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1 Introduction

Two important functions of financial markets are the production of information

about investment opportunities and the provision of liquidity, for instance through

trading in primary and secondary markets (Levine, 2005). There is a well-known

tension between these two functions. On the one hand, informative markets generate

social benefits by leading to more efficient capital allocations and contracts (Bond,

Edmans, and Goldstein, 2012). On the other hand, information producers (e.g., insti-

tutional investors) are often rewarded through profits from buying undervalued assets

or selling overvalued ones. These trading profits come at the expense of less-informed

investors, who are adversely selected: they end up holding assets with relatively poor

returns. Since uninformed investors are aware of this risk, they only purchase assets

at a discount relative to their fair value, which reduces market liquidity.

There is, therefore, a fundamental trade-off between informativeness and liquid-

ity in financial markets. While several studies have examined the implications of

this trade-off—for example, for contracting or for the decision to go public—very

few have explored how markets should be designed to optimally address this “liquid-

ity–informativeness trade-off.” In this paper, we study this question using a mech-

anism design approach. Our main insight is that maximal informativeness can be

achieved at zero illiquidity cost by creating two separate markets: a derivatives

market, which incentivizes and elicits information production (the market for in-

formation), and another market, which facilitates the transfer of asset ownership (the

market for liquidity).

We study the liquidity–informativeness trade-off through a standard problem: the

sale of a stake in an asset with uncertain payoff by an agent (the “seller”), such as an

entrepreneur.1 The asset payoff can be high or low with some probabilities. There

are two types of buyers for the asset: experts and non experts. In the baseline case,

the former have a perfect signal about the asset payoff while the latter only know

its distribution. Collectively experts can only buy a fraction of the seller’s stake

while non experts can possibly buy the entire stake at its expected value. Hence,

1See, for instance, Bolton, Santos, and Scheinkman (2016) for a recent theoretical analysis of
the role market design (OTC vs. exchange trading) in this context.
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non experts must find optimal to participate to the sale for the sale to succeed. As

buyers’ types are non observable, the seller cannot restrict participation to the sale

of the asset to only one type.

The seller has two motives for the sale: (i) liquidity and (ii) information acquisition

about the asset’s payoff (e.g., to determine the scale of investment in another project

with correlated payoffs). Accordingly, the entrepreneur’s utility increases both with

the proceeds from the sale and with the reduction in payoff uncertainty achieved

through information revealed in the transaction. The seller designs a mechanism to

sell the asset to maximize her expected utility and implements this mechanism. The

asset payoff becomes known to the seller and the buyers at some point in time after

the sale.

In this setting, the seller faces a liquidity–informativeness trade-off whenever ob-

taining information requires leaving informational rents to informed buyers. To illus-

trate this point, we contrast the equilibrium outcomes under two possible mechanisms.

The first mechanism is a fixed-price offering. Here, the seller sets a price for the as-

set and allows buyers to either bid for one share or abstain. Since informed buyers

(experts) only bid when they know the asset payoff is high, uninformed buyers face

a winner’s curse. In equilibrium, the seller must therefore sell the asset at a discount

relative to its expected payoff to compensate uninformed buyers for adverse selection

(as in Rock (1986)). However, because aggregate demand is higher when the payoff

is high than when it is low, the seller fully learns the asset’s payoff through the sale.

Thus, informativeness is obtained at the cost of illiquidity.

The second mechanism conditions the asset’s price on aggregate demand so that

experts never find it optimal to participate in equilibrium.2 In this “No Informed

Trading” (NIT) mechanism, the seller can sell the asset at its expected payoff. The

asset is liquid, but the seller learns nothing about its payoff. Hence, the seller prefers

the fixed price (FP) mechanism if and only if her preference for information is so

strong that the utility gain from information offsets the cost of illiquidity. In other

words, in choosing between the FP and NFI mechanisms, the seller faces the standard

liquidity-informativeness trade-off.

2A similar mechanism is analyzed in Biais, Bossaerts, and Rochet (2002).
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However, these mechanisms are only two among many possible ways to design

the market, and neither is optimal. In fact, there exists a mechanism that allows

the seller to obtain full information at zero cost. In this mechanism, the asset sale

takes place in two stages. In Stage 1, the seller contacts buyers sequentially and

offers them the option to purchase one of two derivative contracts whose payoffs

depend on the realization of the asset payoff in the future. Stage 1 ends as soon as

one buyer purchases a contract. In Stage 2, the seller discloses which contract was

traded in Stage 1 and sells the asset to the remaining buyers at a price that reflects

the information revealed by the choice of the contract in Stage 1. We show that

it is possible to design the payoffs of these contracts and set their prices so that, in

equilibrium, (i) only informed buyers (experts) participate in Stage 1, (ii) the contract

chosen by the expert fully reveals her signal, and (iii) the asset is therefore sold at its

true value in Stage 2.

We refer to this mechanism as a “Divide and Conquer” (DaC) mechanism, since

its essence is to separate the market for information (Stage 1) from the market for

liquidity (Stage 2). Under the DaC mechanism, the asset is liquid—on average, it is

sold at its expected value—and the sale also resolves uncertainty. As a result, the seller

attains her highest possible expected utility, making the mechanism weakly dominant.

With this design, the liquidity–informativeness trade-off disappears: any seller with

even the slightest preference for information strictly prefers the DaC mechanism.3

We then examine whether the DaC mechanism remains optimal in the more gen-

eral case where experts must incur a cost c to discover the asset payoff.4 Discovery

may fail either because the information is unavailable or because experts are unable

to find it. In this setting, the design of the DaC mechanism is more complex: it must

not only incentivize experts to truthfully report the asset payoff when observed—by

selecting the appropriate derivative contract, as in the baseline case—but also mo-

tivate them to exert effort to search for information, rather than simply choosing a

contract without searching. Thus, in designing the DaC mechanism, the seller faces

3Of course, this claim requires the DaC mechanism to be properly specified. In particular, the
payoffs and prices of the derivatives traded in Stage 1 must be carefully chosen.

4In this more general case, one can assume that all investors are experts. In equilibrium, some
remain uninformed and play the role of non experts in the baseline model.
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both an adverse selection problem and a moral hazard problem.

Nevertheless, the logic of the baseline case still applies. There exists a specification

of the derivative contracts in Stage 1 such that (i) only experts participate in Stage 1,

(ii) experts optimally choose to search for information when given the opportunity to

trade one of these contracts, and (iii) when an expert discovers the asset payoff, her

choice of contract fully reveals her signal. A key difference from the baseline case is

that the seller can optimally decide to move to Stage 2 after contacting several experts

who fail to obtain information and then sell the asset using the NIT mechanism.

Hence, unlike in the baseline case, information may not be revealed in equilibrium.

This possibility is important as it enables the seller to control the expected cost borne

for information production and sets it at its efficient level.5

We show that this DaC mechanism delivers an expected utility arbitrarily close

to what the seller can achieve in the frictionless benchmark (no adverse selection,

no moral hazard, and observable buyer types). In particular, the mechanism leaves

no informational rents to experts: their expected profit from trading the appropriate

derivative in Stage 1 compensates them for their cost of information production but no

more. Thus, as in the baseline case, the liquidity–informativeness trade-off disappears.

Our paper relates to various strands of the literature. First, it connects to work

on the informational benefits of the information produced via the trading process

(e.g., prices) in financial markets. Information embedded in stock prices can be used

for contracting (e.g., Holmström and Tirole (1993)) or for investment decisions (e.g.,

Edmans, Goldstein, and Jiang (2015); see also Bond, Edmans, and Goldstein (2012),

Goldstein (2022)). A related line of research examines how firms allocate shares to

the public, trading off the benefits of price discovery against the costs of illiquidity,

in contexts such as managerial compensation (Holmström and Tirole (1993)), going

public (Subrahmanyam and Titman (1999); Faure-Grimaud and Gromb (2004)), or

cross-listing (Foucault and Gehrig (2008)). Yet none of these papers analyze how

5Intuitively, the seller must price derivatives contracts in such a way that experts expect a profit
from these contracts that at least cover their cost of information production, as otherwise they
would not participate or shirk. Thus, the seller bears a cost from selling these contracts that is at
least equal to the total cost borne by experts contacted in Stage 1. As the latter may never find
information, contacting a too large number of experts cannot be optimal for the seller.
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firms should optimally design share sales when facing this trade-off. Baldauf and

Mollner (2020) use a mechanism-design framework to study how market design af-

fects secondary-market liquidity given a level of information production by informed

investors, but in their model information has no social value.

Second, our paper relates to the literature on initial public offerings (IPOs). Sev-

eral papers in this area employ mechanism-design approaches to study how IPOs can

be structured to mitigate adverse selection (e.g., Benveniste and Spindt (1989); Bi-

ais, Bossaerts, and Rochet (2002); Benveniste and Wilhelm (1990); Maksimovic and

Pichler (2006)). However, this literature typically assumes that (a) informed buyers

are exogenously endowed with private information, and (b) issuers and underwrit-

ers derive no direct benefits from the information produced during the IPO process.

In these models, information gathering serves only to alleviate the adverse selection

faced by uninformed investors.6

One exception is Sherman and Titman (2002) (see also Sherman (2005) and Bour-

jade (2021)). Our approach differs in two main respects. First, we allow contracts

whose payoffs depend on the asset’s future cash flows.7 This assumption is natu-

ral for public firms but absent from the IPO literature. Second, the first stage of

the DaC mechanism departs from the “bookbuilding stage” in Sherman and Titman

(2002) (or the aforementionned papers, such as Benveniste and Spindt (1989)). Here,

truthful reporting and information production are induced through derivative trades

rather than share allocations, and buyers are contacted sequentially rather than si-

multaneously. Sequential contact ensures that the number of buyers is set so the

seller’s expected marginal benefit from information equals its marginal cost so that

the amount invested by the seller in information production is efficient. In contrast,

in Sherman and Titman (2002) this condition need not hold because all investors are

contacted simultaneously.

6Consequently, issuers would prefer to place shares solely with investors unable to acquire infor-
mation, if they could distinguish them from informed investors. In our setting, this can be achieved
by using the NFI mechanism but this mechanism is not optimal if sellers derives utility from the
information produced during the sale of the asset.

