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Abstract

We investigate how AI-driven investors, modeled via deep reinforcement learning, operate in

a calibrated financial market with realistic return predictability and endogenous price impact.

We examine whether these agents can learn to detect and exploit return predictability from

public signals, decode prices to infer latent demand, and adjust for price impact. To evaluate

performance, we compare AI traders to a rational benchmark representing the optimal policy

under full knowledge of the data generating process. In simulations, AI traders qualitatively

match the benchmark. Quantitatively, however, they fall short when many interact. The pres-

ence of other AI traders injects noise into the price process through their exploration, distorting

the portfolio-return signals each agent learns from and thus impairing learning. This negative

learning externality reduces trading profits, lowering market efficiency and liquidity relative to

the benchmark. Our findings suggest caution when extrapolating from partial-equilibrium anal-

yses of AI trading’s profitability and impact on market quality.
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1 Introduction

Financial markets have undergone profound changes due to advances in computing power

and algorithmic sophistication. Early algorithmic trading, rooted in fixed, rule-based paradigms,

has evolved into data- and computation-intensive machine learning systems capable of placing

orders on the market and adjusting to changing market conditions. Recent evidence suggests that

machine learning can improve price discovery by extracting information relevant to predicting future

returns and by better analyzing corporate success, thereby making stock prices more informative

(e.g., Bai et al., 2016; Dugast and Foucault, 2018; Farboodi et al., 2022, among others).

Reflecting these advances, algorithmic trading has become pervasive in financial markets

(SEC, 2020, p. 5). Both retail and institutional investors use algorithms to process market infor-

mation, assess trading opportunities, and implement trading decisions in real time (SEC, 2020,

p. 30,34). This raises concerns that widespread adoption of similar trading strategies may be a

source of fragility, impairing market liquidity during shocks (Federal Reserve Board, 2022). While

such systemic risks are still debated, a more immediate question emerges: how does increased

adoption of AI-based trading reshape the very market structure and return patterns it initially

sought to exploit? Do AI traders help markets achieve greater efficiency and resilience? Or do their

interactions generate new frictions that degrade market quality?

We contribute to this debate by examining a learning friction that can undermine the

effectiveness of algorithmic trading and degrade stock market performance. The computer science

literature shows that reinforcement learning algorithms face significant challenges in multi-agent

settings: the environment becomes non-stationary as each agent’s learning both influences and

is influenced by others’ behavior (Lowe et al., 2017; Albrecht et al., 2024). In financial markets,

algorithms learn from price signals that reflect the collective behavior of all market participants.

We refer to the noise generated by one agent that interferes with the learning of others as a learning

externality. Understanding this externality in a financial market setting is central to assessing both

the performance of AI-based trading strategies and their systemic market impact. Yet empirical

identification of such frictions is inherently difficult: without a clear counterfactual, it is nearly

impossible to determine how AI traders influence each other and the market using observational

market data alone.
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To overcome these difficulties, we adopt an experimental approach that embeds AI-based

traders—modeled via deep reinforcement learning (DRL) algorithms—within a theoretically grounded

and empirically calibrated asset pricing framework. In this setting, DRL agents learn to trade with-

out prior knowledge of the data-generating process and interact in equilibrium through their price

impact. This analysis requires a conceptual framework that goes beyond the current state of the

art in economics, finance, and computer science.

Our approach departs from existing literature by combining insights from two separate fields

within an equilibrium framework. The computer science literature applies reinforcement learning to

portfolio selection problems,1 while the finance literature demonstrates machine learning’s ability

to detect return predictability from historical data.2 Both approaches, however, treat algorithmic

agents as atomistic and price-taking, deploying strategies on fixed historical data. Unlike these

partial-equilibrium frameworks, we model traders as learning and optimizing within a market where

prices respond endogenously to demand. This equilibrium approach allows us to study how AI

traders’ learning is affected by their own price impact and by the noise generated by others.

To generate a realistic learning and trading environment, we nest our DRL agents in a

demand-based asset pricing model based on the approach of Koijen and Yogo (2019) in which

the marginal investor’s asset demand is calibrated from data.3 To maintain tractability while

preserving realism, we focus on ten U.S. equities spanning a broad range of characteristics and

return dynamics. For each stock, DRL agents solve the one-period portfolio allocation problem

between that risky asset and a riskless asset, learning over time how to respond to market signals

and their own price impact.

This demand system implies that stock prices reflect both persistent firm characteristics

(e.g., book-to-market, profitability, market beta) and latent institutional demand. Return pre-

dictability arises from partial mean reversion in both observable and unobservable components.

We examine whether AI traders can uncover and exploit this structure, and how their trading

strategies affect market outcomes. In particular, if AI agents can infer latent demand from prices,

1See, among others, Cartea et al. (2021); Jiang et al. (2017); Yang et al. (2018, 2020); Zhang et al. (2020); Wang
and Zhou (2020); see also Hambly et al. (2023) for a literature review.

2E.g., Gu et al. (2020); see also Vives (2019), Nagel (2021) and Kelly and Xiu (2023) for comprehensive reviews.
3Recent work explores alternative demand estimation methods (e.g., van der Beck, 2022; Fuchs et al., 2024). While

the quantification of our effects may be affected by the specific demand specification employed, our qualitative results
on learning and equilibrium outcomes should not.

3



they may generate excess returns—while modifying the very patterns they aim to exploit. This

framework also enables us to evaluate how AI trading influences market efficiency and liquidity as

more AI agents interact or grow in scale.

Most existing work on reinforcement learning in economics and finance employs the tabular

Q-learning framework introduced by Watkins (1989) to model economic agents (e.g., Calvano et al.,

2020; Colliard et al., 2023; Dou et al., 2023; Abada and Lambin, 2023; Johnson et al., 2023). While

these algorithms, designed for discrete state and action spaces, reduce computational complexity,

this discretization can distort the learning of optimal portfolio policies in settings with return

predictability. In such environments, both relevant state variables (such as predictive signals from

prices or stock characteristics) and optimal actions (portfolio weights) are inherently continuous.

To address this, we employ deep deterministic policy gradient (DDPG) algorithms, which support

continuous state and action spaces through neural network function approximation (Lillicrap et al.,

2015; Kilinc and Montana, 2018). This enables our AI traders to learn smooth portfolio policy

functions and generalize across previously unseen market conditions, capabilities that tabular Q-

learning cannot provide.

Our AI agents must identify and exploit return predictability solely through their trading

experience, without prior knowledge of market structure. This leads to a central question: how can

we evaluate the extent to which AI traders are learning? To address this, we introduce a theoretical

benchmark in which rational speculators can perfectly infer latent demand from prices, understand

the underlying price formation process, and anticipate their price impact. Both the benchmark

and the algorithms solve a standard portfolio allocation problem between a risky and a riskless

asset to maximize one-period returns. Since they operate under identical conditions–facing the

same information set, trading constraints, and objectives–any difference in behavior must reflect

algorithmic learning frictions. The benchmark thus represents the upper bound of what algorithms

could achieve if they were able to learn optimal behavior from experience.

The theoretical benchmark delivers three propositions. First, optimal portfolio weights

depend only on a single composite signal, z, which compresses all publicly available information into

a sufficient statistic for next-period returns. The optimal portfolio weight rises with z, falls as each

trader’s portfolio size grows larger, and rises when the same aggregate capital is split across more

competing traders. Second, market efficiency (measured by the share of return variance unexplained
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by public signals) improves when either total wealth or the number of rational speculators increases,

as their trades remove predictable patterns. Third, liquidity (inversely related to price response

to transient supply shocks) likewise improves as better-capitalized or more numerous speculators

trade more aggressively to absorb supply shocks.

Our experimental results show that AI traders’ portfolio policies exhibit strong qualitative

alignment with the theoretical benchmark. In line with the theoretical prediction, AI traders’

portfolio weights increase monotonically in the sufficient statistic z. Portfolio weights also decrease

with the trader’s own size—reflecting internalization of price impact—and increase with the number

of competing traders, as greater competition dilutes individual influence on prices. AI traders also

improve market outcomes: they enhance market efficiency by reducing the share of returns explained

by public signals and improve liquidity by attenuating price responses to transient supply shocks,

in ways qualitatively consistent with the theoretical benchmark.

However, as the number of AI traders increases or their collective wealth share grows,

systematic quantitative deviations from the benchmark emerge. While the direction of policy

responses remains consistent with theory, the magnitude becomes distorted. AI traders scale down

their portfolio shares too little when their size grows and scale up positions too aggressively as

competition intensifies. These behaviors degrade portfolio performance relative to the rational

benchmark and generate persistent inefficiencies. Specifically, return predictability remains elevated

and prices react more sharply to transitory supply shocks than in the benchmark.

Diagnostics from controlled simulations reveal that these quantitative gaps are driven by a

negative learning externality: each agent’s exploratory trades inject order flow orthogonal to public

information, adding variance to prices and diluting the learning signals available to others. Since no

agent observes the identity or strategy of its peers, it cannot disentangle its own price impact from

noise created by others nor fully adjust to the systematic co-movement between peers’ demand and

fundamentals that will prevail once learned policies are deployed. The result is a learning friction

that reduces individual performance and dampens market-level benefits of algorithmic learning.

These findings highlight the value of studying AI trading within an equilibrium framework:

without it, partial-equilibrium back-tests may overstate both the effectiveness of AI-based trading

strategies and their market impact. In isolation, AI agents may appear to learn successfully and

enhance market efficiency, but when multiple agents interact and adapt jointly, endogenous feedback
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and learning frictions emerge that degrade performance and reduce efficiency gains. Capturing these

dynamics requires a framework where agents endogenously affect the environment they learn from,

something partial-equilibrium approaches reliant on fixed historical data cannot account for.

