth (Panel (b)). The

x-axis reflects an annual rate reset probability of πτ ∈ {1, 2/3, 0.5, 0.4, 1/3, 0.2, 1/7, 0.1, 0}, which corresponds

to fixed-rate lengths of 1, 1.5, 2, 2.5, 3, 5, 7, 10 years and ∞, respectively.

i.e. the OLS estimate of logW I
t = const.− δrpt + ϵwt , run for each economy. Net worth duration

measures the percent decline in intermediary net worth declines in response to a 1 percentage

point increase in rates. The pure ARM economy with a fixation length of one year has large

negative duration, meaning that net worth increases substantially when interest rates go up, as

shown earlier. Likewise, the pure FRM economy with an infinite fixation length has moderate

positive duration, meaning net worth declines somewhat when rates go up. Net worth duration

increases in fixation length and is zero at an intermediate fixed-rate length of seven years.

However, net worth duration is an incomplete measure of risk as the regression above only

measures the contemporaneous effect of interest rates. Its R2 in the benchmark FRM economy

is only 0.164, suggesting that there are dynamic and persistent effects of rate changes on net

worth that are not captured by duration. In other words, other state variables, and their
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correlation with interest rates reflecting, e.g., the effect of credit risk and risk premia, must

be accounted for to fully capture interest rate exposure. We expand on this intuition more

formally in Section IV in the Appendix.

As a result, our preferred measure of financial stability is the volatility of banks’ return on

equity (ROE), shown in Figure 8b. This measure captures the combined equilibrium effects of

asset and liability-side volatility as well as leverage on the volatility of intermediary net worth.28

The volatility of banks’ ROE has a “U-shape” pattern, higher at both extremes of mortgage

structure, fully adjustable or fully fixed, than at intermediate values. Banks’ ROE volatility is

minimized at a fixation length of approximately 3 years, which is shorter than the zero-duration

fixation length of 7 years. This discrepancy highlights the importance of evaluating financial

stability in equilibrium, taking into account endogenous default and risk premia.

The findings suggest that an intermediate fixation length balances sources of volatility in

both ARM and FRM structures, trading off a lower absolute duration in the FRM economy

against better net worth hedging in the ARM economy. Figure IA.10 in the Appendix adds

the 3-year fixed-rate economy (“ARM 3yr”) to the plot that shows intermediary net worth and

default by interest rate levels. Compared to both the pure FRM and ARM economies, both

intermediary net worth and default are relatively stable across interest rate states in the 3-year

fixed-rate economy. The results suggest that an intermediate fixation length broadly balances

the contrasting mechanisms in both extremes of mortgage structure, making the intermediary

sector more stable across states of the world with different interest rate levels.

5.3 Robustness, Analytical Results on Net Worth Hedging, and Fur-

ther Evidence

State-Dependent Impulse Responses We evaluate robustness of our baseline results across

the state space. Since we solved the model globally, we can show one-period impulse re-

sponses to a rate rise, starting at different borrower mortgage-to-income ratios (Appendix

Figure IA.8). Underlying these different mortgage-to-income ratios are different percentiles

(p ∈ {1, 5, 10, 30, 50, 70, 90, 95, 99}) of aggregate borrower wealth state variable WB
t in a long

28This is consistent with the intuition in Meiselman et al. (2023), who show that banks’ ROE is a strong
predictor for systematic tail risks.
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simulation of the model, conditional on the average (“medium”) level of interest rates. Since

the other state variable – intermediary wealth – is correlated with WB
t , for each level of WB

t we

select its initial IRF value as the simulation average, conditional on average interest rates and

WB
t being in a 5 percentile neighborhood of the given starting borrower wealth. The signs for

impulse responses for intermediary net worth and default (measured as % and p.p. deviations

from the unconditional path, respectively) remain unchanged across the entire borrower wealth

distribution, and magnitudes remain relatively stable. As borrowers become more indebted,

defaults increase, but magnitudes remain within ranges that below we develop analytically.

Analytical Results: Net Worth Hedging - Interest Rate vs. Credit Risk Channel

How general is net worth hedging under ARMs? To evaluate under what conditions net worth

hedging arises, we characterize the sensitivity of mortgage portfolio values to interest rates in

closed form. Mortgage portfolio values change (1) because payments and prices of surviving

mortgages change, and (2) because default rates and recovery rates change. We term (1) the

interest rate channel, and (2) the credit channel. As an upper bound on how much credit effects

can offset interest rate effects, we consider the extreme case where loss-given-default (LGD) is

100%, that is, there are no recoveries. We develop conditions under which the credit channel

could offset the positive mortgage cash flow gains of the interest rate channel. Intuitively,

default rates must be increasing enough in rates, default rate levels must be high enough to

begin with, and these effects must not be offset too much by potentially lower discount rates

(which would raise the present value of remaining principal on surviving loans), to overwhelm

the positive effect of adjustable-rate loan coupons rising. Detailed derivations are provided in

Appendix Section II. We find that the ARM default rate sensitivity to rate rises would have

to be at least 14-15 times greater than generated by our baseline calibration, for higher cash

flows from an increase in mortgage payments on performing loans to be offset by an increase

in credit losses. We thus show that net-worth hedging of ARMs arises robustly under a wide

range of plausible paths for interest rates and default, and borrower conditions.

Bank Decision-Making and Further Empirical Evidence We evaluate financial sta-

bility outcomes for a given mortgage structure, which determines the duration of household

debt. This does not imply that bank equities merely inherit resulting risks from their assets
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(mortgages): in the model, banks can manage equity duration endogenously by adjusting their

leverage. Leverage affects the duration of equity in two ways: (1) it governs how much of the

asset duration is hedged/immunized by the duration of liabilities, and (2) it translates dollar

gains/losses from interest rate fluctuations into percentage gains/losses, with higher leverage

resulting in greater amplification. We expand on this more formally in Appendix Section III.6.

We find that banks slightly reduce leverage when facing higher volatility (see Table 3, “Lever-

age”), consistent with a precautionary savings motive.

In principle, banks can also manage interest rate exposure by adjusting their holdings of Trea-

suries. If mortgage fixation lengths decline, they can buy more long-term government bonds.

We investigate the extent to which shorter fixation lengths are associated with larger and

longer-duration government bond portfolios by comparing bank holdings across countries with

different mortgage structure using BIS data. We decompose the total level of non-financial

credit (in USD) into credit to general government, households (including non-profit institu-

tions), and non-financial corporations for the U.S., Euro Area (EA), Canada, Australia, and

the U.K., shown in Appendix Figure IA.9. While the share of non-financial credit going to

households in the U.S. is relatively small, with only the euro area having a smaller share, the

share going to government is largest in the U.S., despite it having the highest average fixation

length of about 25 years. Moreover, while governments issue debt of varying maturities across

countries, according to data by De Graeve and Mazzolini (2023), variation in weighted-average

government debt maturities across countries is limited.29 These patterns suggest that variation

in government debt maturities and non-financial credit shares does not offset the variation in

average maturity of non-financial credit driven by varying mortgage structures across countries,

which serves as a proxy for household debt maturity.30 In other words, in the aggregate, banks

do not “undo” the effect of mortgage structure on their interest rate exposure by adjusting

government bond holdings.

To further support the idea that in the data mortgage structure is correlated with differential

bank performance in response to interest rate fluctuations, we exploit variation across countries

within the euro area, where banks faced common banking regulation and a common policy rate

29U.S. government debt has average maturity of 5.3 years, the Euro Area average at 6.3 years, Australia at
5.5 years, and Canada at 6.2 years. Only the UK has a markedly longer average maturity of government debt,
at 12.0 years.

30Under the assumption that lending to non-financial corporations is of comparable maturity across countries.
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shock from the ECB between 2022 to 2023. We use bank-level equity data from Bloomberg

to construct and plot bespoke ARM (Spain, Finland, Greece, Italy, Poland, Ireland, Portugal)

and FRM (Belgium, France, Germany, Netherlands) bank equity indices in Appendix Figure

IA.5. The figure shows that within-euro area ARM bank equities outperformed FRM bank

equities by about 67% (69%), using market-capitalization weights (equal weights) to aggregate

across countries, between 2022 and 2024. The indices start to diverge especially starting in July

2022, when the ECB started to raise policy rates. This empirical evidence is consistent with

our model’s prediction that different mortgage structures leave banks with different exposures

to interest rate risk.

Lastly, ours is a model in which banks are the marginal investors in duration, and hence price

interest rate risk. This is consistent with the findings of Haddad and Sraer (2020), who show

that when banks duration exposures increase, so do bond risk premia.

5.4 Risk Sharing

Our analysis of financial stability thus far highlights the risks borne by savers, who hold bank

equity. To better understand risk sharing across mortgage structures, we compare outcomes

for both borrowers and banks in Table 3. The top panel reports bank-related metrics, and

the bottom panel shows borrower-related metrics. The first three columns present results

for our baseline scenario with low calibrated deposit sensitivity: pure-ARM (annual resets),

intermediate fixation length (3-year) at which net worth volatility is minimized, and pure-FRM

economies, respectively.

Borrowers and Consumption Mortgage structure shapes both the extent and the nature

of borrowers’ interest rate exposure, affecting default behavior and portfolio decisions. In ARM

economies, mortgage payment-to-income (PTI) ratios increase in rates, exposing borrowers to

liquidity risks. The “PTI ( OLS coef.)” row reports the coefficient of a regression of PTI on

interest rates. A 1 percentage point increase in rates corresponds to a 1.61 percentage point

increase in PTI in the ARM (1yr) economy, but only a 0.45 percentage point increase in the

ARM (3yr) economy, and a −0.17 percentage point change in the FRM economy as households

delever. But rate shocks also have wealth effects, which determine borrowers’ strategic default
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Table 3: Measures of Financial Stability

Deposit Sensitivity: Low (βd = 0.34) High (βd = 0.67)

Mortgage Structure: ARM (1yr) ARM (3yr) FRM ARM (1yr) ARM (3yr) FRM

Excess ROE (mean) 2.26 1.50 1.70 1.65 1.70 2.29
ROE (st. dev.) 20.79 1.41 9.11 12.74 8.05 16.89
Excess ROA (mean) 0.22 0.16 0.19 0.16 0.19 0.25
ROA (st. dev.) 2.20 0.66 1.17 1.73 1.58 2.25
Leverage 90.49 91.83 91.46 91.04 91.36 90.86
Fraction of constraint binding 27.45 86.50 49.99 24.61 45.31 36.10
Duration of bank net worth -13.96 -2.41 1.99 -11.51 -0.70 4.82

PTI (OLS coef.) 1.61 0.45 -0.17 1.48 0.28 -0.33
LTV (OLS coef.) 2.47 0.17 -1.19 1.52 -0.99 -2.19
Default Rate (mean) 2.07 2.36 2.32 2.21 2.30 2.19
Default Rate (std. dev.) 0.36 0.07 0.26 0.19 0.29 0.48
Default Rate (OLS coef.) 0.14 0.01 -0.07 0.09 -0.05 -0.12
DTI (mean) 145.16 151.15 150.37 148.16 149.80 147.38
LTV (mean) 55.15 59.68 59.08 57.48 58.68 56.86
Deposits / Income (mean) 25.74 24.36 24.49 25.16 24.76 25.24

Notes: Unconditional moments from a long simulation of the model. Except for the duration of bank net worth,

all quantities are reported in percent. Rows marked ”OLS coef.” report the coefficient of a regression of the

variable on the policy rate rpt .

behavior. Higher interest rates always lower house prices on impact, but the extent to which

they affect the value of the mortgage – and, hence, LTV ratios – depends on the fixation

length. In the FRM economy, high rates lead to low mortgage values. This creates LTV ratios

that are mildly countercyclical in the interest rate, as reflected in a negative “LTV (OLS coef.)”

(defined analogously to the PTI regression coefficient). Together with stable payments, it yields

countercyclical default rates, or a negative “Default Rate (OLS coef.),” which is consistent

with the impulse responses showing a decrease in default rates when rates go up. As fixation

length shortens, mortgage duration drops and eventually flips sign. In the pure-ARM economy,

rate increases lead not only to higher house prices but higher mortgage values, which implies

LTV ratios being strongly procyclical in rates. Together with procyclical payments, this leads

to procyclical default rates, which are more volatile than in the FRM economy. Conversely,

default rates are mildly countercyclical in the FRM economy. At intermediate fixation lengths,

default rates are close to acyclical with respect to interest rates, and are least volatile.