7In our model the mechanism is designed by the seller, while in the IPO literature it is designed
by the underwriter. If the underwriter acts in the issuer’s best interest, this distinction is immaterial.
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These features imply that the DaC mechanism eliminates informational rents and

allows the seller to invest efficiently information production. For this reason, it yields

strictly higher expected utility to the seller than any other mechanisms in our setting

(including that in Sherman and Titman (2002)). The absence of informational rents

implies that there is no “underpricing” in the DaC mechanism: the average price

at which the asset is sold to buyers is the expected payoff of the asset. Our goal is

not to explain IPOs’ underpricing but to study how asset sales should be optimally

structured when sellers face a trade-off between informativeness and liquidity.8

The paper is organized as follows. Section 2 introduces the asset sale problem.

Section 3 shows that with exogenous information, a DaC mechanism solves the seller’s

liquidity–informativeness trade-off. Section 4 extends this to costly information acqui-

sition, and Section 5 shows that a DaC mechanism still achieves the seller’s optimal

utility under incentive constraints. Section 6 examines robustness, and Section 7

concludes.

2 Framework

An entrepreneur (the seller) owns Q + N shares of a risky asset and intends to

sell Q. The payoff of the asset (per share) is vH with probability µ and vL with

probability (1 − µ), and is unknown to the seller.9 There are I + J ≥ Q potential

risk-neutral buyers. Among them, I are experts and J are non-experts. The former

have the possibility to acquire information about the asset payoff, while the latter

cannot; they only know the distribution of the asset payoff, like the seller. Each buyer

can purchase at most one share. We denote by I and J the sets of experts and non

experts, respectively. The seller cannot condition the price and allocations of the

asset on buyers’ type (experts/non experts) because she does not observe this type.

Figure 1 shows the timing of events and actions in the model. At date 0, the seller

designs a mechanism M to sell the asset. A mechanism is a set of rules that describes

how the issuer allocates the asset to buyers and at which price, possibly contingent on

8That is, in essence, our approach is normative. We do not try to argue that some mechanisms
are close to the DaC mechanism or to explain why such mechanisms are not used.

9This assumption is standard in the IPO literature and in models of asset sales. See, for instance,
Sherman and Titman (2002) or Bolton, Santos, and Scheinkman (2016).
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the information generated during the sale of the asset (see below for more details). She

then announces this mechanism to the buyers and implements it at date 1. We denote

by Ω(M) the information about v generated by the implementation of mechanism

M, and by pissue(M) the price at which the asset is sold to buyers according to

mechanism M. In general, this price can depend on Ω(M), although the seller may

also choose not to use this information. The payoff of the asset is realized at date 2.

Seller designs
a mechanism

to sell the asset

Date 0

The sale
takes place
as designed
at date 0

Ω: Information about
v generated by
the sale process

Date 1

The asset value
v becomes
public

information

Date 2

Figure 1. Timeline of the sale process

The seller’s realized utility at date 2:

Π(M) = R(M)︸ ︷︷ ︸
Net proceeds from the sale

+ γ
(
Var(v)−

(
v − E[ v | Ω(M) ]

)2︸ ︷︷ ︸
Forecasting Error

)
. (1)

Hence, the seller’s utility depends on both the revenues from the asset sale (R(M))

and the informativeness of the sale about the asset payoff. Specifically, if γ > 0, the

seller’s realized utility at date 2 is inversely related to the squared difference between

the realized payoff of the asset at date 2 and the seller’s forecast of the asset payoff

just after the sale (E[ v | Ω(M) ]). Thus, other things equal, the seller’s utility is

inversely related to her mean-squared forecasting error, and the rate at which she is

willing to trade off revenues from the sale for a reduction in her forecasting error is

governed by γ. The higher γ, the greater the seller’s willingness to sacrifice revenues

from the sale in exchange for information. Therefore, the seller potentially faces a

trade-off between liquidity and informativeness (as discussed below).
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There are various reasons why the entrepreneur may benefit from more accurate

forecasts about v just after the sale. For instance, as in other models (e.g., ), the

seller might use the information about v obtained through the asset sale to make an

investment decision at date 1 in another asset whose payoff is correlated with v.10 This

decision is more efficient, and therefore has a higher expected net present value, when

the seller obtains more accurate information about v (i.e., when (v−E[ v | Ω(M) ])2 is

smaller). For brevity, we do not explicitly model how the entrepreneur derives utility

from the information obtained at date 1 and instead directly assume that she has a

preference for more accurate information.

The revenues from the asset sale at date 2 have two components. First, they

reflect the proceeds from the asset sale at date 1, Q× pissue(M). Second, they reflect

any costs borne by the seller due to the implementation of the mechanism M. In

particular, this mechanism may involve transfers from the seller to the buyers at dates

1 and 2. We denote the total realized value of these transfers by Cissue(M). Thus,

R(M) = Q× pissue(M)− Cissue(M). (2)

A special case is when these transfers do not exist, so that Cissue(M) = 0.

Last, we assume that the entrepreneur must raise at least Q × vL for liquidity

reasons. Thus, the entrepreneur must design the mechanism for selling the asset in

such a way that the asset sale succeeds and yields revenues of at least Q×vL. This can

always be achieved by choosing to sell the asset at price pissue = vL since all buyers

(experts and non experts) make a strictly positive expected profit from buying one

share at this price. This default choice yields an expected utility of Q × vL to the

entrepreneur since it generates no information (so that on average, the informational

component of the seller’s utility is zero). As shown below, the seller can in general

achieve a larger expected utility than this with many other mechanisms.

The seller’s expected utility conditional on the information generated by the sale

10This investment decision must be made quickly at date 1, so that the entrepreneur cannot wait
until date 2 to observe v

9



of the asset at date 1 is:

Π̄1(M) = E[ Π(M) |Ω(M)] = Q E[R(M) |Ω(M)] + γ
(
Var(v)− Var(v | Ω(M))

)
.

(3)

Thus, the seller’s expected utility at date 1 increases with the reduction in uncertainty

about the asset payoff due to the information revealed during the sale of the asset,

(Var(v)−Var(v | Ω)). If no information is generated by this sale, Ω =, then Π̄1(M) =

Q E[R(M)].11

At date 0, the seller chooses a mechanism M to sell the asset to maximize her

ex-ante expected utility. Thus, the optimal mechanism solves:

max
M

Π̄0(M) ≡ E
(
Π̄1(M)

)
, (4)

under the liquidity constraint that R(M) ≥ Q× vL. In the rest of the paper, we do

not explicitly mention this liquidity constraint to simplify the exposition but it must

be satisfied by any mechanism chosen by the seller. In addition, the mechanism must

satisfy buyers’ participation constraints (that is, at date 1, all buyers obtain positive

expected profits from taking the actions they are supposed to take according to the

mechanism) and possibly additional incentives constraints (more on this in Sections

3 and 4).

As will be clearer below (see, for instance, Section 3), in solving (4), the seller faces

a standard trade-off. To obtain information via the asset sale, she needs to incentivize

participation from informed buyers. However, such participation is a source of adverse

selection for uninformed investors. This reduces the revenues from selling the asset

since adverse selection costs are ultimately passed by uninformed buyers to the issuer.

3 Baseline Case: Exogenous Information

We first consider the case in which experts are exogenously endowed with perfect

signals. In this case, we assume that each expert observes, at date 1 and before

11Note that in general Ω(M) is random. For a given mechanism, its realization may depend on
the realization of the signals received by experts at date 1. More on this in Section 3 and 4.
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deciding whether to participate in the mechanism, a perfect signal s ∈ {L,H} about

the asset payoff (s = ω if v = vω). Thus, there is no cost of information production

for experts. Moreover, we assume that I < Q ≤ J . Hence, the sale of the asset

cannot succeed without ensuring that non-experts are willing to buy some shares

of the asset, while it can succeed without experts. This assumption will no longer

be necessary when information is endogenous, but here it helps us highlight the

liquidity–informativeness trade-off for the seller (see Section 3.1).

As a benchmark, it is useful to derive the largest expected utility that the seller

can achieve in this case. Recall that any mechanism must at least satisfy buyers’

participation constraints; that is, each buyer participating in the mechanism must

expect a nonnegative profit. Thus, buyers’ aggregate expected profit, Q(E(v) −
R(M)), must be nonnegative.12 Hence, in any mechanism, QE(v) ≥ R(M). It

follows from (3) that the largest ex-ante expected utility the seller can obtain is

Π̄max = QE(v) + γ Var(v). (5)

Thus, Π̄max is an upper bound on the expected utility that the seller can achieve

with a mechanism that guarantees buyers’ participation and the success of the sale.

Accordingly, if there exists a feasible mechanism that yields Π̄max to the seller, this

mechanism solves (4) and is weakly dominant. We show in Section 3.2 that one such

mechanism exists in our setting.

3.1 The liquidity-informativeness trade-off
First, to build intuition about the seller’s problem and the liquidity–informativeness

trade-off, we contrast two mechanisms: (i) the Fixed Price (FP) mechanism (Rock

(1986)) and (ii) the No Informed Trading (NIT) mechanism (Biais, Bossaerts, and

Rochet (2002)). The FP mechanism yields full information revelation (Ω = v) but

underpricing (E(pissue) < E(v)), while the NIT mechanism avoids underpricing but

provides no information (Ω = ∅). The issuer prefers the former when γ is large

enough. However, as shown in Section 3.2, neither mechanism is optimal. These

12When there is a cost of producing information, as in Section 4, the condition is more complex
since one must account for experts’ cost of producing information when computing buyers’ aggregate
expected profit.
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results set the stage for the subsequent analysis.

FP Mechanism (Rock (1986)). In this mechanism, the seller sets a fixed price

pissue and buyers submit an order to buy one share at this price or abstain from

participating. If there is excess demand for the asset, the seller allocates shares pro

rata among the buyers who have submitted an order.

Consider an issuing price such that vL ≤ pissue < vH . At this price, each informed

buyer finds it optimal to buy one share if s = H and not to participate if s = L. If

uninformed buyers find it optimal to participate, each therefore receives qu(vH) =
Q

J+I

shares when v = vH and qu(vL) =
Q
J
when v = vL. Uninformed buyers’ expected profit

is therefore:

E(qu(v)(v − pissue)) = µqu(vH)(vH − pissue) + (1− µ)qu(vL)(vL − pissue). (6)

The largest price pFP,∗
issue(J) that the issuer can set while guaranteeing uninformed

buyers’ participation solves E(qu(v)(v − pFP,∗
issue)) = 0, which is

pFP,∗
issue(J) = β(J)vH + (1− β(J))vL,

with β(J) = µJ
J+(1−µ)I

. As 0 < β(J) < µ (since I > 0), it follows that vL < pFP,∗
issue <

E(v).