We contribute to the nascent literature on AI-based trading and market quality by iden-

tifying a novel learning externality that emerges from AI trader interactions in equilibrium. This

literature has revealed important behavioral patterns in algorithmic decision-making that deviate

from classical predictions. Colliard et al. (2023) demonstrate that Q-learning algorithms acting

as market makers in a Glosten-Milgrom framework learn to deal with adverse selection, but fail

to achieve competitive pricing because of noise in the reward and limited exploration of the state

space. Conversely, Dou et al. (2023) show that Q-learning algorithms possessing fundamental in-

formation can learn to collude without explicit coordination or communication. They demonstrate

that collusive behavior can be sustained by two distinct mechanisms, a price-trigger strategy and

a learning bias causing AI traders to become overly conservative. Yang (2024) studies Q-learning

algorithms’ coordination in a speculative attack framework à la Morris and Shin (1998). Barberis

and Jin (2023) emphasize biases in the portfolio choice of Q-learning algorithms. Lopez-Lira (2025)

tests the ability of Large Language Models (LLMs) to serve as different types of trading agents (for

instance, value or momentum investors, market makers) in an experimental setting.

Our work differs fundamentally from these studies in both focus and mechanism. Method-

ologically, we advance the literature by embedding deep reinforcement learning agents within an

empirically calibrated demand-based asset pricing framework. This approach allows us to study

algorithmic learning and portfolio policies in realistic market environments with endogenous price

formation and latent demand dynamics. In this respect, we are closely related to the strand of lit-

erature exploring how machine learning techniques (Nagel, 2021; Kelly and Xiu, 2023; Kelly et al.,

2024) and reinforcement learning (Heaton et al., 2017; Yang et al., 2018, 2020; Zhang et al., 2020)

can be used to detect signals from the data and implement profitable trading strategies. However,

we differ from this literature in that we focus on the predictability of returns in an equilibrium

setting, where prices respond endogenously to the portfolio choice of reinforcement learning agents.

Substantively, we investigate how algorithmic learning itself becomes impaired through

multi-agent interactions, identifying a learning externality where each agent’s exploratory trades

inject noise into the price process, contaminating the learning signals available to others and degrad-
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ing overall performance. Importantly, our experimental design prevents tacit collusion by restricting

the state space to exogenous variables that do not depend on past trading decisions. This ensures

that the market-wide effects we observe are due to learning frictions, not strategic coordination.

Our contribution lies in showing that even when the experimental design prevents coordination, the

collective learning of algorithms can still undermine market efficiency through purely informational

channels–a mechanism distinct from the competition failures or collusion highlighted in prior work.

The rest of the paper is organized as follows. Section 2 introduces the asset-pricing envi-

ronment and derives the rational expectations benchmark, highlighting how speculators with full

knowledge of the price-formation process behave. Section 3 describes the empirical calibration of

the market and investor demand, the construction of the state variables, and the reinforcement

learning implementation. Section 4 presents our experimental results, comparing AI traders to

the rational benchmark in terms of portfolio policies and market outcomes. It also identifies the

learning externality that arises from AI interaction and quantifies its impact. Section 5 discusses

policy implications. Section 6 concludes.

2 The market environment

2.1 Overview

In this section, we introduce a market environment featuring return predictability and price

impact, both arising endogenously from a representative investor’s demand function. Although our

numerical experiments with AI traders in Section 4 focus on repeated one-period portfolio choices

involving a single risky asset and a riskless asset, we embed these choices in a dynamic framework;

this adds realism by ensuring that portfolio returns depend on future price changes (capital gains)

rather than dividends alone. At the same time, the one-period, single-asset setting allows us to

isolate the core algorithmic learning challenges under different market conditions (such as varying

assets, trader competition, and assets under management) while avoiding the complexities inherent

in fully dynamic, multi-asset portfolio optimization.

In the remainder of this section, we first derive asset prices with a representative investor

and a set of J traders. These traders will later be interpreted as either rational or AI-driven,

but at this stage their portfolio choices are exogenous. Then we discuss how traders might learn
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from prices and exploit return predictability embedded within the data-generating process. To this

end, we introduce a rational expectations benchmark, which serves as a baseline for evaluating the

performance of AI-driven traders in Section 4.

2.2 Representative investor and equilibrium prices

We consider a market for N risky assets and a risk-less asset. Time is discrete and runs

from 0 to 8. For each risky asset n “ 1, . . . , N , we denote its price and dividend per share in period

t with Pn,t and Dn,t, respectively, and its number of shares with Sn, which we assume constant

over time. Risky asset prices are determined endogenously, as explained below. The risk-free asset

is elastically supplied at an exogenous gross return Rf constant over time.

The market is populated by a representative investor and J traders. Let Sj
n,t denote the

number of shares of asset n held by the j-th trader at time t. The aggregate holdings of asset n

across the J traders are given by Sa
n,t “

řJ
j“1 S

j
n,t and the residual supply held by the representative

investor is S̃n,t “ Sn ´ Sa
n,t. Throughout the paper, we use lower-case letters to denote logarithms

and ∆ to indicate first differences.4

To model the representative investor’s asset demand, we adapt the framework of Koijen

and Yogo (2019) and specify the following log-exponential form:

wn,t

w0,t ` γt
“ δn,t; δn,t “ exp

˜

β0ppn,t ` snq `

K´1
ÿ

k“1

βkxk,n,t ` βK ` ϵn,t

¸

, (1)

where wn,t is the representative investor’s portfolio weight in asset n, w0,t is the weight in the risk-

free asset, and γt represents the fraction of assets consumed by the representative investor, which

we define below. The variables txn,k,tu
K´1
k“1 represent publicly observable characteristics for asset n

(e.g., book-to-value, profitability, etc.). The term ϵn,t represents the representative investor’s latent

demand for asset n, capturing investor sentiment and other demand components not explained by

asset fundamentals. Koijen and Yogo (2019) document that latent demand accounts for a significant

portion of cross-sectional variation in stock returns.

4For example, pn,t “ logpPn,tq represents the log price, and ∆Sa
n,t “ Sa

n,t ´ Sa
n,t´1 denotes the change in the J

traders’ aggregate holdings.
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We assume that stock characteristics and latent demand follow the autoregressive processes:

xk,n,t`1 “ ck,n ` ρk,nxk,n,t ` ηk,n,t`1, (2)

ϵn,t`1 “ cϵ,n ` ρϵ,nϵn,t ` ξn,t`1, (3)

where ρk,n, ρϵ,n P p0, 1q are the autoregressive coefficients, and ηk,n,t`1 and ξn,t`1 are mean-

zero normally distributed innovations, independent over time and across variables, with variances

V arpηk,n,tq “ σ2
ηk,n

, V arpξn,tq “ σ2
ξn
.

To conduct our numerical experiments in Section 4, we estimate the representative investor

demand coefficients in Eq. (1) and calibrate the parameters of the processes in Eqs. (2)–(3), as

detailed in Section 3.

The representative investor’s wealth A evolves according to

At “

N
ÿ

m“1

S̃m,t´1 pPm,t ` Dm,tq ` S0,t´1Rf ` Γt, (4)

where S0,t´1 is the units of the risk-free asset held at time t ´ 1 and Γt is an exogenous inflow of

resources which is specified below. Similarly, trader-j’s wealth Aj evolves according to

Aj
t “

N
ÿ

m“1

Sj
m,t´1 pPm,t ` Dm,tq ` Sj

0,t´1Rf . (5)

The market clearing condition for each stock n reads as follows:

Atwn,t ` Pn,tS
a
n,t “ Pn,tSn. (6)

We initially take the J traders’ holdings tSj
n,tu

J
j“1 as given and derive the price function for each

security, as implied by (i) the representative investor’s demand in Eq. (1), (ii) the market clearing

condition in Eq. (6), and (iii) the asset dynamics of both the representative investor and the J

traders’ in Eqs. (4)-(5) together with the respective budget constraints. In Appendix A.1, we

derive the resulting equilibrium price function as
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pn,t “
β0sn ´ s̃n,t `

řK´1
k“1 βkxk,n,t ` βK ` ϵn,t ` log

`

DM,t ` S0,t´1Rf ` Γt ` Sa
0,t´1Rf ´ Sa

0,t

˘

1 ´ β0
,

(7)

where the aggregate dividend DM,t is defined as

DM,t “

N
ÿ

m“1

SmDm,t.

We make the following additional assumptions to enhance analytical tractability:

Assumption 1. The exogenous change in the representative investor’s assets equals Γt “ Sa
0,t ´

Sa
0,t´1Rf .

Assumption 2. The representative investor’s consumption at time t equals γtAt “ λpDM,t `

S0,t´1Rf q, where λ P p0, 1q is a constant.

Assumption 3. Aggregate dividends grow deterministically at the constant rate g: DM,t “ p1 `

gqDM,t´1.

Assumption 4. The parameters λ, g,Rf satisfy the condition 1 ` g ą Rf p1 ´ λq.

These assumptions are imposed for analytical convenience. Assumption 1 eliminates in-

direct cross-asset price effects from the J traders’ positions in the risk-free asset, simplifying the

equilibrium price expression in Eq. (7) to depend only on DM,t `S0,t´1Rf . This is justified by our

focus on single risky asset portfolio decisions, where cross-asset interactions are irrelevant. Assump-

tion 2 allows expressing DM,t ` S0,t´1Rf recursively as a function of past dividends (see Eq. (A5)

in Appendix A.1). Assumption 3 removes aggregate uncertainty from returns, reducing noise in AI

investors’ learning. Finally, Assumption 4 ensures time-invariance of the price function as t Ñ 8.

In Appendix A.1, we prove that under Assumptions 1–4, the price function in Eq. (7)

simplifies to

pn,t “ ´sn `
´ log

`

1 ´ αa
n,t

˘

`
řK´1

k“1 βkxk,n,t ` βK ` ϵn,t ` dM,t ` ϕ

1 ´ β0
, (8)
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where αa
n,t “

Sa
n,t

Sn
is the fraction of asset supply held collectively by the J traders, and

ϕ “ log

ˆ

p1 ` gq

1 ` g ´ Rf p1 ´ λq

˙

; dM,t “ logpDM,tq.