Higher exposure to interest rate risk in ARM economies lowers both the supply and the
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Table 4: Consumption Measures

Deposit Sensitivity: Low (βd = 0.34) High (βd = 0.67)

Mortgage Structure: ARM (1yr) ARM (3yr) FRM ARM (1yr) ARM (3yr) FRM

Panel A: Savers

Cons. (mean) 49.15 49.93 49.84 49.54 49.78 49.50
Cons. gr. (st. dev.) 2.35 0.52 2.29 0.74 2.74 3.97
Cond. vol of cons. gr. 2.05 0.29 1.83 0.55 2.09 3.22

Panel B: Borrowers

Cons. (mean) 47.79 47.01 47.10 47.43 47.20 47.49
Cons. gr. (st. dev.) 16.17 17.17 17.12 16.69 16.99 16.70
Cond. vol of cons. gr. 10.46 11.05 10.92 10.89 10.94 10.63

Notes: Unconditional moments from a long simulation of the model.

demand for credit. Together with more expensive mortgages due to higher risk premia (“Excess

ROA”), volatile default rates cause households to reduce their demand for credit and expand

precautionary saving. Relative to the FRM economy, in the pure-ARM economy, average

mortgage debt falls both relative to income (DTI) and relative to house prices (LTV), while

deposits to income increase. As a result, less indebted borrowers default less often on average.

The opposite is true for the safer ARM (3yr) economy.

Differences in risk exposures and indebtedness have implications for consumption (Table 4).

Fewer mortgages mean a smaller banking sector, with reduced dividends lowering saver con-

sumption (Panel A) in the ARM economy. The volatility of consumption growth – both un-

conditional, and conditional, which determines the price of risk in asset pricing models – goes

up, consistent with the higher intermediary volatility and risk premia in the ARM economy

discussed above.

The effect on borrowers is the opposite in the ARM economy. With less debt, their interest

burden is smaller, and they suffer the pecuniary consequences of default less often. This results

in higher average consumption.31 Lower debt makes borrower consumption less exposed to

idiosyncratic shocks, the main source of their consumption volatility. As a result, both measures

of consumption volatility are lower in the ARM economy.

31Because deposit markets do not clear, changes in each household type’s levels of consumption, and conse-
quently changes in welfare, are also due to changes in the economy’s net deposit position and hence available
resources. We therefore focus the normative analysis on higher order moments of consumption, namely, risk-
sharing.
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Robustness: Deposit Sensitivity An important source of financial stability risk in the

ARM economy is the large difference between high sensitivity of mortgage payments to policy

rates and the low sensitivity of deposit rates, calibrated to match the empirical evidence. We

thus consider a counterfactual in which we double the calibrated benchmark sensitivity of

βd = 0.34 to βd = 0.67 in the fourth through sixth columns of Tables 3 (Financial Stability)

and 4 (Consumption).

With more volatile deposit rates at which banks fund themselves, the FRM economy becomes

substantially riskier (third vs. sixth columns). Bank equity duration more than doubles,

the volatility of both asset and equity returns increases considerably, and banks demand a

larger compensation for the risk of holding mortgages. As before, a more volatile economy and

more expensive mortgages lead to lower borrower indebtedness, lower default rates, and higher

consumption. The effect of switching from FRMs to ARMs in the high deposit sensitivity

counterfactual is opposite to that in the baseline experiment. When policy rates substantially

pass through to deposit rates, a mortgage structure in which payments are indexed to the

policy rate improves financial stability, reducing the volatility of bank balance sheets and the

risk premia associated with them and stimulating mortgage credit. Intuitively, the asset and

liability side of bank balance sheets are better aligned with ARMs when deposit rates fluctuate

more strongly with interest rates. Hence, a banking sector that faces less sticky deposit rates is

rendered most stable by an even shorter fixation length than 3 years, the level for the baseline

calibrated economy.

Measuring Risk Sharing Ultimately, we investigate the way in which mortgage structure

determines how risks are shared between households. To quantify the degree of risk sharing, it

is instructive to consider a hypothetical complete markets benchmark. A social planner subject

to rate shocks but not to any of the economy’s frictions would insure households fully against

idiosyncratic shocks and award each household a constant fraction of overall consumption. In

other words, the difference ∆ log cit − ∆ log cjt between consumption growth rates of any two

households i and j would be zero in all periods.32

32See Appendix III.5 for derivations. Moreover, the planner would optimize the overall economy’s exposure
to rate shocks. The planner would choose a net deposit position of the economy with respect to the rest of the
world to satisfy the consumption-savings Euler equation of the representative agent, whose consumption would
be equal to the aggregate consumption of the economy. We also derive these results in Appendix Appendix III.5,
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Figure 9: Measures of Risk Sharing across Mortgage Structures
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Notes: RiB measures the variance of individual borrowers’ consumption growth relative to aggregate borrower

consumption growth, and RBS measures the variance of aggregate consumption growth of borrowers relative to

savers. In each panel, R is reported in deviations from the level in the ROE volatility-minimizing economy.

We can then measure the quality of risk sharing by the unconditional variance of differences in

consumption growth rates between households. Recall that borrower households are subject to

undiversifiable idiosyncratic risk, while saver households are not. We can define two scale-free

measures of risk-sharing:

1. Higher values of RiB = Var0[∆ log cit − ∆ logCB
t ], where i ∈ [0, ℓ] and CB

t is aggregate

consumption of borrowers, indicate worse intra-borrower risk-sharing;

2. Higher values of RBS = Var0[∆ logCB
t −∆ logCS

t ], where CS
t is aggregate consumption

of borrowers, indicate worse risk-sharing between borrowers and savers ;

Figure 9 reports the results in deviations from the level in the ROE volatility-minimizing

economy.33

Panel (b) shows that intermediate mortgage fixation lengths lead to the best attainable risk-

sharing arrangements between borrowers and savers as RBS is minimized at a fixation length

but since these effects turn out to be quantitatively negligible, we do not report these separately.
33At a fixation length of 3 years, RiB is 0.17, and RBS is 0.005. Since these measures are scale-free, the level

of undiversifiable idiosyncratic risk faced by borrowers is considerably larger than aggregate risk shared between
borrowers and savers, consistent with many macroeconomic models.
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Figure 10: Consumption Responses To Positive Rate Shock
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Notes: The figure shows impulse responses to a positive interesr rate shock. The left panel shows the response of

aggregate borrower consumption CB
t , while the right panel shows the response of aggregate saver consumption

CS
t . Benchmark FRM economy is in blue. Volatility-minimizing ARM 3yr economy is in green, and the RBS-

minimizing ARM 5yr economy is in purple.

of 5 years. This is a slightly longer fixation length relative to the contract that minimizes

the volatility of intermediary ROE, suggesting a small trade-off between financial stability and

aggregate risk sharing.

To illustrate this trade-off directly, we plot the responses of borrower and saver consumption

to a positive rate shock for the benchmark FRM economy, the volatility-minimizing ARM 3yr

economy, and the risk-sharing optimizing ARM 5yr economy in Figure 10. In the FRM economy,

savers – who own banks – have a much greater exposure to this shock than borrowers. When

the fixation length is chosen to minimize bank volatility (ARM 3yr, green), savers become

almost insulated from the shock, but it is now borrowers whose consumption suffers. From

a risk-sharing perspective, lowering the fixation length to 3 years leads to an over-correction.

A less aggressive choice of 5 years (purple) leads to similar consumption responses for both

borrowers and savers, and thus minimizes RBS.

However, low exposure to aggregate risk leads borrowers to endogenously choose higher expo-

sure to idiosyncratic risk (Panel (a) of Figure 9). At intermediate fixation lengths, they choose

the largest mortgages, and hence the largest mortgage payments, should they choose to make

them rather than defaulting. When payments constitute a larger fraction of liquid income, the
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effect of idiosyncratic income shocks on consumption is amplified. Moreover, higher mortgage

balances lead to a higher probability of default. Since consumption levels in and out of default

are different, a higher probability of default also leads to higher consumption volatility. This is

reflected in the higher RiB at intermediate fixation lengths.

Overall, mortgage structure most strongly affects the sharing of interest rate risk between

borrowers and savers, with the best attainable outcome occurring at an intermediate fixation

length of 5 years. The findings on idiosyncratic risk sharing between borrowers highlight a

somewhat subtle downside: a more efficient (aggregate) risk-sharing arrangement leads bor-

rowers to take on more idiosyncratic risk, which the mortgage structures under consideration

cannot diversify away.

5.5 Role of Aggregate Income Shocks

The results above show how financial stability and risk sharing are affected by mortgage struc-

ture in an environment in which the only source of aggregate risk is shocks to interest rates. It

is the source of risk whose allocation between borrowers and savers is most directly affected by

mortgage fixation length.

In the data, households also face aggregate income shocks, and these shocks may be correlated

with interest rates. For instance, times when interest rates rise may also be times when incomes

rise, as would be the case in an economy dominated by aggregate demand shocks. Alternatively,

interest rate increases may coincide with income declines if supply shocks predominate.34 How

do our results change if we allow for the possibility of correlated aggregate income and interest

rate shocks?

To answer this question, we relax the restriction Yt = 1 and calibrate a VAR(1) process to

govern the joint dynamics of (log Yt, r
p
t ), where log Yt is measured as the cyclical component of

log GDP and rpt is as before. Over the baseline 1987-2024 sample period, we find a positive

correlation between innovations to the two series, with a correlation coefficient of 0.313. Relative

34In a New Keynesian framework, a positive demand shock increases both output and inflation, to which
central banks respond by raising nominal rates. With nominal rigidities, this leads to an increase real rates.
In contrast, a negative supply shock increases inflation while reducing output. If the central bank’s policy rule
responds to inflation more strongly than to output, it would raise nominal rates, leading real rates to rise as
well. See Woodford (2003) for a canonical treatment.
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Table 5: Measures of Financial Stability

Income Correlation: Calibrated (ρyr = 0.313) Uncorrelated (ρyr = 0)

Mortgage Structure: ARM (1yr) ARM (3yr) FRM ARM (1yr) ARM (3yr) FRM

Excess ROE (mean) 2.16 1.56 1.62 2.00 1.56 1.66
ROE (st. dev.) 18.04 4.51 8.04 16.37 4.82 8.65
Excess ROA (mean) 0.22 0.16 0.18 0.20 0.17 0.18
ROA (st. dev.) 1.93 0.73 1.03 1.74 0.76 1.08
Leverage 90.34 91.48 91.41 90.64 91.45 91.37
Fraction of constraint binding 32.08 55.38 52.02 37.94 53.71 47.95
Duration of bank net worth -12.58 -2.57 1.53 -11.01 -1.75 2.21

PTI (OLS coef.) 1.44 0.33 -0.27 1.45 0.35 -0.23
LTV (OLS coef.) 1.67 -0.18 -1.23 1.63 -0.08 -1.03
Default Rate (mean) 2.12 2.34 2.34 2.15 2.34 2.33
Default Rate (std. dev.) 0.37 0.23 0.31 0.40 0.25 0.30
Default Rate (OLS coef.) 0.10 -0.01 -0.07 0.09 -0.00 -0.05
DTI (mean) 146.57 150.85 150.42 147.02 150.81 150.58
LTV (mean) 55.95 59.45 59.22 56.35 59.37 59.23
Deposits / Income (mean) 25.55 24.48 24.51 25.47 24.51 24.51

Notes: Unconditional moments from a long simulation of the model. Except for the duration of bank net worth,

all quantities are reported in percent. Rows marked ”OLS coef.” report the coefficient of a regression of the

variable on the policy rate rpt .

to the rate-only process in the baseline model, we also find a lower volatility of the innovations in

rates – 0.013 vs. 0.014. Intuitively, in a VAR some of the variation in rates is now attributed to

the contemporaneous and lagged effects of income innovations. Appendix V.1 contains details

on the VAR estimation and the resulting impulse response functions. We then re-solve the

model with the new process for each of the mortgage structures.35

The results are shown in Table 5. The left panel shows the results for the three main fixation

lengths – ARM with a one-year fixation length, ARM with a three-year fixation length, and

FRM – in the exogenous environment with both income and rate shocks, calibrated to the

data. The right panel shows the results for the same three fixation lengths when the correlation

of income and rate innovations is counterfactually set to zero. This allows us to separately

consider the effect of introducing an extra source of aggregate risk into the model from the

effect of it being correlated with interest rates.