Thus, with the FP mechanism, the asset must be “underpriced,” i.e., sold at a

discount relative to its expected payoff (pFP,∗
issue < E(v)). Indeed, uninformed buyers

receive a larger allocation when the asset payoff is low than when it is high, as experts

refrain from buying the asset if its payoff is low. Thus, they are adversely selected, and

underpricing compensates them for their adverse selection costs. However, the total

demand for the asset (D) reveals the asset payoff because it is larger (D(vH) = J+I)

when v = vH than when v = vL (D(vL) = J). Hence, the equilibrium of the FP

mechanism is fully revealing: Ω(FP ) = v.
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We deduce that the seller’s ex-ante expected utility with the FP mechanism is:

P̄ i0(FP ) = QpFP,∗
issue + γ Var(v)

= QE(v)−Q
(
E(v)− pFP,∗

issue

)
+ γ Var(v)

= Π̄max − QIµ(1− µ)(vH − vL)

J + (1− µ)I︸ ︷︷ ︸
Total Adverse Selection Costs

.

(7)

Thus, the seller does not achieve the largest possible expected utility (Π̄max) because

uninformed buyers’ adverse selection costs are passed to the issuer. This is the cost

paid by the issuer to obtain information about v.13

NIT mechanism (Biais et al. (2002)). Now consider an alternative mecha-

nism in which the seller makes the issuance price contingent on the total demand for

the asset, D. Specifically, the seller sets the price of the asset in the following way:

p∗,NIT
issue (D) =

{
vH + ϵ, if D > J and ϵ > 0,

E(v), if D ≤ J.
(8)

In this case, the following decisions for buyers form a Nash equilibrium: (i) experts

do not participate, and (ii) non-experts submit a buy order for 1 share. To see that

this is an equilibrium, consider experts first. Each expert expects total demand to be

J given the equilibrium actions of other buyers. Thus, if he buys the asset, its price

will be vH + ϵ. Since this is higher than the largest possible payoff of the asset, not

participating is a best response for an expert. Now consider a non-expert. He expects

total demand from other participants to be J − 1 shares. Thus, if he participates,

total demand will be J , and the price of the asset will be E(v). At this price, the

13The situation in which the issuer sets the price pFP,∗
issue(J) and buyers behave as described above

is a Nash equilibrium. There are other Nash equilibria in which only a fraction of all uninformed
buyers buy the asset (in equilibrium, they are indifferent between buying or not). In these equilibria,

buyers’ total demand reveals the asset payoff as well and the issuing price is given by pFP,∗
issue(J

′) where

Q ≤ J ′ ≤ J is the number of participating uninformed buyers. As pFP,∗
issue(J

′) decreases with J ′, the
issuer’s expected utility is maximal in the equilibrium in which J ′ = J . Thus, Π̄0(FP ) in (7) is the
largest expected utility that the issuer can obtain with the FP mechanism.
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non-expert will receive qu = qu(vH) = qu(vL) =
Q
J
shares and an expected profit of:

E
(
qu(v)(v − p∗,NIT

issue (J))
)
=

Q

J

(
µ(vH − p∗,NIT

issue (J)) + (1− µ)(vL − p∗,NIT
issue (J))

)
= 0.

The non-expert is therefore indifferent between participating or not, and participation

is thus a best response to the seller’s price schedule.14

We refer to this mechanism as the “No Informed Trading” (NIT) mechanism, since

no informed buyers trade in equilibrium. Under the NIT mechanism, the asset is sold

at its unconditional expected value (i.e., without underpricing), but the sale conveys

no information about the payoff (Ω = ∅), as aggregate demand is identical whether

v = vH or v = vL. The seller’s ex-ante expected utility is therefore:

Π̄0(NIT ) = QE(v) = Π̄max − γ Var(v), (9)

With this mechanism, the seller eliminates underpricing (illiquidity) by removing

adverse selection and secures the highest expected revenue from the sale, QE(v) (see

the discussion after (3)). However, no information is revealed. Hence, liquidity is

achieved at the cost of informativeness.

Thus, in choosing between the FP and NIP mechanism, the seller faces a trade-

off between illiquidity costs due to adverse selection and information. In the latter

illiquidity costs are nil but the sale generates no information while in the former

the sale generates maximal information at the cost of underpricing. The optimal

solution to this trade-off depends on the issuer’s preference for informativeness, γ.

Using (7) and (10), the seller’s expected utility is larger with the FP mechanism

if and only if γ ≥ γ̂ where γ̂ = QI
(I+(1−µ)J)(vH−vL)

. Thus, if γ is large enough, the

seller is willing to sacrifice liquidity for information. The threshold γ̂ increases with

I because underpricing (illiquidity cost) in the FP mechanism increases with I. It

decreases with (vH − vL) because the issuer’s expected utility benefit of obtaining

information is larger when there is more uncertainty about the asset payoff.

However, the seller has many other ways to sell the asset beyond the NFI or FP

14One can construct other NIT mechanisms in which only J ′ ∈ [Q, J) uninformed buyers partic-
ipate. However, these equilibria lead to exactly the same expected utility for the seller.
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mechanisms. By analogy with a Pareto frontier, efficient mechanisms are those that

maximize the seller’s expected revenues for a given reduction in uncertainty about

the asset payoff. In the next section, we show that there exists one mechanism, which

we call “Divide and Conquer” (DaC), in which the seller achieves the largest possible

expected revenues (QE(v)) together with full information revelation (Ω = {v}). Thus,
the DaC mechanism yields an expected utility equal to Π̄max, the maximum expected

profit attainable by the seller. It is therefore at least weakly dominant for all sellers

with γ > 0. This implies that, in the setting considered so far, the trade-off between

informativeness and illiquidity can be resolved at zero cost.

3.2 Divide and Conquer Mechanism
The Divide and Conquer mechanism (M = DaC) has two stages. In Stage 1,

buyers are contacted sequentially and offered the possibility to purchase one of two

derivative contracts whose payoffs are contingent on the realization of the fundamental

value v when it is finally observed. The first contract, labeled CL, pays F +ϵ if v = vL

and zero otherwise, while the second contract, labeled CH , pays F + ϵ if v = vH and

zero otherwise. The price of each contract is F , so the dollar return for a buyer

purchasing either contract can be ϵ or −F .15 The values of F and ϵ are chosen by

the seller. All derivative contracts expire once the fundamental value of the asset is

observed. The first stage stops when one buyer decides to buy a contract or when all

buyers have been contacted.

In Stage 2, the seller reveals the outcome of Stage 1 to all buyers. If one contract

has been purchased, she allocates the Q shares among the remaining J + I−1 buyers

at pissue = vω if contract Cω has been chosen in Stage 1, where ω ∈ {L,H}.16 If

no buyer chooses a contract in Stage 1, then the seller uses the “NIT” mechanism

(see previous section). As we shall see, this outcome never occurs in equilibrium.

However, buyers’ decisions in Stage 1 depend on how the seller sets the price of the

15The price of each contract must be paid at date 1 while the payoff of the contract is realized at
date 2 after v is observed. A buyer can only acquire a contract if he can pay F upfront.

16Thus, the buyer who purchases a contract in Stage 1 receives no shares of the asset. The pos-
sibility that some participants receive no allocation given their report is standard in the mechanism
design literature on IPOs. See, for instance, Benveniste and Spindt (1989) or Sherman and Titman
(2002).
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asset if she obtains no information in Stage 1.

We say that this mechanism induces full revelation if (i) only experts buy a con-

tract in Stage 1, and (ii) an expert selects contract Cω when his signal is s = ω for

ω ∈ {L,H}.

Proposition 1. Suppose M = DaC with F > max
{

(1−µ)
µ

, µ
(1−µ)

}
ϵ with ϵ > 0.

Then, at date 1, the following actions form a Nash equilibrium: (i) A non expert

never purchases a derivatives in Stage 1, (ii) an expert buys the contract Cω when his

signal is s = vω for ω ∈ {L,H} and (iii) the asset is sold at pissue = vω when contract

Cω has been purchased in date 1. In this equilibrium, Ω = {v} (full revelation) and

the expected revenue from the asset sale is R(DaC) = Q(E(v)− ϵ)

In this equilibrium, the first expert who is contacted in Stage 1 selects the deriva-

tives that corresponds to his signal and obtains an expected profit of ϵ. The condi-

tion ϵ > 0 guarantees that the expert’s profit from trading the derivatives contract

is strictly positive and therefore strictly dominates the expected profit that he can

obtain by not trading in Stage 1 or not trading at all.17

With the DaC mechanism described in Proposition 1, the seller’s ex-ante expected

utility is:

Π̄0(DaC) = Q(E(v)− ϵ) + γ Var(v) = Π̄max − ϵ, (10)

which can be made arbitrarily close to Π̄max. Thus, the DaC mechanism considered

in Proposition 1 is (weakly) dominant for the seller regardless of γ. Thus, when the

mechanism for selling the asset is properly designed, the liquidity-informativeness

trade-off disappears.

Intuitively, the DaC mechanism separates the problem of incentivizing experts

to reveal their private information from the problem of incentivizing non experts to

participate to the issue. In the mechanisms considered in Section 3, these problems are

bundled. The DaC mechanism separates them and guarantees that the payment to

informed buyers is just sufficient to incentivize information revelation. As we assume

17Thus, the condition ϵ > 0 just serves to break indifference between participation to Stage 1 or
2 for experts.
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that there is no cost of producing information, this payment can be arbitrarily close

to zero.

In Section 5, we show that the DaC mechanism remains weakly dominant for all

sellers with γ > 0 in a more general setting in which the production of information

is endogenous. This case is more complex because the seller must incentivize buyers

to (i) pay the cost of producing information, (ii) truthfully reveal their information

if they have some and (iii) not pretend they have information if they don’t. Before

presenting this result, in Section 4, we first extend the previous framework to allow

for endogenous information production and we derive (in Proposition 3) the largest

expected utility that the seller can achieve in this case in the absence of frictions

(moral hazard and adverse selection). We also derive the sellers’ expected utility

when she uses the FP and NIP mechanisms. These will serve as benchmarks as in

the case with exogenous information.

4 Endogenous Information Production: Benchmarks

In this section, we extend the baseline framework to account for costly informa-

tion production and derive the equilibria of the NIT and FP mechanisms in this case

(Section 4.1). We then solve for the seller’s optimal mechanism when information pro-

duction is observable, so that only participation constraints apply (Section 4.2). This

provides an upper bound on the seller’s expected utility when information production

is unobservable. This case is analyzed in Section 5.