Equation (8) has a straightforward interpretation. The price of asset n is inversely related to

its supply sn, and it is positively related to its observable characteristics, weighted by the demand

coefficients
řK´1

k“1 βk xk,n,t. Additionally, it increases with the aggregate dividend dM,t. All these

variables are publicly observed.

The price is also influenced by the latent demand ϵn,t. Although latent demand is unob-

servable, in the next subsection we show how investors who understand the price-formation process

can combine the observed price with other public signals to infer this latent demand.

Finally, the demand from the J traders enters the price through αa
n,t. From Eq. (8), the

elasticity of price with respect to the residual supply held by the representative investor is5

´
Bpn,t

B logpS̃n,tq
“

1

1 ´ β0
.

Hence, if the J traders purchase an additional 1% of the asset supply, the price Pn,t rises by

1{p1 ´ β0q%. Intuitively, when β0 is close to one, the representative investor’s demand is less

elastic, increasing the price impact faced by the J traders.

2.3 The rational expectations benchmark as a learning frontier

In this subsection, we consider the case where the J traders introduced previously have

rational expectations, and refer to them as “speculators.” These speculators operate in the same

market environment, face the same trading protocol, and observe the same public information

as the AI traders introduced later in Section 3. The key distinction is that speculators have

full knowledge of the data generating process: they understand the price formation mechanism

described in Section 2.2, including the dynamics of the exogenous processes in Eqs. (2)–(3) and the

pricing rule in Eq. (8). They are able to decode the information embedded in prices and anticipate

the price impact of their trades, thereby fully internalizing both return predictability and price

5Notice that log
`

1 ´ αa
n,t

˘

“ log
´

Sn´Sa
n,t

Sn

¯

“ log
´

S̃n,t

¯

´ sn.
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impact in their optimization (as explained later in this section).

The purpose of this rational expectations (RE) setup is not to model how human traders

behave, nor to suggest that such fully informed optimization is within reach of institutional in-

vestors. Rather, it serves as a theoretical “learning frontier”: an upper bound on the performance

that could, in principle, be achieved by model-free AI traders if they were to perfectly infer the

structure of the market environment through experience.

This benchmark plays a central role in our numerical experiments in Section 4, where we

evaluate how closely the behavior of reinforcement learning agents approximates this theoretical

outcome. It allows us to quantify the performance gaps that emerge in practice—gaps we later

attribute to learning frictions, such as the externality arising in multi-agent learning. A detailed

discussion of these mechanisms is deferred to Section 4.

Setup Speculators enter the market at time t, allocate their wealth between risky asset n and

the riskless asset to maximize next period wealth, and exit at time t ` 1. In the remainder of this

section, we use the notation αS
n,τ for the fraction of the supply of shares held collectively by the J

speculators at time τ (as opposed to the generic αa
n,τ used in Section 2.2, where the J investors’

holdings were taken as given).

Because they enter at time t and liquidate their holdings at time t ` 1, αS
n,t is determined

in equilibrium, whereas αS
n,t`1 “ 0. We first analyze the learning and predictability aspects of

the data-generating process, then describe the trading game in more detail and characterize its

equilibrium.

Predictability and learning in the data generating process By setting αa
n,t “ αS

n,t and

αa
n,t`1 “ αS

n,t`1 “ 0 in Eq. (8) to compute prices at t and t ` 1, and using Eqs. (2)–(3), we can

compute the conditional expectation of the capital gain as

Et

ˆ

Pn,t`1

Pn,t

˙

“ exp

˜

log
`

1 ´ αS
n,t

˘

´
řK´1

k“1 βkp1 ´ ρk,nqxk,n,t ´ p1 ´ ρϵnqϵn,t

1 ´ β0

¸

Φn, (9)

where Φn is a constant value defined in Eq. (A13) in the Appendix. Eq. (9) shows that mean

reversion in the observable characteristics txk,n,tu and in the latent demand ϵn,t gives rise to return

predictability. However, ϵn,t is not observable by investors, who must infer it from market data.
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In a RE equilibrium where traders can condition their asset demand on public information and

the equilibrium price itself, the equilibrium price in Eq. (8) fully reveals ϵn,t.
6 Therefore, in a RE

equilibrium, investor expectations of capital gains coincide with the full-information in Eq. (9).

This learning process, though standard in RE models, is difficult to replicate with algorithms

due to its fixed-point nature: the equilibrium price depends on speculators’ demands, but each

speculator’s demand is itself a function of that same equilibrium price. In a reinforcement learning

framework, such as the one developed in the next section, the agent’s action depends on the current

state which must be fully realized before the action is taken. Hence, using the equilibrium price as

an input to each trader’s policy introduces circular logic: the policy would depend on a price that

itself depends on the policy.

Putting rational and AI traders on equal footing To address this conceptual issue, we

introduce a “pre-trade” price P ˚
n,t that incorporates public information, namely txn,k,tu

K´1
k“1 , dM,t,

and the representative investor’s latent demand ϵn,t, but not the time-t trading decisions of the J

speculators. Hence, P ˚
n,t is exogenous to the speculators’ actions in period t. We define the log of

the pre-trade price setting αS
n,t “ 0 in Eq. (8):

p˚
n,t “ ´sn `

řK´1
k“1 βkxk,n,t ` βK ` ϵn,t ` dM,t ` ϕ

1 ´ β0
. (10)

Accordingly, we let In,t “

!

p˚
n,ttxn,k,tu

K´1
k“1 , dM,t

)

denote the public information set. Since

p˚
n,t depends on ϵn,t, investors who understand the pricing rule can invert Eq. (10) to perfectly

recover the latent demand:

E pϵn,t | In,tq “ p1 ´ β0q
`

p˚
n,t ` sn

˘

´

˜

K´1
ÿ

k“1

βkxk,n,t ` βK ` dM,t ` ϕ

¸

“ ϵn,t, (11)

where Ep¨q denotes the rational expectations operator. Thus, p˚
n,t fully reveals ϵn,t just as the

equilibrium price would in a classical RE model, but p˚
n,t is determined prior to time-t trading by

the speculators.

This design places rational speculators and AI traders—implemented as reinforcement-learning

6We are implicitly assuming the standard RE arguments: the price function is common knowledge, speculators
correctly anticipate other traders’ demand, and therefore correctly infer the value of αS

n,t. Under these assumptions,
speculators can invert Eq. (8) to recover the latent demand.
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algorithms—on an equal footing with respect to observable information. Both agent types first ob-

serve the exogenous signals In,t and then choose their portfolios. This setup lets us test whether AI

traders can decode prices to infer latent demand while avoiding the fixed-point problem of learning

from the equilibrium price.

The trading game The trading game unfolds as follows. Each speculator enters the market

at t with initial wealth Aj
t “ As

t , where As
t “ ωP ˚

n,tSn, and ω, J satisfy ω ă 1{J. That is, each

speculator has the same initial wealth, and collectively, the J speculators’ wealth equals a fraction

Jω of the pre-trade market capitalization of asset n. Next, each speculator observes the public

information set In,t and, conditional on this information, speculators simultaneously choose their

portfolio share θjn,t in the risky asset n, subject to no-short-selling and no-borrowing constraints.

Each speculator aims to maximize the expectation of the portfolio return

Rj
p,t`1 “ Rf ` θjn,t pRn,t`1 ´ Rf q , (12)

where Rn,t`1 “
Pn,t`1

Pn,t
` DYn,t`1, and DYn,t`1 “

Dn,t`1

Pn,t
denotes the dividend yield. In the rest of

the paper we assume the dividend yield is exogenous and i.i.d. over time with mean DY n.
7

Formally, a speculator’s strategy is a mapping θjn : I Ñ r0, 1s, which, given the public

information set, specifies what fraction of wealth to invest in the risky asset. No-short-selling

implies θjn,t ě 0, and no-borrowing implies θjn,t ď 1.

Given the speculators’ chosen portfolio shares tθjn,tu
J
j“1, the asset price is determined ac-

cording to Eq. (8). We substitute Sj
n,t “

As
t θ

j
n,t

Pn,t
into Eq. (8), obtaining an implicit relationship in

terms of tθjn,tu:

0 “ β0ppn,t ` snq ´ log

˜

SnPn,t ´

J
ÿ

j“1

θjn,tA
s
t

¸

`

K´1
ÿ

k“1

βkxk,n,t ` βK ` ϵn,t ` dM,t ` ϕ. (13)

7This assumption is for simplicity and to focus on predictability of capital gains. See Koijen and Yogo (2019)
for evidence that dividend yields explain only 0.4% of the cross-sectional variance of stock returns, suggesting that
capital gains drive most price variation.

14



Because the speculators liquidate their positions at time t ` 1, we have

pn,t`1 “ ´sn `

řK´1
k“1 βkxk,n,t`1 ` βK ` ϵn,t`1 ` dM,t`1 ` ϕ

1 ´ β0
. (14)

When choosing their portfolio share, a rational speculator correctly anticipates the effect of

their price impact on the expected portfolio return:

BEpRj
p,t | In,tq

Bθjn,t
“ E

«

Pn,t`1

Pn,t

˜

1 ´
θjn,t
Pn,t

BPn,t

Bθjn,t

¸

| In,t

ff

` DY n ´ Rf . (15)

Taking other traders’ strategies as given, we can calculate the price impact factor in Eq. (15) from

implicit differentiation of Eq. (13) as follows:

θjn,t
Pn,t

BPn,t

Bθjn,t
“

θjn,tA
s

p1 ´ β0qSnPn,t ` β0
řJ

i“1 θ
i
n,tA

s
. (16)

Information compression to a sufficient statistic For expositional simplicity we define “ad-

justed market equity” as

me˚
n,t “ p˚

n,t ` sn ´
dM,t

1 ´ β0
, (17)

and we rewrite speculators’ information set more compactly as In,t “ tme˚
n,t, txn,k,tu

K´1
k“1 u. This is

without loss of generality because (i) by observing tme˚
n,t, txn,k,tu

K´1
k“1 u investors can fully learn the

latent demand,8 and (ii) neither the expected capital gain in Eq. (9) nor the price impact factor in

Eq. (16) depend on dM,t.
9

We define zn,t as

zn,t “ γ0 `

K´1
ÿ

k“1

γkxk,n,t ` γKme˚
n,t, (19)

for some coefficients γ0, . . . γK shown in Eq. (A15) in the Appendix. The proof of Proposition 1

8Notice that Eq. (10) and Eq. (17) imply

p1 ´ β0qme˚
n,t ´

˜

K´1
ÿ

k“1

βkxk,n,t ` βK ` ϕ

¸

“ ϵn,t, (18)

9While immaterial in this RE setting where inference is exact, this change of variable becomes useful in later
sections when we implement the model algorithmically. In particular, scaling p˚

n,t by dM,t removes the trend in
aggregate dividends and makes the variables stationary. This improves the stability of the reinforcement learning
algorithm, which benefits from stationary inputs.
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below establishes that zn,t is a sufficient statistic for In,t with respect to the future return on asset-

n, and is such that the expected capital gain increase in zn,t. Hence, each speculator’s optimal

weight in the risky asset depends on their information set only through zn,t.