35As before, the FRM economy represents the data generating process. A change in the exogenous environment
leads to different values for the moments governing our internal calibration. In principle, this could require re-
calibrating the internally calibrated parameters. However, we find the fit of the model with income shocks to
be comparable to the baseline model without. For parsimony, we do not re-calibrate the model.
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In the presence of income shocks, changing mortgage fixation becomes somewhat less effective

at reducing volatility than it was in the baseline, whether of intermediary returns on equity (top

panel, second row) or default rates (bottom panel, fourth row). In the baseline economy, going

from an economy with FRMs to an economy with a 3-year fixation length lowers intermediary

ROE volatility from 9.11 to 1.41. With uncorrelated income shocks, the corresponding reduction

is from 8.65 to only 4.82. This smaller effect occurs for two reasons. First, unlike rate shocks,

income shocks affect both households in a similar way. A positive rate shock benefits borrowers

at the expense of savers in the FRM economy, but a positive income shock benefits both.

Shortening the fixation length improves the sharing of interest rate risk because that risk is

allocated asymmetrically to begin with, but has little effect on the sharing of income risk.

Second, the reduction in endogenous volatility achieved by intermediate fixation length (ARM

(3y) column vs. FRM column) reduces incentives for precautionary savings. Both borrowers

and savers take on more debt, with mortgage DTI and LTV slightly higher (bottom panel, rows

6-7) and with intermediary constraints binding more often (top panel, row 5). These riskier

portfolios leave households more exposed to income shocks, partly offsetting the reduction in

volatility due to better sharing of interest rate risk.

Next, consider what happens to financial stability in the FRM economy when income and

rate shocks become positively correlated, as they are in the data. An increase in rates now

lowers default rates not just because it lowers market-value LTVs (bottom panel, row 2), as in

the baseline with only rate shocks, but also because of a concurrent increase in income. Default

rates become more countercyclical in rates (bottom panel, row 5) leading to a stronger hedging

force offsetting the market value losses on long-term mortgages stemming from an increase

in rates. As a result, intermediary ROE volatility in the FRM economy is lower than in the

uncorrelated case (top panel, row 2).

The opposite is true for ARMs. A rise in rates increases borrower payments but they can

afford more of that increase because their incomes also rise. Intermediaries earn higher cash

flows because promised mortgage payments are less offset by rising default rates, weakening the

default hedging force that was present in the baseline model. In addition, defaults rise in the

state of the world when net worth is low, namely when rates are low, due to lower incomes.

In sum, positive correlation makes the FRM economy safer and the ARM economy riskier,
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Figure 11: Optimal Fixation Lengths as a Function of Income Correlation
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Notes: For each correlation (x-axis), blue line plots the fixation length that minimizes ROE volatility, and red

line plots the fixation length that minimizes RBS (lower values mean better risk sharing between borrowers and

savers). The vertical dashed line shows the calibrated correlation of 0.313. To determine minima, we solve a

grid of economies with different fixation lengths and different correlations between income and rate shocks and

fit cubic splines to the ROE and risk sharing measures.

suggesting that a higher fixation length may be optimal.

To confirm this intuition, we solve a grid of economies with different fixation lengths and

different correlations between income and rate shocks. For each correlation, we find (1) the

fixation length that minimizes the volatility of intermediary ROE, and (2) the fixation length

that optimizes risk sharing between borrowers and savers (minimizes RBS). The results are

shown in Figure 11. Indeed, as we increase the correlation from -0.3 to 0.5, the ROE-minimizing

fixation length rises from 2.7 to 3.9 years. The fixation length that optimizes risk sharing rises

from 4 to 5.8 years, consistently remaining 1-2 years higher than the ROE-minimizing value as

in the baseline. At the calibrated correlation of 0.313, the ROE volatility is minimized by a

fixation length of 3.6 years while risk sharing is optimized by a length of 5.3 years.

The magnitude of these effects are not large enough to overturn the main findings of the

paper. A mortgage with an intermediate fixation length of a few years does the best job of

promoting financial stability and risk sharing in the presence of income shocks, whether the

correlation is positive, as it has been in the recent sample, or zero, as it has been on average in
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a longer 1962-2024 period.36

6 Conclusion

This paper highlights the role of mortgage structure on financial stability and risk sharing

between households and financial intermediaries. To evaluate these effects in equilibrium, we

build a quantitative model with flexible mortgage contract structures, borrowers, and an in-

termediary sector. Borrowers endogenously default for liquidity and net worth-related reasons,

and default is more sensitive to interest rates in the adjustable-rate mortgage regime. In ad-

dition, intermediary distance to capital constraints affects equilibrium mortgage pricing. As a

result, our model captures complex interaction effects between interest rate and credit risk, and

intermediary net worth.

Our findings reveal that mortgage structure is key to understanding differential financial

stability risks in response to interest rate fluctuations. In an ARM economy, rising rates lead

to increased household mortgage payments, higher default rates, and declining house prices.

Despite higher credit losses, banks benefit from increased net interest margins and asset values,

ultimately raising their net worth. Conversely, an FRM economy shields households from higher

payments, thereby reducing defaults, but banks experience rising deposit costs and falling asset

values, reducing their net worth and profitability.

We identify a “U-shaped” relationship between mortgage structure and financial stability

risks. Pure ARM economies exhibit high net worth volatility due to strong interest rate sensi-

tivity, whereas FRM economies partially hedge interest rate risk through sticky deposit rates.

Yet ARM economies better hedge defaults by concentrating them in states when banks’ net

worth is high. Intermediate fixation lengths, around 3 to 5 years, optimally balance these

opposing forces, minimizing volatility and maximizing aggregate risk-sharing. Additionally,

introducing correlated aggregate income and interest rate shocks suggests that a more positive

correlation increases the optimal fixation length.

The paper does not study endogenous transitions from one mortgage structure to another. In

the data, broad differences in mortgage fixation lengths across countries have remained relatively

36Appendix V.1 contains estimation details.
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stable over the past decade (see Figure 2 which shows information from mortgages outstanding

in 2013 as well as new origination flows in 2023), suggesting that these differences could arise

from persistent policy differences and other factors such as mortgage funding structures across

countries, which are outside the scope of this paper. It is worth emphasizing that the U.S.

stands out as an outlier, and that most countries originate mortgages with intermediate fixed-

rate length on average. Liu (2022) and Sanchez Sanchez (2023) show that the U.S. 30-year fixed-

rate mortgage is an unlikely equilibrium outcome without the government-sponsored enterprises

(GSEs) that subsidize credit risk-taking. Consistent with this, Rose (2018) argues that the shift

towards longer-term contracts in the U.S. between 1930 and 1940 reflects “the advent of federal

involvement in the residential mortgage market.” Campbell (2012) further shows that the

U.S. has the highest degree of government participation in housing finance compared to most

countries except Singapore, but homeownership rates remain close to countries like the U.K.,

Ireland and Canada. The prevalence of intermediate mortgage fixation lengths globally could

thus reflect equilibrium outcomes under lower degrees of government participation in housing

finance, in line with the paper’s finding that these types of contracts naturally balance sources

of volatility from both pure ARM and FRM structures.

Overall, our findings have implications for monetary policy and macroprudential regulation.

Our model provides a framework for understanding how changes in policy rates affect financial

stability differentially across mortgage structures, and suggests that macroprudential concerns

following rate rises differ, for instance, for the Federal Reserve compared to the European

Central Bank. Our results inform optimal mortgage design that aims to improve financial

stability and risk-sharing between households and financial intermediaries.
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I Additional Figures and Tables

Figure IA.1: Non-Government Residential Mortgage Holdings by Sector (Portfolio & MBS)

Notes: This figure shows the composition of non-government residential mortgage holdings, including bank

portfolio loans (I) and agency- and GSE-backed securities holdings (II), excluding direct government holdings,

and holdings by the GSEs and the Federal Reserve. Data for (I) is based on the Urban Institute Housing

Chartbook (“Unsecuritized First Liens (Bank Portfolio)”). Data for (II) comes from Table L211 from the

US Financial Accounts (Flow of Funds) split into Banks, Funds/REITs, Households/Firms, Insurance/Pension

Funds, and the Rest of World (RoW) in 2014Q2, 2021Q2, and 2024Q2. A detailed breakdown of constituent

sector definitions for (II) is provided in Table IA.I. The data is retrieved from the Federal Reserve. Since (II) is

reported at quarterly frequency, we obtain (I) from the Urban Institute Housing Chartbook from August 2014,

and September 2021 and 2024, which reflect data as of 2014, 2021, and 2024 for the second quarter of the year,

respectively.

1

https://www.urban.org/research/publication/housing-finance-glance-monthly-chartbook-september-2024
https://www.urban.org/research/publication/housing-finance-glance-monthly-chartbook-september-2024
https://www.federalreserve.gov/releases/z1/release-dates.htm


Figure IA.2: Non-Government MBS Holdings (Detailed Sector Breakdown)

Notes: This figure shows the composition of non-government agency- and GSE-backed securities holdings from

Table L211 from the US Financial Accounts (Flow of Funds), with a breakdown into underlying sectors that

form the groups of Banks, Funds/REITs, Households/Firms, Insurance/Pension Funds, and the Rest of World

(RoW) in Figure IA.1, in 2024Q2.
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Table IA.I: Overview of Sector Definitions for Non-Government MBS Holdings

Sector Constituent Groups

Banks

U.S.-chartered depository institutions
Foreign banking offices in the U.S.
Banks in U.S.-affiliated areas
Credit unions
Security brokers and dealers
Holding companies

Funds/REITs
Mutual funds
Mortgage real estate investment trusts
Money market funds

Households/Firms
Households and nonprofit organizations
Nonfinancial corporate business

Insurance/Pension Funds

Property-casualty insurance companies, including those
held by U.S. residual market reinsurers
Life insurance companies
Private pension funds
Federal government retirement funds
State and local government employee defined benefit re-
tirement funds

Rest of World (RoW) Rest of the world

Notes: Constituent groups from Table L211 of the US Financial Accounts (Flow of Funds).
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Figure IA.3: Model Predictions & Evidence: Delinquencies

(a) IRF for Defaults (FRM vs. ARM)
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(b) Delinquencies since 2022 (US vs. UK)

Notes: Panel (a) shows the impulse response function for default rates in response to an exogenous interest rate

shock as shown in section 5.1. Panel (b) shows delinquency measures in the US and UK, indexed to 2022 Q1.

US delinquencies are measured on single-family residential mortgages from FRED, reflecting loans past due 30

days or more and still accruing interest as well as those in nonaccrual status. UK delinquencies are arrears

balances as percent of total outstanding balances reported by the FCA, reflecting loans where the amount of

actual arrears is 1.5% or more of the borrower’s current loan balance.
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Figure IA.4: Model Predictions & Evidence: Bank Equity Prices

(a) IRF for Intermediary Net Wealth (FRM vs.
ARM)
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(b) Bank Equities since 2022 (US vs. UK)

Notes: Panel (a) shows the impulse response function for intermediary net wealth in response to an exogenous

interest rate shock as shown in section 5.1. Panel (b) shows MSCI bank equity indices in the US and UK

indexed to January 1, 2022.