4.1 Extended Framework (endogenous information)
Henceforth we assume that all experts are initially uninformed about the asset

payoff. However, in contrast to non experts, each expert has the ability to produce

information about this payoff. To do so, an expert must search for information, which

costs c per search. One expert’s search can fail for two reasons. First, with probability

(1− π), no information is available about v (in this case, all experts will fail to find

information). Second, even if information is available about v, an expert can fail to

find it with probability (1 − ϕ). When an expert does not find or does not produce

information, he remains uninformed and therefore expects the payoff of the asset to
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be vU ≡ E(v).

In sum, if an expert searches information, he finds some with probability ϕπ and

none with probability (1−ϕπ). In the former case, we assume that the expert receives

a signal s ∈ {H,L} that perfectly reveals v (s = ω if v = vω). Otherwise, the buyer

receives an uninformative signal, s = U .18 Thus, experts’ signals are imperfect (if

s = U , signals are uninformative) and imperfectly correlated (the probability that

two experts receive the same signal is π(1 − 2ϕ(1 − ϕ)) + (1 − π)). The likelihood

that information is discovered increases with K: If K experts produce information,

at least one receives an informative signal with probability π(1− (1− ϕ)K).

As in the baseline case, we assume that the seller cannot produce information

about v.19 This is a natural assumption since we want to analyze the trade-off between

informativeness and illiquidity from the asset seller’s viewpoint. If the asset seller can

produce information, she does not need to incentivize information production in the

first place and the NIT mechanism is optimal for the seller.

We first consider the NIT and FP mechanisms when experts’ signals are endoge-

nous. If the seller uses the NIT mechanism (the price schedule in (8) then it is a Nash

equilibrium that (a) experts do not participate and do produce information and (b)

the J non experts submit an order to buy one share. The reason is the same as in

the baseline case with exogenous signals. In addition, experts optimally choose not

to produce information since each anticipates that he will not trade anyway. Thus,

as in the baseline case, the NIT mechanism yields an expected utility of:

Π̄0(NIT ) = QE(v), (11)

to the seller.

Another possibility for the seller is to use the FP mechanism. In this case, experts

optimally decide whether or not to produce information before participating to the

18This information structure is identical to that in Benveniste and Wilhelm (1990) and Sherman
and Titman (2002).

19This does not mean that the seller has no information. Indeed, one can assume that the seller
first collects information and arrives to an estimate of E(v) for the firm. It just means that the cost
of collecting incremental information is too high for the seller.
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fixed price offering. We denote by pFP∗
issue the price sets by the seller by and by K∗

FP ,

the number of experts who produce information in equilibrium.

Proposition 2. When information production is endogenous, the equilibrium of the

FP mechanism is such that:

• The price for the asset is smaller than the unconditional expected value of the

asset (pFP∗
issue < E(v)).

• The number of buyers who produce information, K∗
FP , is such that information

producers obtain zero expected profit net of the information cost and solves (32)

in the proof of the proposition.

• The seller’s expected utility is:

Π̄0(FP ) = QE(v)− cK∗
FPγ +

µπ
(
1− (1− ϕ)K

∗
FP

)
Var(v)

µ+ (1− µ) (1− π + π(1− ϕ)K
∗
FP )

. (12)

As when information production is exogenous, the asset is underpriced (p∗FP
issue <

E(v)) to guarantee uninformed buyers’ participation. Moreover, in equilibrium, the

number of experts searching for information adjusts in such a way that their aggregate

expected profit is equal to the aggregate cost paid to produce information (Q(E(v)−
p∗issue) = cK∗

FP ). As experts’ aggregate expected profits are equal to non experts’

adverse selection costs (see (27) in the proof of Proposition 2), the seller’s expected

proceeds from the asset sale is E(R(FP )) = QE(v)−cK∗
FP . This yields the first term

in (12). The last term in Π̄0(FP ) is the expected informational benefit of the FP

mechanism in equilibrium, γ(Var(v)−E(Var(v | Ω(FP )) (see the proof of Proposition

2).20

4.2 Benchmark: Information Production is Observable
It is useful to first derive the first best for the seller, that is, the largest expected

utility that the seller can achieve in the absence of frictions. To this end, we assume

that “information production is observable” meaning that the seller can (i) observe

20In contrast to the case in which information is exogenous, the FP mechanism does not necessarily
lead to full information revelation because no experts might find information.
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who is an expert and who is not, (ii) observe whether an expert makes the effort to

search information or not and (iii) that experts truthfully report the outcome of their

search. This effectively enables the seller to incentivize information production at the

lowest possible cost by removing incentives constraints due to adverse selection ((i)

and (iii), as in the baseline case with exogenous information) and moral hazard ((ii)).

To derive the seller’s largest possible expected utility when information prosuction

is observable, we consider again a DaC mechanism. In Stage 1, the seller elicits

information from experts. In Stage 2, the seller reports the information obtained in

Stage 1 and sells the asset at a price equal to its payoff if the latter has been discovered

in Stage 1. If not, the seller sells the asset only using the NIT mechanism. As shown

above, in this mechanism, experts do not produce information and the asset is sold

at pissue = E(v). It will be clear below that when Stage 1 is designed optimally, it

is indeed optimal for the seller to use a NIT mechanism if no information has been

found in Stage 1.

When π = ϕ = 1, the solution to the seller’s problem is as follows. If the seller

contacts one expert in Stage 1, she pays the expert c if he produces information

and nothing otherwise. In this case, the expert produces information since, for this

payment, he is just indifferent between producing or not producing it. Moreover, as

the expert discovers information with certainty and reports it truthfully, after Stage 1,

Ω = {v}. Hence, in Stage 2, pissue = v, which guarantees participation of uninformed

buyers. The seller’s expected utility is then QE(v) + γV ar(v)− c.

This expected utility is the largest one that the seller can obtain if she elicits infor-

mation since: (i) an expert must at least expect to receive c to search for information

and (ii) conditional on information being produced, the seller cannot obtain a higher

expected utility than QE(v) + γV ar(v), for the same reasons as in the baseline case.

Alternatively, the seller can choose to sell the asset without obtaining information

by using the NIT mechanism and obtain an expected utility of QE(v). Hence, when

π = ϕ = 1, the seller uses the DaC mechanism described above if c ≤ γ Var(v) and

directly sells the asset with the NIT mechanism otherwise. Intuitively, in the latter

case, the utility benefit of information is too small relative to the cost of obtaining

information and the seller is better off not eliciting information production.
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When ϕ < 1 and π < 1, the optimal mechanism for the seller is not as simple. The

reason is that designing Stage 1 is less straightforward because experts do not obtain

information with certainty. The seller may therefore need to contact several experts

before acquiring information, and if π < 1, experts may never succeed. To solve the

seller’s problem, we first consider the case where she contacts experts sequentially

in Stage 1 and explain why doing so is optimal at the end of this section.21 When

an expert is contacted, the seller offers a payment c if he produces information and

nothing otherwise. As effort is observable and costs c, each buyer exerts effort and

truthfully reports his signal s ∈ {H,L, U} to the seller.

The seller should stop searching once an expert reports s = H or s = L, since such

a report fully resolves uncertainty. Contacting additional experts would only raise

costs without adding information. It may also be optimal to proceed to Stage 2 after

a few experts report s = U . Indeed, as the number of uninformative reports increases,

the seller becomes increasingly pessimistic about the chance of finding information.

Specifically, the probability that information is available about the asset’s payoff,

conditional on observing i− 1 uninformative signals in a row, is:

πi =
(1− ϕ)i−1π

(1− ϕ)i−1π + (1− π)
, (13)

so that πK = π < · · · < π3 < π2 < π1 = π (see Figure 2).22 Hence, at some point,

the expected informational gain from contacting one additional expert (πiϕγ Var(v))

becomes too small relative to the cost and, intuitively, the seller is better off moving

to Stage 2 without information.

Hence, let K denote the maximal number of experts that the seller contacts in

Stage 1 before moving to Stage 2.23 Stage 2 stops at the random time τstop(K) =

min{τfind, K}, where τfind is the first time at which one expert finds information

21Contacting buyers in J is useless for the seller since they cannot help obtain information in
Stage 1. After Proposition 3, we explain why sequential contact is optimal.

22The rate at which πi decays with i increases with ϕ. Indeed, if ϕ is large, it is unlikely that
failure to find information is due to bad luck.

23This means that after the Kth expert has exerted the effort to find information, the seller stops
contacting experts whether or not the Kth expert finds information.
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Figure 2. πi (given by (13)) as a function of i ∈ [1, 20] when π = 0.7.

in Stage 1. The total cost incurred by the seller in Stage 1 (the cost of obtaining

information) is therefore:

Cissue(K) =

τstop∑
i=1

c = τstop(K)× c. (14)

After some algebra (see the proof of Proposition 3), we obtain that:

E(Cissue(K)) = cE(τstop(K)) = c

(
(1− π)K +

π(1− (1− ϕ)K)

ϕ

)
, (15)

and the likelihood that no information is produced in Stage 1 is

Pfailure(K) ≡ Pr(τfind ≥ K) = 1− π(1− (1− ϕ)K). (16)

After Stage 1, either Ω = {v} if one expert has received an informative signal or

Ω = {∅} if all experts have observed s = U . The seller discloses Ω to all buyers. She

offers to sell the asset at pissue = v if Ω = {v} and otherwise uses the NIT mechanism.

With this specification, the sale succeeds with certainty and the seller expects to sell
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the asset at a price of E(v) per share, for the same reasons as in the baseline case

with exogenous information.

For a given stopping rule K, we deduce from (3) that, with this mechanism, the

seller’s expected utility is:

Π̄0(K) = QE(v)− E(Cissue(K)) + γ Var(v)(1− Pfailure(K)), (17)

where E(Cissue(K)) and Pfailure(K) are given by (15) and (16).

As the seller can make her decision to contact the ith expert contingent on πi,

she faces a dynamic optimization problem. Given her belief πi that information is

available, her optimal stopping rule, K∗, must be such that for any i ≤ K∗, contacting

the ith expert is optimal while, for i > K∗, moving to Stage 2 without contacting a

new expert is optimal.