Equilibrium portfolio choice An equilibrium of the trading game is a vector of portfolio shares

tθjn,tu that maximises each speculator’s expected utility given their information set In,t and the

price functions in Eqs. (13)–(14). In the following proposition, “increasing” and “decreasing” mean

weakly increasing and weakly decreasing as no-short-sale or borrowing constraints may bind at

θjn,t “ 0 or 1.

Proposition 1 (Portfolio choice).

(i) Existence and uniqueness. An equilibrium exists, is unique, and is symmetric.

(ii) Linear sufficiency. The equilibrium portfolio share depends only on the sufficient statistic

zn,t, θn,t “ θnpzn,tq, and is increasing.

(iii) Comparative statics. For all values of zn,t :

(a) The equilibrium portfolio share is decreasing in each speculator’s wealth ω ( size effect).

(b) The equilibrium portfolio share is increasing in the number of speculators J holding

aggregate speculator wealth ωJ fixed ( competition effect).

The comparative statics results in Proposition 1 are intuitive. First, a higher zn,t raises

expected capital gains for asset n, so the optimal θn rises.10

Second, θn falls with speculators’ wealth ω because their own price impact becomes stronger.

Third, for a fixed aggregate wealth ωJ , increasing the number of speculators rises θn. Each

speculator internalizes only their individual price impact, so when total wealth is spread over more

agents they each trade more aggressively.

10The proof of the proposition further shows that in terms of the original variables in In,t, θn is (i) decreasing in
adjusted market equity me˚

n,t and (ii) is increasing in asset characteristic xk,n,t if and only if βkpρk,n ´ρϵ,nq ą 0. The
intuition for these comparative statics is that, holding characteristics fixed, higher me˚

n,t signals a stronger current
latent demand (see Eq. (18) in Footnote 8); mean reversion then predicts a lower capital gain (see Eq. (9)). In
response, speculators allocate a smaller fraction of their wealth to the risky asset. As for the characteristics, a larger
value of the k-th characteristic has two effects. First, it decreases the expectation of ∆xk,n,t`1 due to mean reversion,
thereby affecting the expected capital gain depending on the sign of βk (see Eq. (9)). Second, for a fixed value of
me˚

n,t, a larger value of xn,k,t also affects the expectation of latent demand (see Eq. (18)). The overall effect depends
on the relative mean reversion speeds of ϵn and xn,k times βk.
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Next, we analyze how speculators’ trading affects two key market characteristics: market

efficiency and liquidity.

Market Efficiency. In the benchmark model with only a representative investor, returns are

predictable based on public information. We remain agnostic as to whether this predictability

reflects risk premia or mispricing, and adopt the semi-strong market efficiency view that returns

should not be predictable from public signals. Thus, the extent to which this predictability persists

directly measures market (in)efficiency.

Since dividend yields are unpredictable by assumption, we focus on the capital gain com-

ponent of returns. We write:

pn,t`1 ´ pn,t “ gnpIn,tq ` en,t`1, (20)

where gnpIn,tq is an equilibrium function that depends on zn,t and on the trading strategies of the

J speculators via αS
n,t, and en,t`1 is the unpredictable component of the capital gain.11

We define market efficiency as the fraction of capital gain variance that is not explained by

public information:

ME “
Var pen,t`1q

Var ppn,t`1 ´ pn,tq
. (21)

Note that gnpIn,tq in Eq. (20) is derived from the true data-generating process. In this sense, ME

is computed “inside the model.” In Section 4 we also consider an alternative measure of market

efficiency where the gnpIn,tq is approximated by a linear function.

In the model, speculators’ trading on predictive signals shrinks the predictable component

gnpIn,tq, thereby increasing ME . When speculators have more capital or trade more aggressively,

this effect strengthens. In the limit case where all return predictability is eliminated, then gnpIn,tq

is constant and ME “ 1.

Proposition 2. Market efficiency ME increases in speculator size ω and, for fixed aggregate size

ωJ , in the number of speculators J , provided ωJ is large enough.

The requirement that ωJ is large enough for monotonicity in J is driven by the borrowing

constraint. A larger number of speculators trade more aggressively, which improves efficiency over

11 See Eq. (A21) in the Appendix for the derivation of gnpIn,tq, en,t`1.
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the range of zn,t values where the constraint is not binding, but also implies that the constraint

binds over a wider range of zn,t values, partially offsetting this gain. When individual size ω is

sufficiently large, the former effect dominates, so market efficiency rises monotonically with both ω

and J .

Market Liquidity. We measure liquidity by the price response to an exogenous “shock” in asset

supply. Suppose (log) supply increases from sn to sn ` σ at time t before reverting back to sn

at t ` 1. In the case where only the representative investor is present (i.e., assuming αS
t “ 0),

Eq. (8) implies that the price impact of this supply shock is given by
Bpn,t

Bσ “ ´1, so the price drops

one-for-one with supply. In contrast, when speculators are active in the market, they recognize

that the price drop is temporary and anticipate an expected capital gain when the supply reverts

at t` 1. As a result, they increase their demand for the asset, partially absorbing the supply shock

and reducing its price impact.

We define liquidity as

L “ 1 ` E

ˆ

Bpn,t
Bσ

∣∣∣∣
σ“0

˙

. (22)

Higher values of L indicate that the market can absorb supply shocks with smaller price

distortions, reflecting greater liquidity. In the absence of speculators, the full price impact of a

supply shock leads to L “ 0. Conversely, if speculators fully absorb the shock, there is no price

impact, implying L “ 1. As ω (the relative size of speculators) or J (the number of speculators)

increase, speculators trade more aggressively on mispricing, allowing the market to absorb larger

shocks, thereby reducing price impact and increasing liquidity.

Proposition 3. Liquidity increases in speculator size ω and, for fixed aggregate size ωJ , in the

number of speculators J , provided ωJ is large enough.

The non-monotonicity in J stems from the same borrowing constraint argument highlighted

in Proposition 2, which tempers the liquidity gains from additional speculators unless their indi-

vidual size ω is sufficiently large.
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3 Empirical implementation

In this section, we outline the calibration and estimation of our model. First, we outline

the demand estimation procedure for the representative investor, based on Koijen and Yogo (2019).

Second, we detail how we simulate stock characteristics, dividends, and latent demand processes.

Third, we describe our deep reinforcement learning (DRL) approach and how it is integrated into

the environment. Finally, we outline how we run and evaluate our simulation experiments.

3.1 Demand estimation

We calibrate the demand of the representative investor using data on US investors’ holdings

from SEC 13F filings, combined with asset characteristics from Compustat and CRSP. The sample

spans the period from 1982:Q2 to 2021:Q4. We consider log market equity (me) and five additional

stock characteristics: log book equity (be), investment growth (inv), dividend-to-book equity (div),

profitability (prof), and market beta (mkt).

We begin by estimating individual investors’ demand functions using the log-exponential

specification of Koijen and Yogo (2019), and then aggregate these estimates to construct a repre-

sentative demand function. Following Koijen and Yogo (2019), for each investor i “ 1, . . . , I and

each quarter t “ 1, . . . , T , we estimate the following equation, where the elasticity of investor i is

identified using cross-sectional variations in stock characteristics:

wi,n,t

wi,0,t
“ exptβme

i,t met,n `βbe
i,t bet,n `βprof

i,t proft,n

` βinv
i,t invt,n `βdiv

i,t divt,n `βmkt
i,t mktt,n `β0

i,t ` ϵi,n,tu.

(23)

The dependent variable represents the holdings (in US dollars) of risky asset n by investor i at

time t, relative to the outside asset (i.e., cash and other non-equity holdings). The error term ϵi,n,t

captures latent demand, reflecting investor sentiment, private information, and beliefs.

To address price endogeneity, we follow Koijen and Yogo (2019) and instrument market

equity using its counterfactual value, assuming that all other investors hold an equal-weighted

portfolio within their investment universe.

Figure 1 illustrates the estimated demand coefficients, showing how average demand sensi-

tivities (across investors) vary by stock characteristic and over time.

19



Figure 1: Estimated demand coefficients for individual investors.

Next, we use these estimated coefficients to compute the demand of a representative investor.

3.2 Calibration of the representative investor’s demand

The demand coefficients of the representative investor are computed as an assets-under-

management (AUM) weighted average of the individual investors’ demand coefficients. To ensure

time-invariant parameters, we take the AUM-weighted average across the full sample period:

β̄k “
1

T

T
ÿ

t“1

I
ÿ

i“1

AUMi,t
řI

i“1AUMi,t

βk
i,t. (24)

Table 1 reports the estimated values of these representative demand coefficients.

Table 1: Demand coefficients of the representative investor

β̄me β̄be β̄prof β̄inv β̄div β̄mkt

0.6327 0.1810 0.1274 0.2947 2.6960 -0.1984

Notes: This table reports the demand coefficients used to calibrate the representative investor. Coefficients are an assets-under-
management weighted average of individual investors’ demand coefficients estimated according to Eq. 23.