Figure IA.5: ARM and FRM Bank Equity Indices (Euro Area)

(a) Equal Weights Across Countries
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(b) Market Cap Weights Across Countries
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Notes: This figure shows Euro Area ARM and FRM bank equity indices constructed from country-level bank

equity indices using equal weights (Panel (a)) and market-capitalization weights (Panel (b)) across Euro Area

countries, between January 3, 2022 and December 31, 2024. Country-level bank equity indices are constructed

from publicly listed bank equities data from Bloomberg using market capitalization weights. Euro Area - ARM

contains the countries Spain (6), Finland (3), Greece (6), Italy (35), Poland (11), Ireland (4), and Portugal (1),

while Euro Area - FRM contains the countries Belgium (2), Germany (5), Netherlands (2), and France (16),

with the number of individual banks indicated in parentheses. Country-level indices are normalized to have a

January 3, 2022 value of 100.
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Figure IA.6: Model Predictions & Evidence: House Prices

(a) IRF for House Prices (FRM vs. ARM)
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(b) Real House Prices since 2022 (US vs. UK)

Notes: Panel (a) shows the impulse response function for house prices in response to an exogenous interest rate

shock as shown in section 5.1. Panel (b) shows real house prices in the US and UK indexed to 2022 Q1.
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Figure IA.7: House and Bank Equity Prices (Cross-Country)

(a) Real House Prices since 2022 (Cross Country) (b) Bank Equities since 2022 (Cross Country)

Notes: Panel (a) shows real house prices in the US, UK, Canada, Australia, and Euro Area indexed to 2022

Q1. Panel (b) shows MSCI bank equity indices in the US, UK, Canada, Australia, and Euro Area indexed to

January 1, 2022.
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Figure IA.8: State-Dependent Impulse Responses: Net Worth and Default by Mortgage-to-
Income

(a) Deviation in Intermediary Net Worth / GDP (%)
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(b) Deviation in Default Rate (p.p.)
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Notes: This figure shows t = 1 impulse responses to a rate rise, conditional on different borrower mortgage-

to-income ratios. For default rates, the figure shows the percentage point difference between the shocked

path and the unconditional path. For intermediary net worth, the figure shows the percentage deviation of

the shocked path relative to the unconditional path. Points in the state space were chosen as percentiles

p ∈ {1, 5, 10, 30, 50, 70, 90, 95, 99} of the borrower wealth distribution conditional on the average (“medium”)

level of interest rates. Since this distribution is correlated with intermediary wealth, we also condition on

the mean of intermediary net worth, conditional on average interest rates and borrower wealth being in the

neighborhood of the given borrower wealth, i.e. WIj = E[WI|rpt = r̄,WBj ∈ B(WBj)] where B defines the

neighborhood, set to 5 percentiles. Dotted vertical lines indicate baseline impulse responses for the FRM and

ARM economies.
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Figure IA.9: Credit to the Non-Financial Sector Across Countries & Country Groups

US EA CA AU UK
0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 To

ta
l N

on
-F

in
an

cia
l C

re
di

t
Share of Credit to Non-Financial Sectors (2024Q3)

Borrower Sector
General Government Households Non-Financial Corporations

Notes: This figure shows credit shares to the non-financial sector, split by general government, households and

non-profit institutions, and non-financial corporations as measured by the BIS, across different countries and

country groups (U.S., Euro Area, Canada, Australia, U.K.), as of 2024 Q3.
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Figure IA.10: Net Worth and Default by Interest Rate Level (Intermediate ARM)

(a) Intermediary Net Worth / GDP
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Notes: This figure shows simulation-based average rates of default and levels of intermediary net worth across

different levels of interest rates, for the full-ARM (1-year fixation length), intermediate ARM (3-year fixation

length), and full-FRM (infinite fixation length) economies.
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Figure IA.11: Mortgage Return Volatility
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Notes: This figure shows the volatility of mortgage returns, measured as the standard deviation of net income

over total assets, i.e. reflecting volatility of return on assets (ROA). The x-axis reflects an annual rate reset

probability of πτ ∈ {1, 2/3, 0.5, 0.4, 1/3, 0.2, 1/7, 0.1, 0}, which corresponds to fixed-rate lengths of 1, 1.5, 2, 2.5,

3, 5, 7, 10 years and ∞, respectively.
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II Analytical Results: Net Worth Hedging, Interest Rate

vs. Credit Risk Channel, and Robustness

In this section, we characterize the sensitivity of mortgage portfolio values to interest rates in

closed form. We decompose the response into an interest rate channel, capturing the effect

of higher rates on mortgage payments and prices, and a credit channel, reflecting the effect

of higher rates on losses in value caused by higher rates of default and changes in recovery

rates. We show the conditions under which a net-worth hedging effect exists, i.e., the credit

channel has the opposite sign to the interest rate channel, and, in the case of ARMs, a weaker

magnitude than the interest rate channel.

Specifically, we find that for ARMs, the default rate sensitivity to rate rises would have to

be at least 14 to 15 times greater than what is generated in our baseline calibration, for the

positive cash flow effect from an increase in mortgage income on performing loans to be offset

by an increase in credit losses. We show that ARMs thus have negative duration under a wide

range of plausible processes for interest rates and default responses.

Interest Rate and Credit Channels We show that the effect of a rise in rates on the value

of the mortgage portfolio can be decomposed into two channels: 1) an interest rate channel,

and 2) a credit channel.

We start by decomposing the mortgage portfolio response to shocks to the policy rate rft .

Recall that the per-bond mortgage payoff Xt is:

Xt = (1− F η
t )(xt + [1− δm]q

m
t ) + F η

t (1− LGDt),

i.e. the mortgage payment plus the ex-payment value of the mortgage at equilibrium prices qmt ,

times the probability of survival, plus recoveries (one minus the losses-given-default) times the

probability of default.

We can write the response of this payoff to interest rate increases as:

∂Xt

∂rpt
= (1− F η

t )

(
∂xt

∂rpt
+ [1− δm]

∂qmt
∂rpt

)
− ∂F η

t

∂rpt
(xt + [1− δm]q

m
t − [1− LGDt])− F η

t

∂LGDt

∂rpt

12



In steady state, qmt ≈ 1 (exact in deterministic steady state), and xt ≈ ιf + δm (exact in

deterministic steady state) in either the FRM or ARM economy. So the steady-state sensitivity

can be written as:

∂Xt

∂rpt

∣∣∣∣
rpt=r̄

= (1− F η)

(
∂xt

∂rpt
+ [1− δm]

∂qmt
∂rpt

)
︸ ︷︷ ︸

Interest rate channel

−∂F η
t

∂rpt
(ιf + LGD)− F η ∂LGDt

∂rpt︸ ︷︷ ︸
Credit channel

Mortgage portfolio values change (1) because payments and prices of surviving mortgages

change, and (2) because default rates and recovery rates change. We term (1) the interest rate

channel, and (2) the credit channel, and expand on each partial derivative in the following.

Interest Rate Channel By aggregation, we can interpret the payoff Xt as a payoff on a

portfolio of mortgages. For an economy with a given reset probability πτ , a fraction 1− πτ of

mortgages will be in the fixed stage and a fraction πτ will be in the floating stage. Likewise we

can interpret qmt as the price of the mortgage portfolio, i.e. the price of the claim to all future

mortgage payments xt+s for s = 1, 2, . . . Define the mortgage yield-to-maturity (ytm) as the

discount rate that prices future promised mortgage cash flows:37

qmt =
∞∑
s=1

(1− δm)
s−1

(1 + ytmt)s
Et[xt+s] (IA.1)

The total portfolio cash flows are ιf + δm for loans in the fixed stage, and rft+s + ιa + δm for

loans in the floating stage. At any period, the fraction of loans in the floating stage is given by

πτ , so we can write:

xt+s = δm + ιf + πτ (r
f
t+s − r̄),

where we used rft+s + ιa = rft+s − r̄ + r̄ + ιa and r̄ + ιa = ιf . We can see from here (and from

37Note that this formulation incorporates future default risk into ytm. In that sense, it is consistent with the
definition of credit risky yields used by practitioners.

13



the aggregation result) that

∂xt

∂rft
= πτ . (IA.2)

Given the AR(1) process for rates, Et[r
f
t+s − r̄] = ρs(rpt − r̄). Plugging in, we get: qmt =∑∞

s=1
(1−δm)s−1

(1+ytmt)s
(δm + ιf + πτρ

s(rpt − r̄)). Using geometric series formulas, we obtain:

qmt =
ιf + δm

ytmt + δm︸ ︷︷ ︸
Fixed

+πτ
ρ(rpt − r̄)

1 + ytmt − ρ(1− δm)︸ ︷︷ ︸
Fixed-for-floating swap

(IA.3)

which yields a key insight: the first term reflects the present value of a claim to the fixed cash

flows (i.e. a fixed bond), while the second term reflects πτ claims to a fixed-for-floating swap

which pays discounted future spreads rft − r̄.38 In steady state, ytm = ιf and rpt = r̄ so the

first term is one and the second term is zero. Out of steady state, the value of the swap moves

against the value of the fixed component, and so hedges rate risk, consistent with the intuition

that floating-rate bonds are less sensitive to rates than fixed-rate ones.

Differentiating with respect to rpt at steady state we get:

∂qmt
∂rpt

∣∣∣∣
rpt=r̄

= −ytm′(r̄)

ιf + δm︸ ︷︷ ︸
Discount rate effect

+πτ
ρ

1 + ιf − ρ(1− δm)︸ ︷︷ ︸
Future cash flow effect

(IA.4)

where the first term represents the change in value coming from discount rates, including

changing credit spreads, and the second term represents changes in future cash flows, which

go to zero if the entire portfolio is FRMs (πτ = 0), or if interest rate shocks are not persistent

(ρ = 0).

Note: Textbook Macaulay Duration is defined as − 1
q̄m

∂qmt
∂rpt

∣∣∣
rpt=r̄

. Assuming a parallel

and permanent rate shift (ρ = 1) and full pass-through (ytm′(r̄) = 1), and because the swap’s

38The present value of spreads is πτ

∑∞
s=1

(1−δm) s−1

(1+ytmt) s ρs
(
rft − r̄

)
= πτ

ρ (rft −r̄)
1+ytmt−ρ (1−δm) .

14



present value is zero in steady state, using equation IA.4 we get:

δMacaulay =
1− πτ

ιf + δm


πτ = 0 (pure FRM) : δMacaulay =

1

ιf + δm
,

πτ = 1 (pure ARM) : δMacaulay = 0.

Credit Channel: Upper Bound Because steady state default rates are low (our calibration

target is 2.45%), the recovery term (F η ∂LGDt

∂rpt
) is quantitatively small. To develop intuition, we

consider the extreme case where LGDt = 1, i.e., there are no recoveries. This makes defaults

much costlier than in the calibrated model, in which LGD ≈ 0.2, and as a result puts an upper

bound on how much credit effects can offset/“hedge” interest rate effects.39

Then, leaving the evaluation at rpt = r̄ implicit, the total sensitivity simplifies to:

∂Xt

∂rpt
= (1− F η)

(
∂xt

∂rpt
+ [1− δm]

∂qmt
∂rpt

)
︸ ︷︷ ︸

Interest rate channel

−∂F η
t

∂rpt
(1 + ιf )︸ ︷︷ ︸

Credit channel

(IA.5)

What governs the strength of the credit channel is thus the sensitivity of default with respect

to interest rates (
∂F η

t

∂rpt
).

Overview of Quantitative Results Our quantitative analysis shows that for any mortgage

structure, the interest rate and credit channel have opposite signs:

• With FRMs, ∂xt

∂rpt
= 0 since payments are fixed. The effect on performing loans is the mark-

to-market loss on remaining principal:
∂qmt
∂rpt

< 0, i.e. a valuation effect. As a result, the

first term is negative. But this same valuation effect decreases the household’s net-worth

incentive to default, so
∂F η

t

∂rpt
< 0. Therefore, the second term is positive.

• For an adjustable-rate mortgage (ARM), the signs for both terms flip. Both ∂xt

∂rpt
= 1 > 0

(interest income effect) and
∂qmt
∂rpt

> 0 (since future coupons will also be higher), making

the first term positive. Higher payments strengthen the borrowers’ liquidity incentive

39Formally, an assumption of zero recoveries places an upper bound on the magnitude of the credit channel

as long as
∂Fη

t

∂rpt

1−LGD
Fη > ∂LGDt

∂rpt
. Since in our calibration 1−LGD

Fη = 1−0.2
0.0245 = 32.6, it would have to be ∂LGDt

∂rpt
<

32.6× ∂Fη
t

∂rpt
, for this condition to be violated. Thus the upper bound assumption holds for virtually all plausible

levels of default and LGD sensitivities.
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to default, while lower home values strengthen the net worth-driven default incentive.

Therefore,
∂F η

t

∂rpt
> 0, and the second term is negative.

Table IA.II: Directional Effects of a Rate Rise on FRMs vs. ARMs

Mortgage type
∂xt

∂rft

∂qmt

∂rft

∂F η
t

∂rft
Interest Rate Channel Credit Channel

FRM 0 < 0 < 0 − +

ARM > 0 > 0 > 0 + −

As a result, credit risk hedges interest rate risk for both ARM and FRMs.

Next, we develop conditions under which the credit channel could offset the positive mortgage

cash flow gains of the interest rate channel, focusing on the case of pure ARMs.