We show in the appendix (proof of Proposition 3) that K∗ = Kmax, where

Kmax := supK ∈ N>0 : c < πKϕγ Var(v). (18)

Intuitively, after contacting the Kmaxth expert, the seller is so pessimistic about the

existence of information on v that the expected informational gain from contacting

another expert falls below the cost c.24 In this situation, the marginal informational

gain is too small relative to the cost, so the seller is better off moving to Stage 2

and using the NIT mechanism. Hence, conditional on failing to obtain information

from Kmax experts in Stage 1, it cannot be optimal to incentivize further information

production in Stage 2 (e.g., through a fixed price offering). Thus, the NIT mechanism

is subgame perfect after Kmax failed attempts in Stage 1 and contacting up to Kmax

experts is optimal for the seller.

Last, if c > πϕγ Var(v), Kmax does not exist. In this case, the cost of producing

information is so large that the seller is better off moving directly to Stage 2 and

24The seller may have to pay up to Kmaxc to buyers in Stage 1. This is not an issue since the
issue size Q can be chosen so that, even in the worst case, proceeds cover both this cost and the
seller’s liquidity need (i.e., QvL > cKmax). If this condition fails, the optimal K is the value at
which it binds. We omit this case for brevity, as it adds complexity without new insights.
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use the NIT mechanism to sell the asset. These observations yield the following

proposition.

Proposition 3. Suppose c ≤ πϕγ Var(v). When information production is observable

and the seller sequentially contacts experts in Stage 1, she maximizes her expected

utility by (i) contacting up to Kmax experts and by (ii) selling the asset at a price

equal to the asset payoff if the latter has been discovered in Stage 1 and using the NIT

mechanism otherwise. With this mechanism, her expected utility is:

Π∗
bench ≡ Π̄0(K

max) = QE(v)− E(Cissue(K
max)) + γπ

(
1− (1− ϕ)K

max)
Var(v). (19)

If instead, c ≤ πϕγ Var(v), the seller does not contact experts and sells the asset using

the NIT mechanism. Her expected utility is then equal to QE(v).

The seller contacts at least one expert in Stage 1 iff γ Var(v) is large enough and

Kmax increases (stepwise) with γ Var(v). This is intuitive. Contacting more experts in

Stage 1 raises the expected cost of obtaining information (E(Cissue(K)) increases with

K). It is therefore optimal to do so for the seller only if the benefit from information

(γ Var(v)) is large enough.

Figure 3 plots the optimal number of experts contacted by the seller, K∗ = Kmax,

as a function of parameter ϕ for different values of π. For higher values of π, it is

optimal for the seller to contact more experts (Kmax increases with π) because it

is more likely that information is available. In contrast, the effect of ϕ on K∗ is

non-monotonic. The reason is that, conditional on the existence of information, a

higher ϕ increases the likelihood that an expert will find information and therefore

the value of contacting another expert when previous ones have failed. However, a

higher ϕ implies that the seller becomes more quickly pessimistic about the existence

of information as the number of experts contacted in stage 1 increases (see Figure

2). The first force pushes for contacting more experts while the second pushes for

contacting fewer. The latter dominates when ϕ is large enough.

The previous mechanism leaves no rents to buyers: (i) buyers in Stage 1 are just

compensated for their cost of producing information, and (ii) buyers in Stage 2 pur-

chase the asset at a price equal to its expected payoff given all available information.
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Figure 3. This figure shows Kmax as a function of ϕ for π = 0.75 (black curve),
π = 0.5 (red curve), and π = 0.25 (blue line). Other parameters are: γ = 0.1,
vH = $50, vL = $10, µ = 0.5, c = $1.

This implies that the mechanism in Proposition 3 is weakly dominant when infor-

mation production is observable. To see this, consider an alternative mechanism M′

such that up to K experts might produce information. The unconditional likelihood

that information is discovered under M′ is π
(
1− (1− ϕ)K

)
. Hence, the ex-ante ex-

pected utility gain from information is γπ
(
1− (1− ϕ)K

)
Var(v). Moreover, as in any

other mechanism, the largest expected revenues that the seller can obtain with M′ is

QE(v) minus buyers’ aggregate gross expected profits. These cannot be less than ex-

perts’ expected aggregate cost of information production so that net of costs, buyers’

aggregate expected profits are zero (otherwise some buyers’ participation constraints

do not hold).25 Now experts’ expected aggregate cost of information production is

minimized if experts are contacted sequentially one by one, because simultaneous elic-

25Experts’ realized aggregate cost of information production is the sum of information production
costs over all experts who happen to produce information. For a given K, the number of such experts
might be random, as in the mechanism considered in Proposition 3.
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itation leads to duplication of effort. For instance, if all experts produce information

simultaneously (e.g., as in the FP mechanism), the seller must forego at least Kc. By

contrast, if the seller uses the sequential mechanism described previously, she expects

to pay E(Cissue(K)), as defined in (15). Since E(Cissue(K)) < Kc, pooling experts is

not cost-efficient. Thus, if it is optimal for the seller, M′ must be such that experts

are contacted sequentially in Stage 1, as assumed previously. But then, M′ must be

such that K = Kmax and the seller uses the NFI mechanism if she fails to discover

the asset payoff in Stage 1. It follows that M′ must deliver the same expected utility

as the mechanism considered in Proposition 3.

In sum, Π∗
bench is the largest possible expected utility for the seller when informa-

tion production is endogenous. Thus, it serves as benchmark to measure the efficiency

of the various mechanisms that the seller can use when information production is not

observable (Section 5). In the next section, we show that in this case, a properly

designed DaC mechanism can achieve an expected utility for the seller arbitrarily

close to Π∗
bench.

5 Information Production is non Observable

We now assume that information production is non observable. This means that

the seller cannot (i) observe who is an expert and who is not, (ii) observe whether an

expert makes the effort to search information or not and (iii) observe whether experts

truthfully report the outcome of their search. Thus, to achieve the same outcome

as when information is observable, the seller must design Stages 1 and 2 of the DaC

mechanism so that (i) experts are better off participating to Stage 1 while non experts

are better off not, (ii) experts find optimal to produce information in Stage 1 rather

than reporting a signal without doing so and (iii) experts find optimal to truthfully

report the signal they obtain.

As in the benchmark case, the seller organizes the asset sale in two stages. First,

buyers indicate whether they are willing or not to participate to Stage 1. Let S be

the pool of buyers who do so. Then the seller contacts buyers in S sequentially and

asks them to report their signal s ∈ {H,L, U} about the payoff of the asset. We

denote this report by σ ∈ {H,L, U}. A buyer in S is truthful if s = σ. Henceforth,
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we index by i, the signal and the report of the ith buyer contacted by the seller in

Stage 1. The seller designs Stages 1 and 2 to deter buyers who are not experts to

participate to Stage 1 and to incentivize buyers in S (those who participate to Stage

1) to (i) produce information and (ii) truthfully reveal their signal.

We guess and verify that the seller can achieve this objective by using the following

incentive scheme. First, if a buyer in S is contacted by the seller in Stage 1, he is

“excluded” from Stage 2 (that is, receives no allocation in Stage 2).26 Next, when

a buyer is contacted, the seller discloses to the buyer his rank in the pool of buyers

contacted so far in Stage 1. If the ith buyer in S reports σi = H, he pays F to the

seller and obtains a derivative contract CiH that pays F + fi,H if the realization of v

is vH and zero otherwise. If he reports σi = L, he pays F to the seller and obtains

a derivative contract CiL that pays F + fi,L if the realization of v is vL and zero

otherwise.27 If the buyer reports σi = U , there are no transactions and payments

between the seller and the buyer.

The transfers F and f = {fi,H , fi,L}i=K
i=1 are designed to incentivize experts to

produce information and truthfully report their signals (see below). The exclusion of

buyers who participate to stage 1 reduces the costs of providing incentives for truthful

revelation. Indeed, it implies that a buyer who finds information has no incentive to

report σ = U , in the expectation that he might obtain a larger expected profit by

participating to stage 2. This also implies, as we shall see, that buyers who cannot

produce information have no incentives to participate to stage 1.

Last, for the same reason as in the benchmark case (Section 4.2), it is optimal for

the seller to move to Stage 2 as soon as one buyer reports σi = H or σi = L (since,

in equilibrium, reports are truthful). Moreover, as in the benchmark case, the seller

can find optimal to stop Stage 1 if many buyers fail to find information. Thus, as in

the benchmark case, we denote by K the maximum number of buyers contacted by

26The possibility of not allocating shares to buyers is part of optimal mechanisms in the IPO
literature. See, for instance, Benveniste and Spindt (1989).

27Each of these contracts can be replicated by issuing “butterfly spread” – a portfolio of call
options written on the underlying asset. For example, the payoff of CiL can be replicated by a long
position in call option with strike price fi,L−F , a short position in two call options with strike price
vL and a long position in a call option with strike price fi,L + F .
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the seller in Stage 1.

Stage 2 is organized as in the benchmark case. That is, if the seller receives the

report σ = H or σ = L in Stage 1, she offers to sell shares to all buyers participating

to Stage 2 at pissue = vH if the seller has obtained the report σ = H or pissue = vL if

the seller has obtained the report σ = L. If the seller stops Stage 1 without obtaining

information (that is, if σK = U), she organizes Stage 2 using the NIT mechanism.

Of course, there are many other ways one could organize the two stages mech-

anisms (e.g., the seller could decide not to exclude buyers who participate in Stage

1 from Stage 2). However, as shown in Proposition 4 below, for appropriate choices

of K, F and f = {fi,H , fi,L}i=K
i=1 , the organization we just described yields an ex-

pected utility for the seller which is arbitrarily close to the seller’s expected utility

when information production is observable (Πbench). Hence, the organization we just

described is at least weakly dominant.

Conditional on truth-telling, the previous mechanism implies that the seller ex-

pects to sell the asset at E(v). Thus, for the same reasons as when information

production is observable, the seller’s expected profit with this mechanism is:

Π(K) = QE(v)− E(Cissue) + γ V ar(v)(1− Pfailure(K)), (20)

where the expected cost of the issue, E(Cissue), is the ex-ante expected profit (gross of

any cost of information production) that a buyer expects from trading in Stage 1.28

Thus, it is determined by F and f = {fi,H , fi,L}i=K
i=1 . The seller’s problem is therefore

to choose K, F , and f to maximize Π(K) under the following constraints: (i) Experts

are (weakly) better off participating to Stage 1, (ii) Non experts are (weakly) better

off not participating to Stage 1, (iii) Experts are better off producing information

when they are contacted in Stage 1, (iv) Experts are better off reporting their true

signal rather than misreporting.