Similarly, the latent demand of the representative investor is computed as the AUM-

weighted average of individual investors’ latent demand:
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ϵn,t “

I
ÿ

i“1

AUMi,t
řI

i“1AUMi,t

ϵi,n,t. (25)

This calibrated demand function provides the foundation for the equilibrium price compu-

tation in Section 2.2.12

3.3 Simulating stock characteristics and latent demand

We select ten stocks that remained active throughout the entire sample period (1982:Q1

to 2021:Q4). Specifically, we aim to obtain a sample that exhibits cross-sectional variation in iq

the average dividend yield (Dt{Pt´1q, iiq the autoregressive coefficient of the latent demand (ρϵ),

iiiq the autoregressive coefficients of the stock characteristics (ρk), and ivq the contribution of the

latent demand to the capital gain
´

Varpξt`1q

Varppt`1´ptq

¯

.

To this end, we first apply principal component analysis to the matrix of standardized

variables. We then project the data onto the principal component space and compute the pairwise

Euclidean distances between all stocks. Finally, we select the ten stocks that are most distant

from one another in this space. Put differently, we choose the ten stocks that exhibit the greatest

heterogeneity in the variables listed above. Table 2 lists the selected stocks.

Table 2: Company Information and Business Sectors

Ticker Company Name Business Sector

IBM International Business Machines Corporation Information Technology Services
AXP American Express Company Credit Services
ABM ABM Industries Incorporated Specialty Business Services
AEE Ameren Corporation Utilities - Regulated Electric
WEYS Weyco Group, Inc. Footwear & Accessories
GIS General Mills, Inc. Packaged Foods
KO The Coca-Cola Company Beverages - Non-Alcoholic
L Loews Corporation Insurance - Property & Casualty
SJM The J. M. Smucker Company Packaged Foods
ARW Arrow Electronics, Inc. Electronics & Computer Distribution

Notes: This table reports the ticker, company name and business sector for each stock in our dataset.

For each of the five stock characteristics—log book equity, profitability, investment, dividend-

12Consistent with Koijen and Yogo (2019), we hold the representative-investor agent demand elasticities fixed
during our experiments in Section 4, so that any variations in prices, return predictability and liquidity can be
attributed solely to AI trading rather than to contemporaneous adjustments in the representative-investor demand.
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to-book equity, and market beta—as well as for latent demand, we estimate an AR(1) process using

the simulated method of moments, based on Eqs. (2)–(3), and using data from CRSP and Com-

pustat. We use the estimated stock-specific AR(1) parameters to generate simulated time series

for each variable. For dividend yields, which we model as i.i.d., we instead sample values with

replacement from the historical time series. Appendix A.3 provides further details on the estima-

tion process and summary statistics of empirical and simulated stock characteristics and dividend

yields.

3.4 Calibration of other parameters

Consumption rate (λ). The consumption rate λ is set to 0.99. Since this parameter does not

affect stock returns, it is chosen to ensure that equilibrium price levels are on the same scale as in

the data.

Aggregate dividend growth (g). The aggregate dividend growth rate, g, is calibrated by

minimizing the mean absolute error (MAE) between empirical and simulated stock returns. We

find the optimal value to be 0.4%.

Variance of innovations of latent demand. To align realized and simulated return volatility,

we calibrate a parameter (α) to scale the variance of innovations in latent demand. The optimal

value of α is determined by minimizing the MAE between the empirical and simulated standard

deviations of log stock returns. The estimated value of α is 0.4916.

Risk-free rate (Rf). We calibrate the risk-free rate using the 3-month Treasury bill rate from

1982:Q2 to 2021:Q4, retrieved from FRED Economic Data. The annualized average over this period

is 3.54%.

3.5 Reinforcement Learning Model

We model AI traders using the Deep Deterministic Policy Gradient (DDPG) algorithm

(Lillicrap et al., 2015), which combines reinforcement learning with deep neural networks. The

deep learning component enables the algorithm to operate in continuous state and action spaces

and to generalize across unvisited states by learning functional relationships. This is critical in our
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setting, where portfolio weights and predictive signals are continuous, and market conditions can

move into regions not seen during training.

A high-level description of the algorithm is as follows. The DDPG algorithm is based on

an actor–critic architecture. The critic network, parameterized by ΘQ, approximates the opti-

mal state–action value function Q˚pI, θq, which evaluates the expected future rewards of a given

state–action pair. The actor network, parameterized by Θµ, approximates the optimal policy func-

tion µ˚pIq giving the optimal action given the current state. To stabilize learning, DDPG employs

target networks—slowly updated copies of both networks, denoted as ΘQ1

and Θµ1

, that provide sta-

ble targets for learning. Additionally, a replay buffer stores past transitions tI, θ, R, I 1u, breaking

temporal correlations and improving learning efficiency.

At each time step, the AI trader observes the current market state I, selects an action θ,

and receives a reward R. The reward is defined as the one-period portfolio return as in Eq.(12). The

transition tuple tI, θ, R, I 1u is stored in the replay buffer B. Training updates occur by drawing, at

each time step, a minibatch of transitions from the replay buffer via uniform random sampling. Let

B denote the index set of the transitions in the minibatch, with cardinality |B|. The corresponding

target Q-values represent the total expected return from taking the action and then continuing to

act optimally in the future:

yi “ Ri ` γ Q
´

I 1
i, µ

`

I 1
i ; Θ

µ1˘

; ΘQ1
¯

, i P B (26)

where Ri is the immediate reward and the second term in the r.h.s. of the equation represents the

discounted continuation value, with γ being the discount factor.

The critic network is trained to predict Q-values, i.e. the expected future reward of a

state-action pair (I, θ). Its training implies a loss minimization between the target and predicted

Q-values:

L
`

ΘQ
˘

“ E
”

`

y ´ QpI, θ; ΘQq
˘2

ı

, (27)

which is approximated by the minibatch average:

L̂
`

ΘQ
˘

“
1

|B|

ÿ

iPB

´

yi ´ QpIi, θi; ΘQq

¯2
. (28)
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Critic parameters are updated by stochastic gradient descent, changing the neural network weights

in the direction that minimizes the loss at learning rate β:

ΘQ Ð ΘQ ´ β∇ΘQL̂
`

ΘQ
˘

, (29)

Unlike the critic network, the actor network learns by maximizing the expected reward.

Formally, its goal is to find a policy µpI; Θµq that maximizes the prediction of the critic network

Q
`

I, µpI; Θµq; ΘQ
˘

over a continuous space:

JpΘµq “ E
“

Q
`

I, µpI; Θµq; ΘQ
˘‰

,

In practice, the expectation is approximated using a minibatch of transitions:

ĴpΘµq “
1

|B|

ÿ

iPB

Q
`

Ii, µpIi; Θµq; ΘQ
˘

. (30)

Gradient ascent is applied to ĴpΘµq. This requires computing the gradient of the Q-function with

respect to actions, evaluated at the actor’s output. Using the chain rule, the gradient is computed

as:

∇Θµ ĴpΘµq “
1

|B|

ÿ

iPB

∇θQ
`

Ii, θ; ΘQ
˘

ˇ

ˇ

ˇ

θ“µpIi;Θµq
∇ΘµµpIi; Θµq. (31)

This gradient decomposes into two components: ∇θQpIi, θ; ΘQq, which captures the sensitivity

of the critic’s Q-value prediction to changes in actions, and ∇ΘµµpIi; Θµq, which captures how

the actor’s policy responds to changes in its parameters. Overall, these two effects quantify how

changes in the actor’s parameters induce a change in actions, which in turn influences the critic’s

evaluation of that action. This provides the direction in which the actor’s parameters adjust to

maximize expected returns, as estimated by the critic network. The actor parameters are updated

by stochastic gradient ascent, at learning rate α:

Θµ Ð Θµ ` α∇Θµ ĴpΘµq. (32)

Target networks are updated using a soft update rule that slowly incorporates the current
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network parameters. At each training step, the target network parameters are updated according

to:

Θµ1

Ð τ Θµ ` p1 ´ τqΘµ1

,

ΘQ1

Ð τ ΘQ ` p1 ´ τqΘQ1

,

where τ ! 1 is the update rate.

In the subsequent time step, a new transition is added to the replay buffer, a new minibatch

is sampled, and the learning protocol repeats.

Our implementation follows standard practices in deep reinforcement learning. Both the

actor and critic networks consist of two fully connected hidden layers with 400 and 300 neurons,

respectively. The final layer of the actor network employs a softmax activation function, ensuring

the risky-asset portfolio weight lies in the r0, 1s interval. To enhance exploration, the risky-asset

portfolio weight is uniformly distributed over the r0, 1s interval during training. The network

weights are initialized using the Glorot normal distribution. The agent learns from mini-batches

of size 500, and to ensure sufficient variability in the data we start the learning process when the

replay buffer includes at least 10,000 transitions.

Table 3 summarizes the key hyperparameters used in our implementation, following Lillicrap

et al. (2015).

Table 3: Hyperparameters for the DDPG algorithm.

τ 0.001 Target update rate
α 0.0001 Actor learning rate
β 0.001 Critic learning rate

|B| 500 Minibatch size
|B| 105 Replay buffer size
γ 0.99 Discount rate

3.6 Investigation strategy

In our simulations (experiments) we focus on the 10 large-cap U.S. stocks in Table 2; this

choice keeps the dimensionality tractable yet reflects a diverse range of fundamentals and latent-

demand dynamics. Let N “ tIBM, . . . ,XRXu denote the set of stocks considered in our simula-
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tions. The set J “ t1, 2, 5u represents the number of AI traders populating a given simulation,

and Ω “ t1%, 5%, 10%u specifies the set of AI traders’ initial wealth relative to the beginning-of-

period market capitalization of the asset. For each triple pn, J, ωq P N ˆ J ˆ Ω we run a total

of S independent simulations.13 In each simulation, the AI traders face H independent episodes

of T time periods each; the time series of stock characteristics and latent demand in each episode

is simulated as explained in Section 3.3. AI traders live each episode T times. We set S “ 50,

H “ 100, T “ 97, and T “ 5.