Conditions for Credit Channel to Dominate Interest Rate Channel Combining equa-

tions IA.5, IA.2, IA.4 and using steady state substitutions qmt = 1 and xt = ιf + δm, the change

in the value of the mortgage portfolio in response to a rate shock is:

∂Xt

∂rpt
= (1− F η)

(
− 1− δm
ιf + δm

ytm′(r) + πτ
1 + ιf

1 + ιf − ρ(1− δm)

)
︸ ︷︷ ︸

Interest rate channel

−∂F η
t

∂rpt
(1 + ιf )︸ ︷︷ ︸

Credit channel

Consider a sufficiently short fixation period (sufficiently high πτ ) such that the interest rate

effect is positive, i.e., πτ
1+ιf

1+ιf−ρ(1−δm)
> 1−δm

ιf+δm
ytm′(r). Then, for the total effect to be negative,

i.e., for the credit channel to dominate the positive mortgage cash flow effect of the interest

rate channel, it must be that:

πτ
1 + ιf

1 + ιf − ρ(1− δm)
<

∂F η
t /∂r

p
t

1− F η
(1 + ιf ) +

1− δm
ιf + δm

ytm′(r̄)

In other words:

1. Default rates must be increasing enough in rates (high ∂F η
t /∂r

p
t )

2. Default rates must be high enough to begin with (low survival probability 1− F η)

3. Discount rates need to be not too decreasing in rates (high ytm′(r̄)).
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For the case of a pure ARM (πτ = 1), this condition becomes:

1

1 + ιf − ρ(1− δm)︸ ︷︷ ︸
Interest channel: future cash flow effect

<
∂F η

t /∂r
p
t

1− F η︸ ︷︷ ︸
Credit channel

+
1− δm

(1 + ιf )(ιf + δm)
ytm′(r̄)︸ ︷︷ ︸

Interest channel: discount rate effect

(IA.6)

As a result, the interest rate channel can be decomposed into a future cash flow effect (first

term of inequality IA.6), and a discount rate effect (third term of inequality IA.6).

• The future cash flow effect is always positive. When the policy rate rises, each adjustable-

rate loan’s coupon rises one for one, scaled by the loan’s effective duration (in the denom-

inator).

• The credit channel reflects how much default rates rise in response to higher rates, scaled

by the survival probability.

• A higher ytm lowers the present value of the remaining principal on every surviving loan

(discount rate effect).

As a result, the right-hand-side of the inequality measures the per-unit value loss coming from

1) more loans defaulting, and 2) lower values of the fixed portion of future cash flows. For the

credit channel to dominate the interest rate channel (and more precisely, to offset the positive

effect of future cash flows), the relative size of all three components matters.

The sign and size of the interest rate channel depends on ytm′(r̄), i.e. how much the mortgage

yield-to-maturity changes in response to the policy rate (“YTM pass-through”). Once we know

this number, we can show how big the default sensitivity must be to offset the positive cash flow

effects of higher future mortgage payments. We start by evaluating a possible upper bound, the

YTM pass-through under the expectations hypothesis, before providing an alternative estimate

given our calibration of sticky deposits, as well as a model-implied comprehensive estimate.

YTM Pass-through Benchmark: Expectations Hypothesis A 1 p.p. increase in the

policy rate expressed as deviation from steady state is rpt − r̄ = 0.01. Under the expectations

hypothesis, with zero term premia and an AR(1) policy rate process Et[r
f
t+1 − r̄] = ρ(rft − r̄),
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the expected deviation s periods ahead is

Et

[
rft+s − r̄

]
= ρ s (0.01).

Let y
(n)
t denote the n-period zero coupon yield. Under the expectations hypothesis, the steady-

state yield curve is flat ȳ(n) = r̄. Away from the steady state, n-period zero-coupon yield, in

logs, is the sum of expected future short rates, so its deviation from steady state is given by:

y
(n)
t − ȳ(n) ≡

n∑
s=0

Et[rt+s − r̄] =
ρ(1− ρn)

n(1− ρ)
(rft − r̄).

Suppose that the credit spread, equal to ytm − r̄ in steady state, is unchanged by the rate

shock.40 Then, with ¯ytm = ιf , the constant discount rate for an expected mortgage payment s

periods ahead Et[xt+s] therefore becomes ιf +
1
s
1−ρs

1−ρ
(rft − r̄).

Discounting every cash flow of the mortgage pool with that rate and summing yields an infinite

sum expression for qmt . Differentiating qmt with respect to the policy rate,41 then evaluating at

steady state, gives
∂qmt

∂rft
= − 1− πτρ

1 + ιf − ρ(1− δm)
,

the difference between a fixed-leg present value loss and a floating-leg present value gain.

Equating this to the derivative of the price to the rate expressed in terms of a single yield-to-

maturity ytm(r̄) (IA.4) −ytm′(r̄)
ιf+δm

+ πτρ
1+ιf−ρ(1−δm)

and solving for ytm′(r̄) gives the full pass-through

under the Expectations Hypothesis:

ytm′
EH(r̄) =

ιf + δm
1 + ιf − ρ(1− δm)

,

which equals 1 only if the rate increase is permanent (ρ = 1) and hence the entire yield curve

shifts up in parallel.

40This implicitly assume that neither expected future credit losses, nor the risk premium associated with
them, changes - this assumption will be relaxed when we use the model-implied comprehensive estimate.

41The mortgage price is given by the sum qmt =
∑∞

s=1
(1−δm)s−1

(1+ιf+
1
n

1−ρs

1−ρ (rpt −r̄))s
(δm + ιf + πτρ

s(rpt − r̄)), and so

its derivative is given by the sum
∂qmt
∂rpt

=
∑∞

s=1

[
− (1−δm)s−1

(1+ιf )1+s
1−ρs

1−ρ (ιf + δm)s+ πτ
(1−δm)s−1

(1+ιf )s
ρs
]
.
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YTM Pass-through with Sticky Deposits How do things change with imperfect pass-

through of indexation rates rpt to the rates off of which the mortgage is priced, deposit funding

rate rdt = rpt −αd+βd(r
p
t − r̄)? The future path of deposit rate deviations is given by rdt+s− r̄d =

βdρ
s(rpt − r̄). Then long rates are y

(n)
t = 1−ρn

1−ρ
βd(r

p
t − r̄). As a result, the entire zero-coupon

curve simply scales by βd. Hence

ytm′
βd
(r̄) = βdytm

′
EH(r̄).

With ρ = 0.724, ιf = 0.059, δm = 0.085 and βd = 1, we get an EH pass-through of 0.364, and

for βd = 0.34 (matching our calibration of deposit rate stickiness), we get a pass-through of

0.124.

Quantifying Credit vs. Interest Rate Channel We find that the default sensitivity

with respect to rates is ∂F η
t /∂r

p
t = 0.1096 (from the ARM IRFs). At the calibration target

F η = 0.0245, this is far too small to overturn the rate effect even assuming full pass-through

of rates to YTM under the Expectations Hypothesis. At the deposit-adjusted passthrough of

0.124, a 1 p.p. increase in rates would need to lead to a 1.7 p.p. increase in defaults, 15x larger

than the effect we find.

Figure IA.12 plots how high the default sensitivity with respect to rates would have to be

to offset the interest rate channel, for a given level of the YTM pass-through. The EH YTM

pass-through under βd = 1 is marked as a purple dashed line, and the EH YTM pass-through

under βd = 0.34 is marked as a green dotted line. It also plots the calibrated default sensitivity

of 0.1096 as a horizontal orange line. Lastly, recall that this closed-form measure does not

capture: the persistence of default increases, which would increase the passthrough; and falling

risk premia, which would decrease the pass-through. To quantify the full YTM response that

takes into account all of these effects, we compute the model-implied value from an IRF of

mortgage YTM to a rate shock, shown in Figure Figure IA.12 as the orange dot, at 0.1551.

To conclude, default sensitivities with respect to rate rises would have to be 5x (full pass-

through assumption), 14x (model-implied comprehensive effect) to 15x (deposit-adjusted expec-

tations hypothesis) greater, to offset the positive cash flow effect of future payment increases.

Moreover, taking into account some foreclosure recovery (LGD < 1) would further amplify the
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required magnitude of credit losses in default. As a result, we conclude that the interest rate

channel is greater than the credit channel under the vast majority of plausible paths for interest

rates and default rates.

Figure IA.12: Illustration of Conditions for Credit Channel to Dominate Interest Rate Channel
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@
F
2

@
rf
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2.5 Credit Risk Dominant
Model Implied
ARM Default Sensitivity
EH (-d = 1)
EH (-d = 0.34)

Notes: This figure shows how high the default sensitivity with respect to rates (∂F η
t /∂r

p
t ) would have to be

to offset the interest rate channel as described in Equation IA.6, for a given level of the pass-through of rate

changes to mortgage yields (ytm′(r̄)). The area where the credit channel outweighs the interest rate channel

is shaded in yellow. YTM pass-through under the Expectations Hypothesis and βd = 1 is marked as a purple

dashed line, and that under βd = 0.34 is marked as a green dotted line. The model-implied YTM pass-through

is shown as an orange dot. The calibrated ∂F η
t /∂r

p
t = 0.1096 is shown as a horizontal orange line.
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III Model Derivations

III.1 Borrowers

The complete borrower’s problem is given by:

V (wi
t,Zt) = max

dit,h
i
t,s

i
t,m

i
t

βEt

[
max

{
max
ait≥0

u(ci,ndt+1 , h
i
t) + V (wi,nd

t+1 ,Zt), η
i
t

(
u(ci,dt+1, h

i
t) + V (wi,d

t+1,Zt)
)}]

(IA.7)

where Zt = {Yt, r
p
t ,W

B
t ,W I

t } and

u(cit, h
i
t−1) =

[
(cit)

1−θ(hi
t−1)

θ
]1−γ

1− γ

such that

wi
t +Ri

t =
dit

1 + rdt
+ qmt m

i
t + pht h

i
t + psts

i
t + Φ

(
qmt m

i
t

pht h
i
t

− LTV

)
(IA.8)

ci,ndt + xi
tm

i
t−1 + δhh

i
t−1 + ait = st−1(Yt + ϵit) + dit−1 (IA.9)

ci,dt = st−1(Yt + ϵit) + dit−1 (IA.10)

wi,nd
t = ait − (1− δm)m

i
t−1q

m
t + pht h

i
t−1 + psts

i
t−1 (IA.11)

wi,d
t = (1− λ)psts

i
t−1 (IA.12)

ait ≥ 0 (IA.13)

where Ri
t is a rebate of the LTV adjustment cost Φ proportional to wealth wi

t. With this

parametrization, the adjustment cost does not have income effects.

Notice that u(c, h) is homogeneous of degree 1 − γ in c and h and that all constraints are

linear in wealth wi
t in the sense that if a given allocation is feasible for a wealth of 1, then wi

t

times that allocation is feasible for a wealth of wi
t. By Proposition 1 of Diamond and Landvoigt

(2022), these two properties imply that the borrower’s value function can be decomposed into

(wi
t)

1−γ

1−γ
and a term v(Z) that only depends on state variables exogenous to the borrower.

For a given choice git, define ĝit =
git
wi

t
. Then, the value function can be rewritten as:
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v(Zt)
(wi

t)
1−γ

1− γ
= max

d̂it,ĥ
i
t,ŝ

i
t,m̂

i
t

βEt

[
max

{
max
âit≥0

(wi
t)

1−γu(ĉi,ndt+1 , ĥ
i
t) + v(Zt+1)

(wi
tŵ

i,nd
t+1 )

1−γ

1− γ
,

ηit

(
u(ĉi,dt+1, ĥ

i
t) + v(Zt+1)

(wi
tŵ

i,nd
t+1 )

1−γ

1− γ

)}]

Divide both sides by (wi
t)

1−γ and drop i subscripts on hatted trading stage choice variables

following the proposition cited above, getting the following recursion:

v(Zt) = (1− γ) max
d̂t,ĥt,ŝt,m̂t

βEt

[
max

{
max
ât≥0

u(ĉi,ndt+1 , ĥt) + v(Zt+1)
(ŵi,nd

t+1 )
1−γ

1− γ
,

ηit

(
u(ĉi,dt+1, ĥt) + v(Zt+1)

(ŵi,d
t+1)

1−γ

1− γ

)}]

such that

1 =
d̂t

1 + rdt
+ qmt m̂t + pht ĥt + pst ŝt + Φ

(
qmt m̂

i
t

pht ĥ
i
t

− LTV

)
− R̂t

(IA.14)

ĉi,ndt + xi
tm̂t−1 + δhĥt−1 + ait = ŝt−1(Yt + ϵit) + d̂t−1 (IA.15)

ĉi,dt = ŝt−1(Yt + ϵit) + d̂t−1 (IA.16)

ŵi,nd
t = âit − (1− δm)m̂t−1q

m
t + pht ĥt−1 + pst ŝt−1 (IA.17)

ŵi,d
t = (1− λ)pst ŝt−1 (IA.18)

âit ≥ 0 (IA.19)

(IA.20)

The remaining dependence on i is in consumption stage shock realizations and choices, which

enter the value function through the continuation values inside the expectations operator.