We now present these constraints more formally. First, let R(si, σi) be the ex-

pected profit (gross of cost of information production) of the ith buyer contacted by

28When the mechanism is optimally designed, this expected profit is strictly positive (see Propo-
sition 4). This implies that the derivatives contracts are not fairly priced. This “mispricing” is
necessary to compensate experts for their cost of information production.
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the seller if he receives signal si and reports σi. The truth-telling constraints impose:29

R(si, si) ≥ R(si, σ) for all si, σ ∈ {H,L, U}. (21)

The second set of constraints guarantees that, given that he will report truthfully,

each expert participating to stage 1 is better off producing information rather than

not producing information (in which case, the expert observes si = U for sure) when

he is contacted by the seller. As each expert knows his position when he is contacted

by an seller, this requires the following incentive constraints:

πiϕ(µR(H,H) + (1− µ)R(L,L)) + (1− πiϕ)R(U,U)

≥ R(U, σ) + c, ∀σ ∈ {H,L, U}, ∀i ≤ K, (22)

Furthermore, when an expert is contacted and learns that he is the ith contacted

buyer in S, he must be better off participating rather than walking away with a

zero expected profit, which is always a possibility for the expert. This participation

constraint imposes:

πiϕ(µR(H,H) + (1− µ)R(L,L)) + (1− πiϕ)R(U,U) ≥ c, ∀i ≤ K. (23)

Observe that when (23) holds then all experts are (at least weakly) better off par-

ticipating to Stage 1 rather than waiting until Stage 2 and producing information in

this stage. Indeed, if an expert does so, he gets a zero expected profit either because

(i) information has been produced in Stage 1 and therefore the expert cannot benefit

from private information in Stage 2 (since pissue = v in this case) or (ii) information

has not been produced in Stage 1 and in this case the seller uses NIT mechanism (so

that no expert has an incentive to produce information and participate to Stage 2).

Moreover, after producing information and receiving his signal, an expert in Stage

2 must be better off reporting the signal than walking away, which imposes another

29These constraints must be satisfied even if the cost of information production has been paid
because once the cost has been paid, a buyer can still misreport.
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set of participation constraints:

R(si, si) ≥ 0, ∀si ∈ {H,L, U}. (24)

Last, non experts must optimally choose to participate to Stage 2 rather than Stage

1. In Stage 2, their expected profit is zero since either the asset payoff is revealed

or sold at its expected payoff via the NIT mechanism (if no information was dis-

covered in Stage 1). Thus, their expected profit from participation to Stage 2

must be negative. The largest expected profit that a non expert can obtain in

Stage 1 is maxσ∈{H,L,U}R(U, σ) since he can always produce at no cost any mes-

sage σ (while s = U for a non expert). The incentive constraints (21) impose that

maxσ∈{H,L,U}R(U, σ) = R(U,U). Thus, non experts optimally choose not to partic-

ipate to Stage 1 if and only if R(U,U) ≤ 0. Thus, R(U,U) = 0 as otherwise (24)

cannot hold. This is the case since when a buyer reports σ = U , (a) there is no

transfer between the seller and the buyer and (b) the buyer cannot participate to

Stage 2 (receives no allocation in Stage 2).30

This observation is important. As R(U, σ) ≤ R(U,U) for σ = H or σ = L

(truth-telling constraints (21)), it follows that if experts’ participation constraint (23)

and truth-telling constraints (21) are satisfied then incentives constraints (22) (moral

hazard) are satisfied as well.

In sum, if K, F and f = {fi,H , fi,L}i=K
i=1 are chosen such that (21), (23) and (24)

are satisfied and buyers who report U get no payments and are excluded from Stage

2, then (i) only experts choose to participate to Stage 2, (ii) each expert produces

information when she is contacted by the seller, and (iii) each expert truthfully reports

his signal to the seller. Thus, for a given K and for a given realization of experts’

signals, the seller’s information at the end of Stage 1 is identical to that in the

benchmark case. The only difference is that the choice of K is now potentially

30Observe that, in contrast to the benchmark case, the fact that R(U,U) = 0 is necessary implies
that if an expert produces information and reports σ = U , he receives nothing. This implies that an
expert must be compensated by a larger expected profit on the derivatives contracts when he reports
σ = H or σ = L. This explains why the payments to the buyers are larger than c in equilibrium
when they report σ = H or σ = L (see Proposition 4). However, in expectation, the experts expect
to receive just c since (23) binds (as explained in the next paragraph).
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constrained by incentives and participation constraints and the transfers F and f (the

specifications of the derivatives contracts) must be chosen to satisfy these incentives

constraints. The optimal choice of K, F and f for the seller is given in the next

proposition.

Proposition 4. Suppose c ≤ πϕγ Var(v). With the DaC mechanism, the seller can

achieve an expected utility arbitrarily close to Π̄∗
bench (given in (3)) by choosing:

• K∗
DaC = Kmax, where Kmax is as defined in Section 4.2

• fi,L = fi,H = ε+ c
πiϕ

with arbitrarily small ε > 0 and F > max{ µ
(1−µ

, (1−µ)
µ

}
(
ε+ c

ϕπKmax

)
;

With this specification of the Divide and Conquer mechanism, the seller’s expected

utility is:

Π∗
DaC = Π∗

bench − ϵπ(1− (1− ϕ)Kmax).

When c > πϕγ Var(v), the seller maximizes her expected utility by using the NIT

mechanism.

Thus, with an appropriate specification of the derivatives contracts CH and CL

and K, the seller can achieve an expected utility that is ϵ close to that in the first

best.

The intuition is as follows. The mechanism induces an equilibrium behavior such

that an expert obtains a profit only when (i) she is contacted in Stage 1 and (ii)

finds information. Indeed, conditional on being contacted, the expected profit of an

expert is: ϕπi(µfi,H + (1 − µ)fi,L) − c = ϵ > 0.31 This rent for the experts breaks

experts’ indifference between participating or not (so that (23) holds strictly). It

is realized only when one expert finds information in stage 1, which happens with

probability π(1− (1− ϕ)Kmax). To break indifference, ϵ must be strictly positive but

it can be arbitrarily small. This implies that the Divide and Conquer mechanism,

with the specification in Proposition 4, is weakly dominant for the seller. As this

31Indeed, an expert’s expected profit is πiϕ(µR(H,H) + (1− µ)R(L,L)) + (1− πiϕ)R(U,U) and
R(U,U) = 0, R(H,H) = fiH + F − F = fiH and R(L,L) = fiL.
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is the case for all γ > 0, all sellers choose this mechanism independently of their

preference for information, γ. Thus, when the mechanism chosen by the seller is

properly designed, there is no trade-off between informativeness and illiquidity, as in

the case with exogenous information.

It is surprising that, despite the incentives constraints, the seller can achieve an

expected utility arbitrarily close to the first best. There are two reasons for this. First,

by using two stages for the issue, the seller separates the problem of incentivizing

information production from the problem of selling shares. This avoids inefficient

information production as in the FP mechanism (see Figure 4 for an illustration).

Second, the possibility for the seller to exclude buyers who participate in Stage 2

from participation in Stage 1 and the use of the NIT mechanism in Stage 2 when no

information is obtained in stage 1 helps to provide incentives. Indeed, it implies that

those with the ability to produce information can only profit from their information

by participating to Stage 1. This suppresses, at zero cost, their incentives to misreport

in Stage 1 in the hope of making profits in Stage 2 or to refrain from participating in

Stage 1 in the hope of making larger profits in Stage 2. Overall, the results show that

the Divide and Conquer mechanism also works well when information production

needs to be incentivized.

Figure 4 provides a numerical example. It compares the seller’s expected issu-

ing cost (expected loss relative to QE(v)), expected utility gain from information

(γ(Var(v)− E((v | Ω))) and the seller’s expected utility in the three mechanisms con-

sidered in the section when information production is endogenous: (i) an optimally

designed Divide and Conquer (DaC) mechanism (Proposition 4), (ii) the fixed price

mechanism (Proposition 2) and (iii) the NIT mechanism in which the seller’s expected

utility is QE(v). In the NIT, the seller incurs no expected cost but does not gather

information. In the FP mechanism, she obtains some information but there is either

underproduction of information (when π is small) or overproduction (when π is large)

in the sense that the expected cost borne by the issuer in equilibrium is either below

or above the expected cost that she bears if she uses the optimal DaC mechanism.

Moreover, in any case, the FP is less informative than the optimal DaC, even in the

knife-edge case in which both mechanisms results in the same expected cost for the
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seller (π ≈ 0.34).

Panel A: Expected cost of the issue

Panel B: Information gain

Panel C: Expected utility

Figure 4. Expected cost, information gain and expected utilities.

This figure plots the expected cost (Panel A), information gain (Panel B) and the expected utility
at the optimal strategy as a functions π in the three described mechanisms: DaC (black solid line),
NI (gray line) and FP (dashed line). The parameters are as follows: γ = 0.1, vH = $50, vL = $10,
µ = 0.5, ϕ = 0.25, H = 15, Q = 10.

6 Robustness (to be completed)

In the previous section, we have shown that even when information production

is not observable, the DaC mechanism enables the seller to eliminate the trade-off
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between liquidity and informativeness (the mechanism in Proposition 4 is weakly

dominant for all γ > 0). In this section we discuss a few assumptions that are key

for this result.

Firstly, the DaC mechanism is sequential. This is an important difference with

related papers (e.g., Sherman and Titman (2002)). As explained in Section 4.2, it

enables the seller to elicit information production in a cost efficient way. In reality,

this sequential process may take time and generates delay. In the presence of delay

costs for the seller, the DaC mechanism might not be optimal anymore.

Secondly, we assume that the expert who buys a derivatives Cω in Stage 1 cannot

resell it before ist expiration at date 2 (as, for instance, stock options granted to

managers cannot be transferred). If he could do so then incentives constraints would

be different and the DaC mechanism might not be optimal.

Another important assumption is the absence of an active market for shares before

the derivative contracts trade (Stage 1). This assumption makes sense in the case of

IPOs but does not hold in other situations (e.g., SEOs). In the presence of an active

parallel market, the mechanism would still lead to the production of information and

its full revelation in equilibrium. However, the availability of a market where the

buyer could trade after having acquired information would make it more difficult to

incentivize his participation to Stage 1 and therefore lower expected revenues with

the DaC for the seller.

7 Conclusion

This paper develops a mechanism design approach to analyze the trade-off between

informativeness and liquidity in asset sales. We show that the seller can achieve in-

formativeness without sacrificing liquidity by separating the market for information

from the market for liquidity, via the use of a Divide and Conquer (DaC) mechanism.