In each time period, a trader’s information set in asset n is In,t “ tme˚
n,t, txn,tuu, where

xn,t is the vector of stock characteristics for stock n at time t. Given In,t, the AI trader decides

the fraction θjn,t P r0, 1s of its wealth to allocate to the stock. Given all AIs’ portfolio decisions, the

market clears and Pn,t is determined. Then, the AI observes its reward given by the portfolio return

Rj
p,t`1 and the next-period state In,t`1. The tuple pIn,t, θjn,t, R

j
p,t`1, In,t`1q constitutes a transition,

which is the basis for algorithmic learning as explained in Section 3.5.

For each simulation s and triple pn, J, ωq we obtain a set of J portfolio policy functions, one

per AI trader, such that θjnsp¨;ω, Jq : I Ñ r0, 1s. We define the average policy across agents as

θAI
ns

p¨;ω, Jq “

řJ
j“1 θ

j
nsp¨;ω, Jq

J
,

and we define the average of this policy across time periods and simulations as

θ̄AI
n pω, Jq :“

řS
s“1

S

řH
h“1

H

řT
th“1

T
θAI
ns

pIth ;ω, Jq. (33)

We denote the corresponding quantities in the rational benchmark with θRB
n p¨, ω, Jq and θ̄RB

n pω, Jq.

To assess AI traders’ performance and market impact, we generate 100 independent out-

of-sample episodes of 97 periods each. Drawn from the same process as in training but unseen

during learning, these episodes allow us to evaluate portfolio returns and measure market efficiency,

liquidity, and volatility out-of-sample.

13Running multiple independent simulations mitigates the effect of random neural network weight initialization.
Additionally, randomness in exploration and mini-batch selection remains independent across simulations.
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4 Experimental results

This section presents the outcomes of our numerical experiments. First, we analyze AI

traders’ portfolio policies and out-of-sample returns, examining how these are impacted by trader

size and competition intensity. Second, we investigate how these trading behaviors affect market

efficiency, liquidity, and volatility.

4.1 Portfolio choice and returns

4.1.1 Portfolio policies

Comparative statics in zn,t. Figure 2 shows that, across all stocks in our simulations, the AI

traders’ policy functions are strictly increasing in zn,t, the sufficient statistic for In,t with respect

to the stock’s future return. This aligns with Proposition 1. Intuitively, a higher zn,t reflects higher

expected capital gains, so both the rational benchmark and the AI traders’ portfolio choices are

increasing in zn,t, suggesting that the DDPG-based investors internalize the fundamental relation-

ship between latent demand, asset characteristics, and future returns in a manner consistent with

theory. Figures A2–A11 show that this result is consistent for all ten stocks individually.

The effect of trader size (larger ω for fixed J). Holding the number of AI traders J fixed,

increasing Jω raises each trader’s wealth, so a marginal increase in the portfolio weight in the

risky asset (for brevity, simply “portfolio weight” in the following) corresponds to a larger order

in shares and therefore a stronger price impact. As shown in both Figure 3 and Table 4, the AI

traders reduce their portfolio weights as ω increases, consistent with Proposition 1. This reflects

a degree of internalization of price impact. However, compared to the rational benchmark, the

decline in AI portfolio weights is more muted, especially for J “ 5. This suggests that while the AI

traders qualitatively understand the relationship between size and optimal trading intensity, they

fall short quantitatively of fully internalizing their price impact.

The effect of competition (larger J for fixed Jω). In the rational benchmark, increasing J

while holding Jω constant leads each trader to behave more aggressively, since collective wealth is

distributed across more agents and each faces smaller marginal price impact. The same comparative
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Figure 2: Portfolio weights in the risky asset as a function of the sufficient statistic z,

Notes: The figure shows portfolio weights in the risky asset averaged across agents and simulations for AI traders (orange line)
and for the rational benchmark (blue line) as a function of the sufficient statistic zn,t. The shaded area indicating the 5th–95th
percentile range across 50 simulations. The black line displays the empirical probability density function of zn,t. All curves
are computed separately for each of the ten stocks and then averaged across stocks. The nine panels correspond to different
combinations of pJ, Jωq.
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Figure 3: Average portfolio weights in the risky asset

Notes: This figure reports the average portfolio weight for the rational benchmark, θ̄RB
n (solid line) and the AI traders θ̄AI

n

(dashed line), averaged across stocks, for Jω “ 1%, (red line), Jω “ 5% (blue line) and Jω “ 10% (black line) as function of
the number of competing agents, J .

static arises in the AI setting: average portfolio weights rise with J , as shown in Figure 3 and

Table 4. Yet AI traders systematically overshoot the rational benchmark—especially at higher

values of J—indicating that they only partially internalize the collective impact of their trades.

Table 4: Regressions of average portfolio weights in the risky asset

Jω “ 1% Jω “ 5% Jω “ 10%
AI RB AI RB AI RB

J=1
-0.165 -0.238 -0.281 -0.374
(0.019) (0.015) (0.021) (0.016)

J=2
0.059 0.047 -0.106 -0.191 -0.221 -0.326
(0.020) (0.014) (0.039) (0.028) (0.041) (0.029)

J=5
0.208 0.083 0.043 -0.155 -0.072 -0.29
(0.020) (0.014) (0.038) (0.029) (0.040) (0.030)

Notes: This table reports the effects of increasing the number of agents, J , and the relative size of the agents, Jω, on the
average portfolio weight on the risky asset, θ̄AI

n for the AI case and θ̄RB
n for the rational benchmark (RB). The baseline is

pJ “ 1, Jω “ 1%q. The effects are estimated from regressing θ̄AI
n , θ̄RB

n on dummies DJ“2, DJ“5, Dω“5% and Dω“10%. Stock
fixed effect are included. Sample size: 90.

Linear sufficiency. Proposition 1 establishes that in the rational benchmark, portfolio weights

depend only on the sufficient statistic zn,t, implying that any variation in the information set
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In,t holding zn,t fixed should not affect optimal portfolio choice. Table 5 (and Table A5 for all

10 stocks) tests this prediction for AI traders. For each realized value of zn,t in training data,

we generate 100 perturbations of the state variables that leave zn,t unchanged. If the AI policy

perfectly implemented linear sufficiency, the resulting portfolio weights would be invariant across

those perturbations. In practice, we find that the standard deviation of θAI conditional on zn,t

remains sizable, especially when J or ω is low. This indicates that AI traders do not fully compress

the information into zn,t, and instead respond to irrelevant variation in In,t.

Table 5: Average standard deviation of θAI for given zn,t values

Jω “ 1% Jω “ 5% Jω “ 10%

J=1
0.414 0.355 0.242
(0.019) (0.042) (0.107)

J=2
0.378 0.398 0.321
(0.041) (0.027) (0.095)

J=5
0.352 0.393 0.404
(0.055) (0.027) (0.022)

Notes: This table reports the standard deviation of θAI
ns

across 100 random realizations of state variables that leave zn,t

unchanged, averaged across zn,t values, stocks, and simulations. Standard deviation across stocks in parenthesis.

Explaining the quantitative gap: a learning externality. While the AI traders’ behavior

aligns qualitatively with the theoretical predictions in Proposition 1, there are notable quantitative

deviations. In particular, AI agents tend to trade too aggressively as the number of traders increases,

and they fail to sufficiently scale down their holdings when their size grows. These discrepancies

point to a learning friction that becomes more pronounced when many AI agents are trained

simultaneously.

The core challenge stems from the model-free nature of DDPG. Lacking a structural under-

standing of how their actions influence prices, the agents must learn from observed reward signals

alone. When multiple traders explore concurrently, each agent influences the market price through

its own experimentation. This injects noise into the price process by creating order flow orthogonal

to public information, adding variance to prices and diluting the informativeness of reward signals.

Additionally, because training occurs while others explore, each AI fails to adapt to the systematic

co-movement between others’ demand and fundamentals that will prevail once learned strategies

are deployed. This is the essence of the learning externality—exploration by one agent disrupts
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others’ learning by contaminating the very signals they rely on.

To isolate these effects, we conduct a controlled experiment. Table 6 (and Table A6 for

all 10 stocks individually) reports the average out-of-sample performance difference between a

counterfactual AI trader trained alongside J ´ 1 rational speculators (who play the equilibrium

strategy of the J-trader game) and an AI trader trained alongside other J ´ 1 AI traders while

exploring simultaneously (the standard AI setting). In both cases, the evaluation environment

is identical: the focal AI trades against J ´ 1 AIs in exploitation (deterministic) mode. Hence,

the return difference is attributable purely to the training environment. The AI trained with

rational peers consistently achieves higher returns, with the gap widening in both J and Jω and

achieving a maximum of 2.8% in the pJ, Jωq “ p5, 10%q case. This is evidence that concurrent

exploration by other agents disrupts learning. This learning externality reduces both price-impact

internalization and the ability to recover the correct mapping from public signals to expected

returns: the profitability of a signal depends on how others’ demand co-moves with it—something

an AI agent cannot fully observe under joint exploration.

Table 6: Causal effect of training environment on performance, ∆RJ´1

Jω “ 1% Jω “ 5% Jω “ 10%

J=2
0.195 0.233 0.342
(0.489) (0.171) (0.161)

J=5
0.275 1.468 2.782
(0.354) (0.360) (0.308)

Notes: This table reports portfolio return differences between two settings: (i) an AI trader trained while competing with
J ´ 1 rational speculators, and (ii) an AI trader trained jointly with J ´ 1 AI traders in exploration mode. RAI|b denotes
the per-period out-of-sample gross portfolio return for setting (i) averaged across episodes, simulations, and stocks, and RAI

denotes the corresponding quantity for setting (ii). Then we define ∆RJ´1 “ pRAI|b{RAI ´ 1q ˆ 100. Standard deviations
across stocks are reported in parentheses.

We now examine how these portfolio policy choices translate into portfolio returns, market

efficiency, and liquidity.