Therefore, if we can write the consumption stage problem as a function of state variables

exogenous to the borrower and i.i.d. idiosyncratic shocks, we will have confirmed the validity

of our aggregation.
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No Default Branch Consumption Decision If the borrower chooses not to default, they

choose ĉi,ndt and âit to maximize u(ĉndt+1, ĥt) + v(Zt+1)
(ŵnd

t+1)
1−γ

1−γ
subject to the budget constraint

(IA.15), wealth evolution (IA.17), and the non-negative intraperiod savings constraint (IA.19).

The first order condition for âit is:

uc(ĉ
i,nd
t+1 , ĥt) = v(Zt+1)

(
ŵi,nd

t+1

)−γ

+ κi,nd
t+1

where κi,nd
t+1 is the Lagrange multiplier on the nonnegativity constraint (IA.19). We will use the

functions ĉndt+1(y
i
t,1

i
τ ) and ŵnd

t+1(y
i
t,1

i
τ ) to explicitly denote the dependence of the consumption

decision on the idiosyncratic realizations borrower’s income and the mortgage regime.

Default Decision Given the consumption decision above, a household decides to default iff

u(ĉndt+1(y
i
t,1

i
τ ), ĥt) + v(Zt+1)

(ŵnd
t+1(y

i
t,1

i
τ ))

1−γ

1− γ︸ ︷︷ ︸
vnd(dit,h

i
t,s

i
t,m

i
t,ϵ

i
t,1

i
τ )

< ηit

[
u(ŷit + d̂t−1, ĥt) + v(Zt+1)

(ŵd
t+1(y

i
t))

1−γ

1− γ

]
︸ ︷︷ ︸

vd(dit,h
i
t,s

i
t,m

i
t,ϵ

i
t)

This expression implies that there exist a default threshold η∗(ϵit,1
i
τ ) at which the household is

indifferent between defaulting and not defaulting. Which side of the threshold leads to a default

vs. no-default decision depends on the sign of the value function, which depends on whether

or not γ > 1. For the rest of these derivations, assume that γ > 1, the more common case, in

which case value functions are negative, and so the default region is given by [0, η∗(yit,1
i
τ )].

Using the Law of Iterated Expectations, we can separate the conditional expectation Et in

the definition of the value function into an expectation over the realization of aggregate shocks

EZ
t [·], the expectation over the realizations of i.i.d. idiosyncratic shocks to income ϵit and reset

probability 1i
τ denoted by Ei[·], and the expectation over i.i.d. default utility shocks ηi denoted

by Eη[·]. Let Fη denote the c.d.f. of the ηi distribution. Then the expectation in the value

function can be written as:

EZ
t

[
Ei

[
Fη(η

∗(ϵ, τ))Eη

[
ηit

(
u(ŝt−1(Yt + ϵit) + d̂t−1, ĥt) + v(Zt+1)

(ŵd
t+1)

1−γ

1− γ

)
|ηit > η∗(ϵit,1

i
τ )

]
+
(
1− Fη(η

∗(ϵit,1
i
τ ))
)(

u(ĉndt+1(ϵ
i
t,1

i
τ ), ĥt) + v(Zt+1)

(ŵnd
t+1(ϵ

i
t,1

i
τ ))

1−γ

1− γ

)]]
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Since idiosyncratic shocks are i.i.d., they affect the household problem only through the laws

of motion for wealth, admitting aggregation.

We model shocks to ϵit as discrete. Shocks to the ARM stage 1i
τ are Bernoulli. In this case,

the expectation Ei[·] above can be written as:

∑
τ∈{0,1}

∑
ϵ∈E

Pϵ(ϵ
i
t = ϵ)Pτ (τ

i
t = τ)×

Ei

[
Fη(η

∗(ϵ, τ))Eη

[
ηit|ηit > η∗(ϵ, τ)

](
u(ŝt−1(Yt + ϵ) + d̂t−1, ĥt) + v(Zt+1)

(ŵd
t+1)

1−γ

1− γ

)
+(1− Fη(η

∗(ϵ, τ)))

(
u(ĉndt+1(ϵ, τ), ĥt) + v(Zt+1)

(ŵnd
t+1(ϵ, τ))

1−γ

1− γ

)]

Note that conditional on default, the borrower’s value function does not depend on the specific

realization of the utility penalty, meaning that u(ŝt−1(Yt + ϵ) + d̂t−1, ĥt) + v(Zt+1)
(ŵd

t+1)
1−γ

1−γ
can

be brought outside the Eη[·] expectation.

Distribution of η Shocks Let log ηit ∼ N
(
−σ2

η

2
, σ2

η

)
. This implies that the average penalty

for default is purely pecuniary and governed by λ, while the dispersion of η shocks given by ση

governs the sensitivity of default rates to economic conditions.

The log-normal distribution admits a simple expression for the partial expectation of the

default penalty:

F−
η (ϵ, τ) ≡ Fη (η

∗(ϵ, τ)) Eη

[
ηit|ηit ≤ η∗(ϵ, τ)

]
=

∫ η∗(ϵ,τ)

0

η

ση

√
2π

exp

(
−
(log η∗(ϵ, τ) + σ2

η/2)
2

2σ2
η

)
dη

= Φ

(
log η∗(ϵ, τ)− σ2

η/2

ση

)

As well as for the survival probability:

F̃η(ϵ, τ) ≡ 1− Fη (η
∗(ϵ, τ)) = 1− Φ

(
log η∗(ϵ, τ) + σ2

η/2

ση

)
= Φ

(− log η∗(ϵ, τ)− σ2
η/2

ση

)
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Therefore, for a given ϵ and τ , the continuation value of the borrower’s problem can be written

as:

F−
η (ϵ, τ)vdt (d

i
t, h

i
t, s

i
t,m

i
t, ϵ) + F̃η(ϵ, τ)v

nd
t (dit, h

i
t, s

i
t,m

i
t, ϵ, τ)

where

η∗(ϵ, τ) =
vdt (d

i
t, h

i
t, s

i
t,m

i
t, ϵ)

vndt (dit, h
i
t, s

i
t,m

i
t, ϵ, τ)

III.1.1 First Order Conditions

Preliminaries For a generic choice variable g, write the continuation value of the borrower’s

problem as:

Et


(∫ η∗(g)

0

ηdFη(η)

)
︸ ︷︷ ︸

F−
η (g)

vdt+1(g) + [1− Fη(η
∗(g))]︸ ︷︷ ︸

F̃η(g)

vndt+1(g)


Differentiating with respect to g yields and collecting terms:

Et

[
∂vdt+1(g)

∂g
F−
η (g) +

∂vndt+1(g)

∂g
F̃η(g) + fη(η

∗(g))
∂η∗(g)

∂g

(
−η∗(g)vdt+1(g) + vndt+1(g)

)]

Plugging in the default condition vndt+1(g) = η∗(g)vdt+1(g) leads the last term to become zero:

Et

[
∂vdt+1(g)

∂g
F−
η (g) +

∂vndt+1(g)

∂g
F̃η(g)

]
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Which is the expression we will use to calculate the first order conditions below.

Define the LTV adjustment cost Φ to be Φ(x) = ϕ
2
x2.

Denote by µt the Lagrange multiplier on the time t budget constraint (IA.14).

Deposits Given the realizations of idiosyncratic shocks (ϵ, τ), the marginal values of (inter-

period) deposits d̂t in the default and no-default states, respectively, are given by:

∂V d
t+1

∂d̂t
= uc(ĉ

d
t+1(ϵ), ĥt) + v(Zt+1)

(
ŵi,d

t+1

)−γ ∂ŵi,d
t+1

∂d̂it
= uc(ĉ

d
t+1(ϵ), ĥt)

∂V nd
t+1

∂d̂t
= uc(ĉ

nd
t+1(ϵ, τ), ĥt) + v(Zt+1)

(
ŵi,nd

t+1

)−γ ∂ŵi,nd
t+1

∂d̂it
= uc(ĉ

nd
t+1(ϵ, τ), ĥt)

The FOC for (inter-period) deposits d̂it is then given by:

µt

1 + rdt
= βEt

[
F−
η (ϵ, τ)uc(ĉ

d
t+1(ϵ), ĥt) + F̃η(ϵ, τ)uc(ĉ

nd
t+1(ϵ, τ), ĥt)

]

Lucas Tree Shares Given the realizations of idiosyncratic shocks (ϵ, τ), the marginal values

of Lucas tree shares ŝt in the default and no-default states, respectively, are given by:

∂V d
t+1

∂ŝt
= uc(ĉ

d
t+1(ϵ), ĥt)(Yt + ϵ) + v(Zt+1)

(
ŵi,d

t+1

)−γ

(1− λ)pst+1

∂V nd
t+1

∂ŝt
= uc(ĉ

nd
t+1(ϵ, τ), ĥt)(Yt + ϵ) + v(Zt+1)

(
ŵi,nd

t+1

)−γ

pst+1

The FOC for shares ŝit is then given by:

µtp
s
t = βEt

[
F−
η (ϵ, τ)

(
uc(ĉ

d
t+1(ϵ), ĥt)(Yt + ϵ) + v(Zt+1)

(
ŵi,d

t+1

)−γ

(1− λ)pst+1

)
+ F̃η(ϵ, τ)

(
uc(ĉ

nd
t+1(ϵ, τ), ĥt)(Yt + ϵ) + v(Zt+1)

(
ŵi,nd

t+1

)−γ

pst+1

)]
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Houses Given the realizations of idiosyncratic shocks (ϵ, τ), the marginal values of houses ĥt

in the default and no-default states, respectively, are given by:

∂V d
t+1

∂ĥt

= uB
h (ĉ

d
t+1(ϵ), ĥt)

∂V nd
t+1

∂ĥt

= uB
h (ĉ

nd
t+1(ϵ), ĥt)− uc(ĉ

nd
t+1(ϵ, τ), ĥt)δh + v(Zt+1)

(
ŵi,nd

t+1

)−γ

pht+1

The FOC for houses ĥi
t is then given by:

µtp
h
t = Φh

qmt m̂
i
t

(ĥi
t)

2
+ βEt

[
F−
η (ϵ, τ)uB

h (ĉ
d
t+1(ϵ), ĥt)

+ F̃η(ϵ, τ)

(
uB
h (ĉ

nd
t+1(ϵ), ĥt)− uc(ĉ

nd
t+1(ϵ, τ), ĥt)δh + v(Zt+1)

(
ŵi,nd

t+1

)−γ

pht+1

)]

Mortgages Given the realizations of idiosyncratic shocks (ϵ, τ), the marginal values of houses

m̂t in the default and no-default states, respectively, are given by:

∂V d
t+1

∂m̂t

= 0

∂V nd
t+1

∂m̂t

= uc(ĉ
nd
t+1(ϵ, τ), ĥt)x

i
t + v(Zt+1)

(
ŵi,nd

t+1

)−γ

(1− δm)q
m
t+1

The FOC for shares ŝit is then given by:

µtq
m
t

(
1− Φm

qmt

pmt ĥ
i
t

)
= βEt

[
F̃η(ϵ, τ)

(
uc(ĉ

nd
t+1(ϵ, τ), ĥt)x

i
t + v(Zt+1)

(
ŵi,nd

t+1

)−γ

(1− δm)q
m
t+1

)]

III.1.2 Market-Clearing Conditions and Aggregation

To calculate intermediary wealth and market clearing, we must integrate over the distribution

of borrower shocks. First, note that identical choices by borrowers in per-wealth units mean
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that for any quantity git that is a function of borrower choices, we can express it is a product

of the common per-wealth choice ĝt and aggregate borrower wealth wB
t :

∫ ℓ

0

gitdi = ĝt

∫ ℓ

0

wi
tdi = ĝtw

B
t

Aggregate share of defaulting mortgages F η
t is given by:

F η
t =

∫ ℓ

0

1
i
ddi =

∑
τ∈{0,1}

∑
ϵ∈E

Pϵ(ϵ
i
t = ϵ)Pτ (τ

i
t = τ)Fη(η

∗(ϵ, τ))

Aggregate per-unit mortgage payment xt is given by:

xt = Ei[x
i
t|ηi ≤ η∗,i(ϵit,1

i
τ )]

For other quantities,

• Mortgages:
∫ 1

ℓ
mI

tdi =
∫ ℓ

0
mi

tdi implies M I
t = m̂tW

B
t

• Borrower Tree Shares: α = ŝtW
B
t

• Houses: H̄ = ĥtW
B
t

Finally, the law of motion for aggregate borrower wealth is:

WB
t+1 =

∫ ℓ

0

wi
t+1di

= WB
t Ei

[
F̃η((ϵ

i
t,1

i
τ ))ŵ

i,d
t+1(ϵ

i
t) + Fη((ϵ

i
t,1

i
τ ))ŵ

i,nd
t+1 (ϵ

i
t,1

i
τ )
]

III.2 Banks

III.2.1 Problem

Banks are not subject to idiosyncratic shocks and are ex-ante identical. As a result, we can solve

the problem for the representative aggregate bank. Denote aggregate quantities with capital

letters. The bank’s complete problem is given by:
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V I(W I
t ,Zt) = max

DivIt ,D
I
t ,M

I
t

DivIt + Et

[
MS

t+1V
I(W I

t+1,Zt+1)
]

(IA.21)

subject to

W I
t =

DI
t

1 + rdt
+ qmt M

I
t +DivIt (IA.22)

W I
t+1 = (1− ν)Xt+1M

I
t +DI

t (IA.23)

Dt ≤ ξ (κq̄m + (1− κ)qmt )M
I
t (IA.24)

where Xt is the aggregate mortgage payment per unit of mortgage debt given borrowers’ choices:

Xt = F̃ η
t (xt + (1− δm)q

m
t ) + Ei

[
Fη(ϵ

i
t,1

i
t)
hi
t−1

M I
t−1

pt((1− ζ)− δh)

]

Since default decisions do not depend on wealth levels and since housing choices hi
t = ĥtw

i
t

are proportional to borrower wealth for all borrowers,

Ei

[
Fη(ϵ

i
t,1

i
t)h

i
t−1

]
= Ei

[
Fη(ϵ

i
t,1

i
t)
]
Ei

[
hi
t−1

]
= F η

t H
B
t−1 = F η

t αh

As a result, the mortgage payoff can be written:

Xt = F̃ η
t (xt + (1− δm)q

m
t ) + F η

t

αh

M I
t

pt((1− ζ)− δh)

III.2.2 First Order Conditions

Solve the budget constraint (IA.22) for DivIt and plug into the intermediary problem (IA.21).

Then, differentiating with respect to the remaining control variables M I
t and DI

t yields the

following FOCs:

Mortgages The FOC for mortgages M I
t is given by:
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qmt = µL
t ξ (κq̄

m + (1− κ)qmt ) + Et

[
MS

t+1Xt+1

]
where µL

t is the Lagrange multiplier on the leverage constraint (IA.24).

Deposits The FOC for deposits DI
t is given by:

1

1 + rdt
= µL

t + Et

[
MS

t+1

]

III.3 Savers

Likewise, we write and solve the representative saver’s problem using aggregate quantities. For

symmetry, we define saver wealth inclusive of their Lucas Tree shares and housing, even though

neither is tradeable by them.

V S(W S
t ,Zt) = max

CS
t ,Et

u(CS
t , H

S
t ) + βEt[V

S(W S
t+1,Zt+1)]

subject to

W S
t = pstS

S
t + phtH

S
t + Etp

e
t + CS

t (IA.25)

W S
t+1 = SS

t (p
s
t+1 + Yt) +HS

t (p
h
t+1 − δh) + Et(p

e
t+1 +DivIt+1) +RS

t+1 (IA.26)

where Rt+1 are (1) borrower costs of default, parametrized by λ, (2) banks’ foreclosure costs,

parametrized by ζ, and (3) banks’ intermediation costs, parametrized by ν, rebated lump-sum:

RS
t = F η

t

(
λpstα + ζpht αh

)
+ νXtM

I
t
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The first order condition for bank equity Et is

pet = Et

[
β

(
CS

t+1

CS
t

)−γ

(Divt+1 + pet+1)

]

which implies the saver’s stochastic discount factor MS
t+1 = β

(
CS

t+1

CS
t

)−γ

.

Normalize the supply of bank shares Et to 1. Then, iterating on both the bank’s value

function and the saver’s FOC for bank equity, we get that V I
t = Divt + pet .

III.4 Resource Constraint

In this section, we verify that aggregate consumption and housing investment are financed by

the aggregate output of Lucas trees and by changes in the net deposit position of the economy.

Define aggregate borrower consumption in terms of conditional expectations of individual

consumption:

CB
t = WB

t−1Ei

[
Fη(η

∗,i)ĉi,ndt + F̃η(η
∗,i)ĉi,dt

]
= WB

t

(
F η
t Ei

[
ĉi,dt |ηi ≤ η∗,i

]
+ F̃ η

t Ei

[
ĉi,ndt |ηi > η∗,i

])
From the consumption stage budget constraints:

Ei

[
ĉi,dt |ηi ≤ η∗,i

]
= ŝt−1Ei

[
Yt + ϵit|ηi ≤ η∗,i

]
+ d̂t−1

Ei

[
ĉi,ndt |ηi > η∗,i

]
= ŝt−1Ei

[
Yt + ϵit|ηi > η∗,i

]
+ d̂t−1 − m̂t−1xt − δhĥt−1 − Ei

[
âit|ηi > η∗,i

]
From the no-default branch wealth evolution equation, we get that intra-period savings âit =

ŵi,nd
t − pht ĥt−1 − pst ŝt−1 + (1− δm)q

m
t m̂t−1. Furthermore, observe that

F̃ η
t Ei

[
Yt + ϵit|ηi > η∗,i

]
+ F η

t Ei

[
Yt + ϵit|ηi ≤ η∗,i

]
= Yt + Ei[ϵ

i
t] = Yt

Define aggregate borrower deposits DB
t = WB

t d̂t. Use market-clearing in Lucas trees and

housing to write WB
t ŝt = α and WB

t ĥt = αh. Use market-clearing in mortgages to write
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WB
t m̂t = M I

t . Assembling,

CB = αYt +DB
t−1

+ F̃ η
t

[
αh(ph − δh) + αpst −M I

t−1 (xt + (1− δm)q
m
t )−WB

t−1Eτ

[
ŵi,nd

t |η > η∗,i
]]

Recall that WB
t = WB

t−1Ei [ŵ
i
t]. We can break up the expectation as follows:

Ei

[
ŵi

t

]
= F̃ η

t Ei

[
ŵi,nd

t |η > η∗,i
]
+ F η

t Ei

[
ŵi,d

t |η ≤ η∗,i
]

Solving for the aggregate wealth of non-defaulters F̃ η
t W

B
t−1Ei

[
ŵi,nd

t | >≤ η∗,i
]
,

F̃ η
t W

B
t−1Ei

[
ŵi,nd

t |η > η∗,i
]
= WB

t −WB
t−1F

η
t Ei

[
ŵi,d

t |η ≤ η∗,i
]

Use the default-branch wealth evolution equation and market clearing in Lucas trees to substi-

tute

WB
t−1Ei

[
ŵi,d

t |η ≤ η∗,i
]
= (1− λ)pstα

Multiply the trading stage budget constraint by WB
t and plug in market-clearing conditions to

get

WB
t =

DB
t

1 + rdt
− qmt M

I
t + pht αh + pstα

Combining,

F̃ η
t W

B
t−1Ei

[
ŵi,nd

t |η > η∗,i
]
=

DB
t

1 + rdt
+ qmt M

I
t + pht αh + pstα− F η

t (1− λ)pstα
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Plugging back into the expression for CB,

CB = αYt +DB
t−1 −

DB
t

1 + rdt
+ qmt M

I
t − pht αh − pstα + F η

t (1− λ)pstα

+ F̃ η
t

[
αh(ph − δh) + αpst −M I

t−1 (xt + (1− δm)q
m
t )
]

= αYt +DB
t−1 −

DB
t

1 + rdt
+ qmt M

I
t − F η

t (phαh + λpstα)

− F̃ η
t

[
δhαh +M I

t−1 (xt + (1− δ)qmt )
]

This expression admits an economic interpretation. Borrowers earn income from their Lucas

trees αYt and deposits DB
t−1. Those repaying their mortgages – a fraction F̃ η

t – expend resources

on housing maintenance δhαh and mortgage paymentsM I
t−1 (Eτ [x

i
t|η > η∗,i] + (1− δm)q

m
t ). Those

who default – a fraction F̃ η
t – lose the value of their houses phαh and a fraction λ of the value

of their Lucas trees pstα. In the trading stage, they take out new mortgages qmt M
I
t and make

new deposits
DB

t

1+rdt
.

Next, consider saver consumption. From the budget constraint and wealth evolution equation

of savers,

CS
t = SS

t−1(p
s
t + Yt) +HS

t−1(p
h
t − δh) + Et−1(p

e
t +DivIt ) +RS

t − pstS
S
t − phtH

S
t − Etp

e
t

Plug in market clearing conditions Et = 1, SS
t = 1− α, HS

t = 1− αh, to get

CS
t = (1− α)Yt − (1− αh)δh +DivIt +RS

t

From the budget constraint for banks,

DivIt = (1− ν)XtM
I
t−1 +DI

t−1 −
DI

t

1 + rdt
− qmt M

I
t

Plugging for DivIt and Rt and collecting terms,

CS
t = (1− α)Yt − (1− αh)δh + XtM

I
t−1 +DI

t−1 −
DI

t

1 + rpt
− qmt M

I
t + F η

t

(
λpstα + ζpht αh

)
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Next, subtitute the definition of Xt:

CS
t = (1− α)Yt +DI

t−1 −
DI

t

1 + rdt
− qmt M

I
t + F η

t λp
s
tα

− (1− αh)δh + F̃ η
t (xt + (1− δm)q

m
t )M

I
t−1 + F η

t ptαh(1− δh)

Define aggregate deposits as Dt = DB
t +DI

t . Then, adding CB
t and CS

t and collecting terms,

we get the resource constraint:

CB
t + CS

t︸ ︷︷ ︸
Aggregate Consumption

+ δ︸︷︷︸
Housing Investment

= Yt︸︷︷︸
Output

+ Dt−1 −
Dt

1 + rdt︸ ︷︷ ︸
∆Net Foreign Assets

III.5 Risk Sharing Measures

III.5.1 Complete Markets Benchmark

An unconstrained social planner chooses allocations for each agent that are proportional to the

weight that the planner puts on the utility of that agent.

Define the social welfare problem:

max
{{(cit,hi

t−1)}1i=0}∞t=0

E0

[∫ 1

i=0

λi

∞∑
t=1

βt

(
(cit)

1−θ(hi
t)

θ
)1−γ − 1

1− γ
di

]

such that the resource constraints for each good, in each period and each state of the world are

satisfied:

∫ 1

0

cit = Yt ∀t, st∫ 1

0

hi
t−1 = H̄ ∀t, st

where every variable xt is implicitly a function of the random variable st, denoting the history

of the economy up to time t.

Assign µt and νt as Lagrange multipliers to each of the constraints at time t, history st,
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respectively. Use π(st) to denote the density of the unconditional history distribution at a

given st. The first order condition for consumption for agent i at time t are:

λiβ
tπ(st)

(
(cit)

1−θ(hi
t−1)

θ
)−γ

(1− θ)(cit)
−θ(hi

t−1)
θ = µt

The first order condition for housing for agent i at time t− 1 are:

λiβ
tπ(st)

(
(cit)

1−θ(hi
t−1)

θ
)−γ

θ(cit)
1−θ(hi

t−1)
θ−1 = νt−1

Dividing them by each other, we get the optimal MRS between consumption and housing for

a given state of the world, which is the same for all households:

cit
hi
t−1

=
1− θ

θ

µt

νt−1

Substitute for housing in the consumption FOC:

hi
t−1 =

θ

1− θ

µt

νt−1

cit

λiβ
tπ(st)

(
(cit)

[
θ

1− θ

µt

νt−1

]θ)−γ

(1− θ)1−θθθ = µ1−θ
t νθ

t−1

Dividing the consumption FOCs for agents i and j at time t by each other, we get:

λi

λj

(
cit
cjt

)−γ

= 1

which means that the ratio of consumptions is constant over time and states of the world at:

cit
cjt

=

(
λi

λj

)−1/γ

Rewrite as:

cit =

(
λi

λj

)−1/γ

cjt
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Integrate both sides with respect to i to get aggregate time t consumption:

Ct ≡
∫ 1

0

citdi = λ
1
γ

j c
j
t

∫ 1

0

λ
− 1

γ

i di

Which implies that a given household’s consumption cjt is a constant fraction of aggregate

consumption Ct:

cjt =
λ
− 1

γ

j∫ 1

0
λ
− 1

γ

i di
Ct

The same argument applies to housing, i.e. it can be shown that the planner’s optimal allocation

of housing to agent j

hj
t−1 =

λ
− 1

γ

j∫ 1

0
λ
− 1

γ

i di
H̄

is constant over time.