By using derivative contracts in a preliminary stage, the DaC mechanism elicits in-

formation from informed investors while ensuring that uninformed investors can still

participate at fair prices in the subsequent stage. As a result, the seller obtains

information without bearing unnecessary adverse selection costs.
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Beyond the baseline case with exogenous signals, we extend the analysis to costly

and uncertain information acquisition. Even under these more demanding conditions,

the DaC mechanism can be designed to provide the right incentives for experts to

search for information and to truthfully disclose it. Crucially, this design aligns private

incentives with socially efficient levels of information production, leaving no informa-

tional rents to experts and enabling the seller to come arbitrarily close to the first-best

benchmark. In this way, our analysis demonstrates that the liquidity–informativeness

trade-off can be effectively eliminated under an appropriately structured process for

the asset sale.
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Appendix

Proof of Proposition 1. We first show that, given the specification of the deriva-

tive contracts and the actions of other buyers, it is a best response for each expert to

select contract Cw when s = w, with w ∈ L,H.

Consider first the case in which s = H. If an expert is contacted and purchases

contract CH , his profit is F + ϵ − F = ϵ > 0 with certainty. If instead the expert

purchases contract CL, the profit is −F < 0 with certainty. If the expert does not

trade in Stage 1 and waits for Stage 2, the expectation is that the next expert will

select contract CH in equilibrium, so that pissue = vH . Hence, the expected profit from

waiting until Stage 2 is zero. Purchasing contract CH is therefore a best response.

By similar reasoning, purchasing contract CL is a best response when s = L.

Now consider a non-expert. If a non-expert is contacted in Stage 1 and trades

contract CH , his expected profit is (µϵ − (1 − µ)F ), which is strictly negative if

F >
(

µ
1−µ

)
ϵ. If instead the non-expert trades contract CL, the expected profit is ((1−

µ)ϵ− µF ), which is strictly negative if F >
(

1−µ
µ

)
ϵ. Thus, if F > max{ (1−µ)

µ
, µ
1−µ

}ϵ,
not trading in Stage 1 is a best response for non-experts.

Finally, because there is full revelation of the asset payoff in Stage 1, all buyers

are indifferent between trading the asset at pissue = v and not trading in Stage 2.

Thus, trading at pissue = v is a best response.

Proof of Proposition 2.

Step 1. We first derive the equilibrium price of the FP mechanism when KFP ≤ I

experts decide to produce information. We denote this price by p∗issue(KFP ). This

is the largest price that guarantees participation of uninformed , that is, such that

uninformed buyers obtain zero expected profits. We conjecture and verify below that

vL < p∗issue(KFP ) < vH .

Let k ∈ [0, KFP ] be the number of experts who actually obtain an informative

signal (s ∈ {H,L}). We refer to experts who find information as being informed

buyers. Experts who do not find information are uninformed. Thus, the actual

number of uninformed buyers in is J + I − k. Given our assumptions, k is random
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and that Pr(k = j) = π
(
KFP

j

)
(1 − ϕ)KFP−j(ϕ)j for 0 < j ≤ K and Pr(k = 0) =

π(1− ϕ)KFP + (1− π).

As pissue ∈ (vL, vH), informed buyers demand one share when s = H and demand

no shares when s = L. Moreover as pissue must satisfy uninformed buyers’ participa-

tion constraint, the latter are at least weakly better off demanding one share. Thus,

there is excess demand in the issue whether v = vH or v = vL since J > Q. Let

qi(v) be informed buyers’ allocation and qu(v) be uninformed buyers’ allocation in

equilibrium when the asset payoff is v. We have:

1. qu(vH) = qi(vH) =
Q

J+I

2. qu(vL) =
Q

J+I−k
, qi(vL) = 0

The clearing condition implies that all shares sold are allocated to buyers, that is:

(J + I − k)qu(v) + kqi(v) = Q for ∀k ∈ [0, K] and ∀v ∈ {vH , vL}. (25)

Thus, uninformed buyers’ aggregate expected profit is:

E((J + I − k)qu(v)(v − p∗issue)) = Q(E(v − p∗issue)− E(kqi(v)(v − p∗issue))︸ ︷︷ ︸
Adverse Selection Cost

, (26)

As this aggregate expected profit is zero in equilibrium (so that uninformed buyers’

participation constraint binds), we deduce from (26) that:

Q(E(v − p∗issue)) = E(kqi(v)(v − p∗issue))︸ ︷︷ ︸
Adverse Selection Cost

. (27)

Therefore

p∗issue(KFP ) =
E(v)Q

Q− E(kqi(v))
− E(kqi(v)v)

Q− E(kqi(v))
. (28)

Now, let τ̃(k) denote the fraction of the issue allocated to informed buyers when
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v = vH : τ̃(k) ≡ k
J+I

. Given our assumptions:

E(τ̃(k)) = π

KFP∑
k=1

(
KFP

k

)
(1− ϕ)KFP−kϕk

(
k

k + J

)
. (29)

When v = vL, informed buyers do not trade. Thus, we have:

E(kqi(v)v) = E(τ̃(k))QµvH , and

E(kqi(v)) = E(τ̃(k))Qµ.

We deduce that

p∗issue(KFP ) = βvH + (1− β)vL (30)

with β = µ(1−E(τ̃(k))
1−E(τ̃(k))µ

. Observe that 0 < β < µ < 1 if E(τ(k)) > 0. Thus, vL <

p∗issue(KFP ) < vH as conjectured. Moreover, p∗issue(KFP ) < E(v), which proves the

first part of the proposition. As when private information is exogenous, informed

trading generates underpricing due to adverse selection.

Step 2. In a second step, we derive the equilibrium number of experts K∗
FP who

choose to produce information. Each expert who searches for information expects a

profit of

Πi(KFP ) ≡
E(kqi(v)(v − p∗issue(KFP )))

KFP

=
Q(E(v)− p∗issue(KFP ))

KFP

, (31)

where the second equality follows from (27). As KFP increases, Πi(KFP ) decreases.

We assume that I is large enough so that Πi(I) < c and that c is small enough so that

Πi(0) > c. Thus, ignoring the integer constraint, there is a value K∗
FP that solves

Πi(K
∗
FP ) = c. This value is the equilibrium number of experts who decide to search

for information (a larger number would result in negative expected profit for experts

and a smaller number would result in strictly positive expected profits). Using (31)

and ignoring the integer constraint, we deduce that this zero expected profit condition

for experts is equivalent to

Q(E(v)− p∗issue(K
∗
FP )) = K∗

FP × c, (32)
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where p∗issue(K
∗
FP ) is given by (28). This establishes the second claim in the proposi-

tion.

Step 3. We now compute the seller’s expected utility in equilibrium with the

FP mechanism. We first compute the informational gain for the seller given the

information revealed in the FP mechanism in equilibrium, that is, Var(v)−E(V ar(v |
Ω)).

As in the case with exogenous information, the seller obtains information via the

realization of the aggregate demand, D. In equilibrium, the aggregate demand for

the asset is D = J + I when v = vH and D = J + I − k when v = vL. Let

µ(D = J + I) = Pr(v=vH |D=J+I). Then:

µ(D=J+I) =
Pr(D = J + I | v = vH)Pr(v = vH)

Pr(D=J+I |v=vH) Pr(v=vH)+Pr(D=J+I | v = vL) Pr(v=vL)

=
µ× 1

µ× 1 + (1− µ) Pr(k = 0)
=

µ

µ+ (1− µ)(1−π+π(1−ϕ)KFP )
.(33)

Observe that µ(D = J+I) > µ. Observing thatD = J+I is good news as it indicates

the possibility that v = vH . Note also that µ(D < J+I) = Pr(v = vH | D < J+I) = 0

(a demand weaker than J+I reveals that some informed buyers did not buy the asset

and therefore v = vL). It follows that V ar(v |D<J+I)=0 and

V ar(v | D = J + I) = µ(D = J + I)(1− µ(D = J + I))(vH − vL)
2

=
µ(1− µ)

(
1− π + π(1− ϕ)K

∗
FP

)
(vH − vL)

2

(µ+ (1− µ) (1− π + π(1− ϕ)K
∗
FP ))

2

=
V ar(v)

(
1− π + π(1− ϕ)K

∗
FP

)
(µ+ (1− µ) (1− π + π(1− ϕ)K

∗
FP ))

2 . (34)

Hence:

E(V ar(v | D)) = Var(v | D = J + I) Pr(D = J + I)

= µ(D = J + I)(1− µ(D = J + I)(vH − vL)
2

=
Var(v)

(
1− π + π(1− ϕ)K

∗
FP

)
µ+ (1− µ) (1− π + π(1− ϕ)K

∗
FP )

. (35)
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Therefore, the expected informational gain of the seller if he uses the FP mechanism

is:

Var(v)− E(V ar(v | Ω)) =
γµπ

(
1− (1− ϕ)K

∗
FP

)
V ar(v)

µ+ (1− µ) (1− π + π(1− ϕ)K
∗
FP )

. (36)

Now, from (27), we deduce that the seller’s expected proceeds from the issue is:

Qp∗issue(K
∗
FP ) = QE(v)− E(kqi(v)(v − p∗issue(K

∗
FP ))) = QE(v)−K∗

FP × c, (37)

where the last equality follows from (32).

Combining (36) and (37), we deduce that the seller’s expected utility with the FP

mechanism is:

Π∗
FP = QE(p∗issue) + γ(V ar(v)− E(V ar(v | D))

= QE(v)− cK∗
FP +

γµπ
(
1− (1− ϕ)K

∗
FP

)
V ar(v)

µ+ (1− µ)
(
1− π + π(1− ϕ)K

∗
FP

) ,
which proves the third claim of the proposition.