4.1.2 Returns

Average Returns. Table 7 (and Table A7 for all 10 stocks) implies that in the J“1, ω“1%

case the AI’s net return is about 3.7% per period versus 4.6% for the benchmark—a shortfall of

roughly 90 bps. Thus a single AI with modest price impact comes close (but does not fully match)

the learning frontier.
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Table 7: Average portfolio returns

Jω “ 1% Jω “ 5% Jω “ 10%
∆AI,b rb ∆AI,b rb ∆AI,b rb

J=1
-0.885

4.645
-1.509

2.859
-2.173

2.186
(1.330) (1.029) (1.628)

J=2
-1.001

4.483
-0.725

2.357
-0.898

1.764
(1.268) (1.045) (1.026)

J=5
-1.043

4.373
-1.747

1.850
-2.974

1.170
(1.313) (1.028) (0.815)

Notes: This table reports information on average per-period out-of-sample gross portfolio returns for (i) the rational benchmark
(Rb) and (ii) the AI case (RAI), averaged across episodes, simulations, and stocks. We report the deviation of AI returns from
the benchmark, defined as ∆AI,b “ pRAI{Rb ´ 1q ˆ 100, and the benchmark’s average net percent return rb “ pRb ´ 1q ˆ 100.
Standard deviations across stocks are reported in parentheses.

As Jω rises, the AI–benchmark gap widens: the gross return ratio ∆AI,b shifts from roughly

´1% at Jω “ 1% to about ´2% to ´3% at Jω “ 10%, which translates into economically meaning-

ful net shortfalls. This pattern indicates that learning frictions become more severe when portfolio

size—and thus price impact—grows. The performance gap is further amplified when multiple AIs

are trained simultaneously: each agent’s exploration perturbs market prices, distorting the re-

ward signals observed by its peers and hindering learning. This effect is particularly clear when

J raises from one to five, both when aggregate AI wealth is held constant–for instance, from

pJ, Jωq “ p1, 10%q to pJ, Jωq “ p5, 10%q– and when individual size is fixed–for instance, from

pJ, Jωq “ p1, 1%q to pJ, Jωq “ p5, 5%q.

The increased sensitivity of performance to learning frictions at larger portfolio sizes can

be understood more formally. Let θ˚
t denote the optimal portfolio weight solving Eq. (15), and

consider a small deviation ϵ around this optimum. Assuming θ˚
t is interior, a second-order Taylor

expansion of the expected return function implies that

EpRp,t`1 | In,tq
ˇ

ˇ

θ˚
t `ϵ

´ EpRp,t`1 | In,tq
ˇ

ˇ

θ˚
t

«
1

2

B2EpRp,t`1 | In,tq
pBθtq2

ˇ

ˇ

θ˚
t

ˆ ϵ2.

Thus, the performance loss from a small portfolio misallocation is proportional to the curva-

ture of the expected return function. Importantly, we can show that this second derivative increases

(in absolute value) with portfolio size ω, making the objective more concave. In other words, the

cost of small errors in portfolio weights rises with portfolio size, magnifying the consequences of

imperfect learning for larger positions.
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These results also caution against extrapolating individual performance from partial equi-

librium setups. In many empirical studies, AI-based portfolio strategies are evaluated out-of-sample

on historical price data. Our findings show that such strategies may appear to perform well in isola-

tion and without feedback effects on the market environment (similarly to the J “ 1, ω “ 1% case),

but their performance can degrade substantially when they interact and learn jointly with others,

and when the portfolio grows in size. This divergence highlights the need to assess AI portfolio

strategies in equilibrium environments to understand their true impact on returns.

4.1.3 Decomposing the rational benchmark–AI return gap

To inspect further the sources of the return gap between the rational benchmark and the

AI outcome in Table 7, we take the perspective of the j-th AI trader and decompose the return

difference Rb ´RAI into three economically distinct legs that measure the impact of (i) the trading

environment, (ii) the quality of the best response to the environment, and (iii) others’ exploration

during training.

To this end, we introduce two counterfactual return series:

• R
xAI : return of the j-th AI trader trained against J ´ 1 AI opponents in execution mode

(i.e., no exploration by opponents during training), evaluated against the same AI opponents.

Compared to RAI , this return series removes the effect of simultaneous exploration from the

training environment and helps isolate the intrinsic difficulty of learning a best response to

the policies the other AIs have converged to.

• RBR|AI : theoretical best response of the j-th trader to J ´1 AI opponents in execution mode,

computed numerically from the FOC in Eq. (15) assuming perfect knowledge of the other AI

traders’ strategies θins
p¨;ω, Jq, i P t1, . . . , Juzj.

With these objects, the rational benchmark–AI return gap satisfies the identity

Rb ´ RAI
loooomoooon

Total gap

“ Rb ´ RBR|AI
loooooomoooooon

(i) Composition gap

` RBR|AI ´ R
xAI

looooooomooooooon

(ii) Best-response learning gap

` R
xAI ´ RAI

looooomooooon

(iii) Training-noise externality

. (34)

The three parts in the r.h.s. of Eq. (34) have the following interpretation:
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Table 8: Decomposing the rational benchmark–AI return gap.

pJ, Jωq Total gap (i) Composition (ii) BR learning (iii) Training-noise

(2, 1%) 1.023 -0.721 1.660 0.084
(5, 1%) 1.066 -0.629 1.872 -0.177
(2, 5%) 0.735 -1.569 2.087 0.217
(5, 5%) 1.768 -1.387 2.533 0.622
(2, 10%) 0.906 -1.278 1.825 0.359
(5, 10%) 3.020 -0.882 2.911 0.990

Notes: “Total gap” reproduces the RB–AI difference in Table 7, now additively split as in Eq. (34). “Composition” compares
best-responding to AI opponents vs. competing in the RB world. “BR learning” holds AI opponents fixed and measures the
shortfall against the analytical best response. “Training-noise” holds deployment opponents fixed and changes only the training
regime from opponents in exploitation mode to opponents in exploration mode. (i)+(ii)+(iii) equals “Total gap”. All entries
are expressed in percentage points.

(i) Composition. This wedge compares the j-th rational trader’s performance in the rational

benchmark to the hypothetical return this rational trader would achieve when best responding

to the strategies deployed by the other J ´ 1 AI traders during trading.

(ii) Best-response learning gap. This wedge isolates the intrinsic difficulty of learning an optimal

policy against fixed AI opponents (i.e., holding the opponents’ deployment policies fixed at

their learned strategies).

(iii) Training-noise externality. This wedge holds AI opponents’ deployment fixed and changes

only the training environment: from one where other AI traders deploy learned strategies

(exploitation) to one where all AI traders explore.

The sum of (ii) and (iii) constitutes the overall learning friction: RBR|AI ´RAI . This represents the

total performance loss attributable to the j-th AI’s inability to learn and deploy the theoretically

optimal strategy against its J ´ 1 AI opponents.

Table 8 shows the results. First, the composition gap is consistently negative: a rational

trader with perfect knowledge of the AIs’ strategies would earn more than in the rational bench-

mark, as the AI opponents exploit return predictability to a lesser extent than in the benchmark.

However, this theoretical advantage is overturned by a larger overall learning friction, the

sum of wedges (ii) and (iii), which stems from two sources. First, a large best-response learning

wedge (about 1.7–2.9 percentage points) reflects the difficulty of learning an optimal response to AI

opponents’ strategies that react to payoff-irrelevant variation in the state In,t (Table 5). Second,
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the training-noise wedge (iii) is positive in all cases except for pJ, Jωq “ p5, 1%q, confirming that

concurrent exploration contaminates learning and degrades performance. Furthermore, this wedge

becomes quantitatively more important at larger values of ω for given J and at larger values of J

for given Jω “ 5%, 10%. Together, these forces explain the total performance gap.

4.2 Market outcomes

We now examine how AI traders, through their portfolio policies, affect overall market qual-

ity. We focus on three key metrics: market efficiency (how well prices reflect public information),

liquidity (the market’s ability to absorb supply shocks), and return volatility. Market efficiency

and liquidity are computed according to the definitions in Section 2.3, averaged across simulations.

Market efficiency. Table 9 (also Table A8 for all 10 stocks individually) reports market efficiency,

defined as the share of return variance that is unpredictable given the public information set In,t,

consistent with Eq. (21). Panel A shows that AI traders consistently improve market efficiency

relative to the no-AI baseline. As either greater capital is deployed by AIs or competition is more

intense, market efficiency generally improves in line with Proposition 2, reflecting the AIs’ ability to

partially exploit return predictability. However, across all configurations, the case with AI traders

lags behind the rational benchmark. Panel B quantifies this gap, showing that it is most pronounced

at high levels of Jω. These results confirm that while AI agents make markets more efficient, they

remain limited in their ability to eliminate predictability due to learning frictions.

These results highlight an additional key limitation of the partial equilibrium approach to

AI, which may suggest that widespread adoption of AI will lead to highly efficient markets. In

contrast, our results show that when AI agents learn and interact in equilibrium, frictions emerge

that can significantly constrain market-wide efficiency improvements.

Table A9 shows the results for an alternative measure of market efficiency based on the

R2 of predictive OLS regressions of future returns on observable state variables. In other words,

in contrast to Table 9 which reflects the true data generating process and is therefore computed

“inside the model,” Table A9 reflects the perspective of an econometrician who observes the public

signals In,t but does not know the true return process and approximates the equilibrium function

gn with a linear specification. The results are qualitatively consistent across both approaches.
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Table 9: Average market efficiency (as ∆ % from MEpJ “ 0q)

Panel A: ∆MEpJ, Jωq (MEpJ “ 0q “ 0.867q

Jω “ 1% Jω “ 5% Jω “ 10%
AI RB AI RB AI RB

J=1
1.265 2.041 3.320 6.528 3.165 7.656
(0.425) (0.605) (1.530) (3.038) (2.254) (4.419)

J=2
1.179 2.025 4.426 7.215 5.002 9.209
(0.401) (0.609) (1.823) (3.080) (2.478) (5.077)

J=5
1.106 2.008 4.725 7.529 6.547 10.098
(0.405) (0.613) (1.893) (3.056) (3.871) (5.350)

Panel B: ∆MEAIpJ, Jωq - ∆MERBpJ, Jωq

Jω “ 1% Jω “ 5% Jω “ 10%
J=1 -0.776 -3.208 -4.491
J=2 -0.846 -2.789 -4.207
J=5 -0.902 -2.804 -3.551

Notes: This table reports average market efficiency across stocks. Market efficiency is defined as the share of return variance
that is unpredictable given the public information set In,t, as in Eq. (21). Panel A shows the percentage deviation from baseline
market efficiency with only the representative investor, i.e., MEpJ “ 0q, for both the AI case and the rational benchmark (RB).
Panel B reports the difference between the rational benchmark and AI traders’ deviations from baseline. For each pJ, Jωq pair,
we compute the average out-of-sample market efficiency for each stock and simulation, then take the average across simulations
and stocks. Standard deviations across stocks are reported in parentheses.