Since complete markets implement the planner allocation, this means that in a frictionless

economy the volatility of the ratio of consumptions is zero. This likewise implies that each

agent’s consumption grows at the same rate. Formally, take the log:

log cit − log cjt = −1

λ
(log λi − log λj)

Let ∆ log cit is defined as log cit− log cit−1. Then the log of the ratio of consumption growth rates

is:

∆ log cit −∆ log cjt ≡ (log cit − log cit−1)− (log cjt − log cjt−1)

= (log cit − log cjt)− (log cit−1 − log cjt−1)

Then in complete markets, it must be true that

Rij = Var0
[
∆ log cit −∆ log cjt

]
= 0
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We refer to Rij as a measure of “internal” risk sharing. In an incomplete markets economy,

Rij ≥ 0 and Rij serves as a measure of risk sharing between households, with lower values

denoting better risk sharing.

III.5.2 Complete Markets Open Economy

The open economy version of the complete markets model is similar to the closed economy

version, except that the planner can now trade a risk-free bond with the rest of the world. The

planner’s problem is:

max
{{(cit,hi

t−1)}1i=0,bt}∞t=0

E0

[∫ 1

i=0

λi

∞∑
t=1

βt

(
(cit)

1−θ(hi
t−1)

θ
)1−γ − 1

1− γ
di

]

such that

∫ 1

0

cit +
bt

1 + rdt
= Yt + bt−1 ∀t, st∫ 1

0

hi
t−1 = H̄ ∀t, st

The derivations above still hold. But now there is an additional choice variable of the planner.

Bonds bt(s
t) show up in the resource constraint for t, st and in the resource constraints for all

t, st+1 that are reachable from st. Denote this set of possible states as st+1|st and the . Then

the additional first order condition for the bond is:

µt

1 + rdt
π(st) =

∫
st+1|st

π(st+1)µt+1

Rearranging,

1 = (1 + rdt )

∫
st+1|st

π(st+1|st)
µt+1

µt

= (1 + rdt )Et

[
µt+1

µt

]

where π(st+1|st) denotes the conditional density of st+1 given st, and where the second equality

stems from the definition of a conditional expectation with Et [·] denoting E [·|st].
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Plug in the FOC for consumption for the multipliers:

1 = (1 + rdt )Et

[(
cit+1

cit

)−γ(1−θ)−θ (
hi
t

hi
t−1

)θ(1−γ)
]

Recall that for any agent, the optimal housing allocation is constant and the growth rate of

consumption is equal to the aggregate consumption growth rate. Then the above equation

simplifies to:

1 = (1 + rdt )Et

[(
Ct+1

Ct

)−γ(1−θ)−θ
]

The problem admits aggregation, i.e. the planner’s optimal choice of bonds is independent of

the resource allocation problem.

Take logs

0 = log(1 + rdt ) + logEt

[(
Ct+1

Ct

)−γ(1−θ)−θ
]

and define

Ragg = Var0

[
log(1 + rdt ) + logEt

[(
Ct+1

Ct

)−γ(1−θ)−θ
]]

≥ 0

as the “external” risk sharing measure. In complete markets, Ragg = 0, while in incomplete

markets larger values of Ragg indicate worse risk sharing between households in the economy

and the rest of the world.

III.5.3 Internal Risk Sharing in our Model

In our model, there are two kinds of households: borrowers with consumption denoted by cit and

savers, with consumption denoted by cSt and identical across all savers. Let CB
t =

∫ ℓ

0
cit denote

aggregate borrower consumption and CS
t = (1− ℓ)cst denote aggregate saver consumption.

Borrowers are unconditionally identical, meaning internal risk sharing is summarized fully by

two risk-sharing measures RiB and RBS, where RiB is the variance of the ratio of consumption
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growth rates between borrower i and the aggregate borrower, and RBS is the variance of the

ratio of aggregate consumption growth rates between borrowers and savers.

Recall, we can write borrower i’s consumption at time t, cit, as the product of borrower

consumption per unit of wealth ĉit and borrower wealth at time t− 1, wi
t−1. Consumption per

unit of wealth only depends on the identity of the borrower i through the realizations of iid

shocks to S i
t = (ϵit, τ

i
t , η

i
t).

Write the log growth rate of borrower i’s consumption as:

∆ log cit = log ĉt(S i
t)− log ĉt−1(S i

t−1) + log ŵt−1(S i
t−1)

where ŵt−1(S i
t−1) represents the growth rate in wealth ∆ logwi

t−1, which also depends on the

identity of the borrower i only through the realiations of iid shocks.

The definition of RiB is Var0[∆ log cit −∆ logCB
t ]. Using the law of total variance,

RiB = Var0
[
Et

[
∆ log cit −∆ logCB

t

]]
+ E0

[
Vart

[
∆ log cit −∆ logCB

t

]]
where the conditional moments Vart and Et are taken cross-sectionally with respect to realiza-

tions of idiosyncratic shocks. Simplifying,

RiB = Var0
[
Et

[
∆ log cit

]
−∆ logCB

t

]
+ E0

[
Vart

[
∆ log cit

]]
Finally, RBS is defined as Var0[∆ logCB

t −∆ logCS
t ].

III.6 Managing Bank Equity Duration Through Leverage

In our model, banks invest only in mortgages, so the duration of bank assets is determined

exogenously by the structure of mortgage contracts. However, the duration of bank equity is

endogenous and can be managed by banks through their choice of leverage.

Here, we illustrate the intuition behind this in a simple partial equilibrium setting. Let A

denote assets, L denote liabilities (deposits), and E denote equity. Let DX for X ∈ {A,L,E}

denote duration: DX ≡ −∂ logX
∂r

and let D$
X denote “dollar duration” D$

X ≡ −∂X
∂r
, which means
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that D$
X = XDX .

42

From the standard accounting identity E = A− L, we get that EDE = D$
E = ADA − LDL

Define leverage as liabilities over asserts λ = L/A. Then L = λA and E = (1 − λ)A. We

can express the equity dollar duration as (1 − λ)ADE = ADA − λADL. Capital requirements

ensure that λ ∈ [0, 1), so equity duration becomes:

DE =
DA − λDL

1− λ
(IA.27)

Given durations of assets and liabilities, leverage affects the duration of equity in two ways:

(1) it governs how much of the asset duration is hedged/immunized by liabilities duration, and

(2) it translates dollar gains/losses into percent gains/losses, with higher leverage meaning more

amplification.

Consider a bank whose assets consist entirely of mortgages A = M , and whose deposit

liabilities are sticky, so DL is large. If DM ≤ DL, then it is easy to see that a bank can achieve

any target D∗
E ≤ DM by choosing an appropiate λ∗ ∈ [0, 1).

Consider an exogenous change to mortgage structure that lowersD′
M < DM , e.g., a shortening

of the fixation length, as in the main text. This mechanically lowers the duration of assets, and,

all else equal, lowers equity duration DE. To keep DE = D∗
E, banks can either (1) rebalance

their asset portfolio towards a longer-duration asset to restore original asset duration, or (2)

change their leverage to restore original D∗
E even at a lower level of D′

M = D′
A.

As long as D∗
E ≤ DM ≤ DL with at least one of the inequalities being strict, banks can

achieve their target equity duration by adjusting leverage:43

λ∗(DA) =
D∗

E −DA

D∗
E −DL

With a fixation length short enough, mortgage duration DM becomes negative. At that point,

banks can no longer exactly achieve their target D∗
E by adjusting leverage alone. (IA.27) shows

42DX = −∂ logX
∂r = −∂ logX

∂X
∂X
∂r = 1

XD$
X

43Alternatively, D∗
E ≥ DA ≥ DL would also work, but this case is less relevant, since here banks would use

leverage to increase their exposure to interest rate risk rather than mitigate it.
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that when DA < DL, DE < 0 for any admissable λ.

But banks can raise their equity duration back towards target by de-levering because:

∂DE

∂λ
=

DA −DL

(1− λ)2
< 0 if DA < DL

In sum, in the case of moderate positive mortgage duration (FRM), banks can use leverage

to exactly achieve target equity duration in lieu of buying other, longer-duration, assets. In

other cases, they can’t use leverage as effectively as asset portfolio choice, but they can still

actively manage equity duration through leverage.

IV Zero Duration Benchmark

Our starting point for measuring financial stability is the volatility of intermediary net worth:

V [logWt]. In a world where logWt only depends linearly on current interest rates rt, we have:

logWt = α− δrt

As a result, we can interpret δ as the duration of intermediary net worth: −d logWt

drt
= δ. δ

measures the percent decline in net worth for a 1 percentage point increase in rates. Minimizing

V [logW ] is achieved when δ∗ = 0, i.e. in a “zero duration” financial system, the volatility-

minimizing mortgage fixation length would match the duration of deposits.44

However, logWt may further depend on other state variables represented by xt, which yields:

logWt = α− δrt + γxt

The variance of logWt is:

V [logWt] = δ2V [rt] + γ2V [xt] + δγCov [rt, xt] (IA.28)

44This duration-matching strategy to minimize the effect interest rate changes on portfolio values is also
referred to as “immunization” by practitioners.
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To find the new volatility-minimizing duration δ∗∗, we can take the first-order condition with

respect to δ to obtain:

δ∗∗ = −γ

2

Cov [rt, xt]

V [rt]

As a result, the volatility-minimizing duration is not zero, but instead also depends on Cov [rt, xt].

For Cov [rt, xt] > 0, the volatility-minimizing duration is smaller than zero, and for Cov [rt, xt] <

0, it is greater than zero. Equation IA.28 further shows that net worth variance is quadratic in

duration, meaning duration is increasing in the absolute distance to the volatility-minimizing

duration δ∗∗. Figure IA.13 illustrates this intuition for different values of Cov [rt, xt].

“State variables” that may affect intermediary net worth beyond interest rates but that may

be correlated with rates are those capturing endogenous default behavior by households as well

as equilibrium pricing of mortgage rates, both of which may differ across mortgage structures.
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Figure IA.13: Illustration of Net Worth Volatility and Duration

0
δ

[l
og
W

]

Cov[rt, xt] = 0

Cov[rt, xt]> 0

Cov[rt, xt]< 0

Notes: This figure plots the relationship between V [logWt] and duration δ from Equation IA.28, for fixed values

of V [rt], γ, and V [xt], for Cov [rt, xt] = 0, Cov [rt, xt] > 0, and Cov [rt, xt] < 0.
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V Calibration Details

V.1 Estimation of Income and Interest Rate Process

We estimate the following VAR(1) for yt = log Yt and r̂t, where yt is the cyclical component of

log Real GDP and r̂t is the demeaned real interest rate, using annual data from 1987 to 2024.

Cyclical component of GDP is extracted using the one-sided Hodrick-Prescott filter. Real rates

are 1-year real rates from the Federal Reserve Bank of Cleveland.

yt
r̂t

 =

ϕyy ϕyr

ϕry ϕrr

yt−1

rt−1

+

ϵy,t
ϵr,t

 ,

where

ϵy,t
ϵr,t

 ∼ N

02,

 σ2
y ρyrσyσr

ρyrσyσr σ2
r


The estimated values are ϕyy = 0.718, ϕyr = −0.189, ϕry = 0.219, ϕrr = 0.677, σy = 0.011,

σr = 0.013, and ρyr = 0.313.

These estimates yield generalized (not orthogonalized) impulse responses shown in Fig-

ure IA.14. Positive correlation yields positive comovement of the two series on impact, with

the effect being more persistent in rates for innovations to income rather than vice versa.

We also estimate the VAR(1) process for a longer sample 1962-2024. Because real rates from

the Cleveland Fed are not available prior to 1982, we instead construct real rates as nominal

constant maturity 1-year rates less realized inflation over the year. In the longer sample, the

innovations are uncorrelated (ρyr = 0.0066) and impulse responses of one innovation on the

other variable are not significant (see Figure IA.15).
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Figure IA.14: Impulse Responses of Income and Interest Rates: 1987-2024
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Notes: Impulse responses of income and interest rates to innovations in each series, given the estimated VAR(1)

process. Shaded regions represent bootstrapped 95% confidence intervals. Innovations are not orthogonalized.
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Figure IA.15: Impulse Responses of Income and Interest Rates: 1962-2024
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Notes: Impulse responses of income and interest rates to innovations in each series, given the estimated VAR(1)

process. Shaded regions represent bootstrapped 95% confidence intervals. Innovations are not orthogonalized.
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