Step 4. In a last step, we show that Π∗
FP < Πbench(K

∗) defined in (19). By

definition of K∗, Π(K∗
FP ) ≤ Π(K∗), where Π(K) is defined in (17). Hence, we have

Π∗
FP − Π(K∗) ≤ Π∗

FP − Π(K∗
FP )

= cK∗
FP (1− π) +

cπ(1− (1− ϕ)K
∗
FP )

ϕ
− γπ

(
1− (1− ϕ)K

∗
FP

)
V ar(v)

− cK∗
FP +

γµπ
(
1− (1− ϕ)K

∗
FP

)
V ar(v)

µ+ (1− µ) (1− π + π(1− ϕ)K
∗
FP )

< −cK∗
FPπ +

cπ(1− (1− ϕ)K
∗
FP )

ϕ

+ γπ
(
1− (1− ϕ)K

∗
FP

)
V ar(v)− γπ

(
1− (1− ϕ)K

∗
FP

)
V ar(v)

=
cπ

ϕ

(
1− (1− ϕ)K

∗
FP −K∗

FPϕ
)
< 0. (38)

Proof of Proposition 3.
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Step 1. We first derive the expression for E(Cissue(K) given in (15). The random

variable τstop(K) takes values from 1 to K with the following distribution:

Pr(τstop = 1) = πϕ

Pr(τstop = 2) = πϕ(1− ϕ)

· · ·

Pr(τstop = i) = πϕ(1− ϕ)i−1

· · ·

Pr(τstop = K − 1) = πϕ(1− ϕ)K−2

Pr(τstop = K) = πϕ(1− ϕ)K−1︸ ︷︷ ︸
K’s expert finds the info

+ π(1− ϕ)K
max︸ ︷︷ ︸

Info exists but no-one finds it

+ (1− π)︸ ︷︷ ︸
Info doesn’t exist

We deduce that:

E[τstop] = K(1− π) +Kπ(1− ϕ)K + πϕ
K∑
i=1

i(1− ϕ)i−1.

The last term is the sum of the firstK elements of an arithmetic-geometric progression

with the first element equals to 1, common difference 1 and the common ratio (1−ϕ).

Applying the formula for the sum of its first K terms yields

E[τstop] = K(1− π) +Kπ(1− ϕ)K

+ π

[
1− (1 + (K − 1)(1− ϕ)K +

(1− ϕ)
(
1− (1− ϕ)K

)
ϕ

]

= K(1− π) +
π(1− (1− ϕ)K)

ϕ
.

Therefore:

E(Cissue(K)) = c×K(1− π) +
π(1− (1− ϕ)K)

ϕ
. (39)

Step 2. In a second step we solve for the optimal stopping rule K∗. To this end,

let Π(K, i) be the seller expected utility before contacting the ith expert conditional
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on all previous experts having failed to find information. Obviously, Π(K, 1) = Π(K).

Moreover, for i ≤ K, we have:

Π(K, i) = ϕπi(QE(v) + γV ar(v))− c+ (1− ϕπi)Π(K, i+ 1), (40)

and for i > K, Π(K, i) = QE(v).

Eq.(41) follows from the fact that contacting the ith expert costs c whether the

expert finds or not information. Moreover, if the ith expert finds information (prob-

ability ϕπi), the seller obtains an expected utility of QE(v) + γV ar(v) because she

then moves to Stage 2 and issues the asset at price equal to its true value (Ω = {v}),
while if the expert does not find information (probability (1 − ϕπi)) and i ≤ K − 1,

the seller contacts again another experts and faces the same problem. For i > K, the

seller does not new experts and sells the asset at its expected value, without obtaining

information. Therefore Π(K, i) = QE(v) for i > K.

Observe that for i ≤ K, (41) is equivalent to:

Π(K, i)−QE(v) = ϕπiγV ar(v)− c+ (1− ϕπi)(Π(K, i+ 1)−QE(v)). (41)

The L.H.S of this equation is the difference between the expected utility of contacting

the ith expert conditional on all previous experts having failed to find information and

the expected utility of moving to Stage 2 without contacting the ith expert. At the

optimal policy K∗, it must be positive for i ≤ K∗. This implies in particular that

Π(K∗, K∗)−QE(v) = γϕπK∗V ar(v)−c > 0 since Π(K∗, K∗+1) = QE(v). Thus, K∗

cannot be larger than Kmax, the largest value of K for which γϕπKV ar(v) − c > 0,

that is the largest value of K such that:

c

γ Var(v)ϕ
< πK . (42)

The threshold Kmax ≥ 1 if and only if c
γV ar(v)ϕ

< π. Suppose this condition is

satisfied. Now suppose that K∗ < Kmax (to be contradicted). For this, it must be

the case that the seller does not find optimal to contact the K∗ + 1’s expert after
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K∗’s experts have found no information (by definition of K∗). However:

Π(K∗, K∗+1)−QE(v) = ϕπiγV ar(v)−c+(1−ϕπi)(Π(K
∗, K∗+1)−QE(v)) > 0, (43)

where the last inequality follows from the fact that K∗ +1 ≤ Kmax if K∗ < Kmax. A

contradiction. Hence we have established that K∗ = Kmax when c
γ Var(v)ϕ

< π.

The expression for Π∗
bench follows from the expression for Π(K∗) given by 17)) and

the expressions E(Cissue(K
∗)) and Pfailure(K

∗). When c
γV ar(v)ϕ

> π, it is not optimal

for the seller to contact any experts since forK∗ = 1, Π(K∗, K∗) = ϕπγ Var(v)−c < 0.

The last part of the proposition follows.

Proof of Proposition 4.

The case in which c > πϕγ Var(v) is straightforward. In this case, we have shown

in the proof of Proposition 7 that even in the absence of informational frictions (truth-

telling and moral hazard constraints), the seller maximizes her expected utility using

the NIT mechanism. Thus, this is also the case in the presence of frictions since these

frictions add Incentive Compatibility constraints to the seller’s optimization problem.

Now consider the case in which c ≤ πϕγ Var(v)

Step 1. We first verify that the truth-telling conditions (21) are satisfied. For

this, observe that given the specifications of the derivatives contracts, we have:

R(H,H) = F + ε+ fiH − F = ε+
c

ϕπi

> 0.

Similarly R(L,L) = ε+ c
ϕπi

> 0. Moreover, as explained in the text R(U,U) = 0.

Now consider the case in which an expert receives a signal si = U . If the expert

deviates and reports si = H, he obtains:

R(U,H) = µ

(
ε+

c

ϕπi

)
− (1− µ)F < R(U,U), (44)
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where the last inequality follows from R(U,U) = 0 and the fact that

F > max

{
µ

1− µ
,
1− µ

µ

}(
ε+

c

ϕπKmax

)
> max

{
µ

1− µ
,
1− µ

µ

}(
ε+

c

ϕπi

)
where the first inequality is the condition given in the text and the second follows

from πi > πKmax . If instead the expert deviates and reports si = L, he obtains:

R(U,L) = (1− µ)

(
ε+

c

ϕπi

)
− µF < R(U,U), (45)

using the same reasoning as for the first deviation. Hence, we deduce that for si = U ,

the truth-telling constraints are satisfied.

Now consider si = H. If the expert is truthful he obtains R(H,H) = ε+ c
ϕπi

> 0.

If he deviates he obtains either R(H,U) = 0 (since then he cannot participate to

Stage 2 and there is no payment by the seller in Stage 1) or R(H,U) = −F since he

buys contract L at F and receives a zero payoff on this contract with certainty. Thus,

R(H,H) > R(H,U) > R(H,L) and it is a best response for the expert to be truthful.

Using the same logic, we obtain: R(L,L) > R(L,U) > R(L,H) and therefore an

expert receiving si = L reports σi = L.

Step 2. Second, we check that the participation constraint (23) is satisfied. This

constraint imposes:

πiϕ(µR(H,H) + (1− µ)R(L,L)) + (1− πiϕ)R(U,U) ≥ c, ∀i ≤ K. (46)

Substituting R(H,H), R(L,L) and R(U,U) by their values, we obtain that:

πiϕ(µR(H,H) + (1− µ)R(L,L)) + (1− πiϕ)R(U,U) = ϵ+ c.

Thus, as ϵ > 0, (23) holds. Last, participation constraints (24) hold since R(si, si) ≥ 0

for all si ∈ {H,L, U}.

Step 3. We show that the stopping rule for the seller is the same as in the

benchmark case for ϵ small enough. In equilibrium, only experts participate to Stage

1. Moreover, they all produce information when contacted by the seller and report
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truthfully. Last, the expected payment to each buyer contacted in Stage 1 is c + ϵ.

Thus, in choosing the stopping rule, the seller faces the same problem as in the

benchmark case with c replaced by c + ϵ. Hence, as in the benchmark case, it is

optimal for the Seller to stop after contacting the K∗
DaCth buyer in Stage 1 where

K∗
DaCth is the largest K such that γϕπK∗

DaC
V ar(v) − c − ϵ > 0. Thus, for ϵ small

enough, K∗
DaC = K∗.

Step 4. Finally in the last step, we compute the seller’s expected utility. To

this end, we compute first the expected cost of the issue for the seller. In the DaC

mechanism considered in Section 5, this expected cost is equal to the expected profit

(gross of the cost of information production) of the buyer who purchases a derivative

contract in Stage 1. Since buyers are truthful, conditional on buying a contract (that

is receiving a signal si = H or si = L), they expect a profit of c
ϕπi

+ ϵ. Moreover,

the likelihood that this expected profit is obtained by the ith buyer is πϕ(1 − ϕ)i−1

for i = 1, ..., Kmax. Moreover a buyer who does not find information obtains a zero

profit. Therefore, we have

E(Cissue) = c
Kmax∑
i=1

πϕ(1− ϕ)i−1

ϕπi

+ ϵϕπ
Kmax∑
i=1

(1− ϕ)i−1

= c
Kmax∑
i=1

(
(1− ϕ)i−1π + (1− π)

)
+ ϵϕπ

Kmax∑
i=1

(1− ϕ)i−1

= cKmax(1− π) +
cπ(1− (1− ϕ)K

max
)

ϕ
+ ϵπ(1− (1− ϕ)i−1)

= E(Cbench
issue ) + ϵπ(1− (1− ϕ)i−1),

where E(Cbench
issue ) is the expected cost of the issue in the benchmark model given in

(39).

Moreover, as explained in the text, for a given realization of buyers’ signals in

Stage 1, the seller has exactly the same information as in the benchmark case since

buyers report their signals truthfully and only experts participate to Stage 1. Thus,

the seller’s expected informational benefit is as in the benchmark case. We deduce
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from these observations that:

Π∗
DaC = Q E(v)− cKmax(1− π)−

cπ
(
1− (1− ϕ)K

max)
ϕ

− γπ
(
1− (1− ϕ)K

max)
Var(v)− ϵπ

(
1− (1− ϕ)K

max−1
)

(47)

= Π∗
bench − γπ

(
1− (1− ϕ)K

max)
Var(v)− π

(
1− (1− ϕ)K

max−1
)
ϵ. (48)
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