Market Liquidity. Table 10 (also Table A10 for all 10 stocks individually) shows that the

comparative statics of liquidity with respect to AI competition and size are only partially in line

with the predictions of Proposition 3. Furthermore, liquidity is an order of magnitude lower relative

to the benchmark. The explanation for this result is that in the rational benchmark, traders

understand the temporary nature of the shock and anticipate the price reversal in the following

period, so they buy aggressively to profit from the anticipated reversal. By contrast, the AI

interprets the initial price drop as a sign of reduced latent demand, which is only partly reversed

by mean reversion. Thus, the AI perceives the price drop as a weaker signal of price reversal and

it does not fully exploit such dips, resulting in lower liquidity provision.

In other words, the AI sees “price down” Ñ “latent demand down,” which is not a guaran-

teed short-run arbitrage opportunity. Consequently, it fails to supply liquidity in situations where an

investor with structural knowledge of the shock would act aggressively, leading to under-provision of

liquidity. This illustrates how structural knowledge—not just pattern recognition—remains crucial

for market-stabilizing behavior.

For the case pJ, Jωq “ p5, 10%q–where learning frictions are most severe and the deviation

from the rational benchmark is largest—AI trading results in even lower liquidity than in the

absence of AI traders (the J “ 0 case).
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Table 10: Average liquidity, L

Panel A: LpJ, Jωq

Jω “ 1% Jω “ 5% Jω “ 10%
AI RB AI RB AI RB

J=1
0.536 2.943 1.038 8.815 0.420 9.715
(0.218) (1.735) (0.393) (3.162) (0.492) (3.052)

J=2
0.496 2.902 1.628 10.532 0.324 12.736
(0.201) (1.702) (0.652) (4.276) (0.760) (4.187)

J=5
0.459 2.870 0.930 11.652 -0.503 15.147
(0.209) (1.663) (0.513) (5.303) (0.646) (5.257)

Panel B: LAIpJ, Jωq - LRBpJ, Jωq

Jω “ 1% Jω “ 5% Jω “ 10%
J=1 -2.407 -7.777 -9.295
J=2 -2.406 -8.904 -12.412
J=5 -2.411 -10.722 -15.65

Notes: This table reports average market liquidity across stocks. Liquidity is measured as the price impact of a 1% supply
shock, as defined in Eq. (22). AI represents the market liquidity level with AI traders. RB denotes the average liquidity level
of the rational benchmark. Entries are multiplied by 100. For each pJ, Jωq pair, we compute the average out-of-sample market
liquidity for each stock and simulation, then take the average across simulations and stocks. Panel B reports the difference
between the market liquidity level of the AI traders’ and the rational benchmark. Standard deviations across stocks are reported
in parentheses.

Volatility. Finally, we examine the impact of AI trading on stock return volatility. Panel A of

Table 11 (also Table A11 for all 10 stocks individually) reports the percentage deviation of stock

return volatility relative to a baseline market populated by the representative investor. The results

for the rational benchmark align with the prediction on market efficiency in Proposition 2: the

greater the capital allocated to the agents, and the more agents compete (for large enough Jω), the

larger the reduction in volatility. This is intuitive because rational agents trade on mean reversion,

thereby aligning current prices to future prices and reducing return volatility. The market with

AI traders exhibit a similar property, but quantitative disparities with the rational benchmark

emerge, especially when multiple AIs compete or when their managed capital is larger. These

results further corroborate the learning frictions emerging when AI agents interact with each other

and the environment in an equilibrium framework.
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Table 11: Average volatility (as ∆% from σpRqJ“0)

Panel A: ∆σpRqpJ, Jωq

Jω “ 1% Jω “ 5% Jω “ 10%
AI RB AI RB AI RB

J=1
-0.626 -1.003 -1.607 -3.083 -1.509 -3.562
(0.208) (0.293) (0.720) (1.366) (1.055) (1.928)

J=2
-0.583 -0.996 -2.129 -3.394 -2.386 -4.234
(0.196) (0.295) (0.846) (1.374) (1.140) (2.170)

J=5
-0.548 -0.988 -2.268 -3.535 -3.073 -4.614
(0.198) (0.297) (0.871) (1.358) (1.718) (2.263)

Panel B: ∆σpRqAIpJ, Jωq - ∆σpRqRBpJ, Jωq

Jω “ 1% Jω “ 5% Jω “ 10%
J=1 0.377 1.476 2.053
J=2 0.413 1.265 1.848
J=5 0.44 1.267 1.541

Notes: This table reports average return volatility across stocks. Panel A shows the percentage deviation from baseline return
volatility with only the representative investor, i.e., J “ 0, for both the AI case and the rational benchmark (RB). Panel B
reports the difference between the rational benchmark and AI traders’ deviations from baseline. For each pJ, Jωq pair, we
compute the average out-of-sample return volatility for each stock and simulation, then take the average across simulations and
stocks. Standard deviations across stocks are reported in parentheses.

5 Discussion

5.1 Learning Externalities in Practice

Our model highlights learning externalities in multi-agent reinforcement learning (MARL),

which arise when agents experiment and adapt policies online in a shared environment. While this

setup may overstate the extent of real-time (online) learning in financial markets, it serves as a

useful benchmark for the potential impact of algorithmic experimentation in dynamic, multi-agent

environments because of several reasons.

First, some degree of ongoing adaptation is likely unavoidable. As financial market dynamics

evolve over time, strategies trained purely on historical data may fail to generalize out of sample.

As a result, models are recalibrated or retrained frequently. Although this adaptation may occur in

discrete intervals rather than continuously, it still introduces a form of strategic experimentation:

when one agent updates its policy and redeploys, it alters the environment faced by others. In this

sense, staggered or asynchronous learning can generate externalities similar to those in fully online

MARL.

Even in the extreme case where algorithmic learning is entirely offline, the training data

reflects the influence of previously deployed algorithms. As financial institutions test and iterate

AI strategies in live markets, their actions shape asset prices. In this broader sense, the market
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functions as a “meta-experiment”: the behavior of deployed models influences the data on which

future models are trained. This feedback loop creates indirect learning externalities that, while

subtler than in MARL, are conceptually similar.

5.2 Policy Implications

These considerations have implications for the ongoing policy debate on algorithmic trad-

ing. Regulators treat algorithmic trading as a multi-dimensional risk that spans market integrity,

operational resilience and systemic coordination failures. To address such concerns, Article 7 of

MiFID II RTS-6 obliges investment firms to test algorithms “in controlled environments” before

deployment.

Our simulations reveal that algorithmic exploration creates a negative learning externality

that impairs learning and market functioning. Therefore, our policy implication is that such a con-

trolled environment should replicate general-equilibrium (GE) feedback while holding rival agents’

behavior constant. In practice this means certifying each model inside a single-agent GE sandbox

where prices endogenously respond to its own orders; only once the agent has shown impact-aware

stability should it enter multi-agent stress tests. This sequencing contrasts with recent proposals

which prioritize multi-agent sandboxes to capture interaction effects, overlooking the impact of

learning externalities on market outcomes.14

Our findings also suggest a broader policy consideration. In our setup, AI agents act

as contrarian investors who, in principle, provide liquidity by absorbing transient supply shocks.

However, they do so less effectively than fully rational agents because they fail to anticipate the

structural nature of temporary price reversals. This underprovision of liquidity implies that learning

frictions—rather than collusion or manipulation—can be a source of market fragility. In extreme

cases, our simulations show that this may lead to amplification of shocks.

Thus, the model-free nature of algorithmic learning introduces a new channel of systemic

risk which arises from endogenously in the learning environment. This suggests that regulators

should expand their risk assessment frameworks to include such algorithm-induced externalities.

Testing protocols should emphasize how agents behave in the presence of structural supply or

14See, for example, Jonathan Hall, of the Bank of England’s Financial Policy Committee, suggesting that “[a]ny
deep trading algorithms will need to be trained extensively, tested in multi-agent sandbox environments” (https:
//www.bankofengland.co.uk/speech/2024/may/jon-hall-speech-at-the-university-of-exeter).
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demand shocks and whether their responses exacerbate or attenuate market volatility.

In sum, safe deployment of AI in trading requires not only robustness to adversarial inputs

or algorithmic failures but also learning-aware certification procedures that account for general-

equilibrium effects, feedback loops, and potential amplification mechanisms. Future work should

explore the design of regulatory sandboxes that can isolate and measure these risks in realistic

settings.

6 Conclusion

This paper studies how AI-driven investors, modeled using deep reinforcement learning,

trade in an empirically calibrated demand-based asset pricing model with price impact and return

predictability. Our work helps fill two gaps in the literature. First, we are the first to study AI-based

trader behavior in an equilibrium environment with empirically plausible return predictability and

price impact. Second, while recent studies often employ tabular Q-learning schemes with discrete

action sets, we adopt a continuous-control DRL method. This allows the trading agent to learn

flexibly and avoid coarse discretization of portfolio weights.

Our experimental results deliver several key insights. In line with the theoretical benchmark,

the AI agents learn to exploit return predictability arising from mean-reverting fundamentals and

latent demand. In particular, the AI policies qualitatively reproduce the benchmark comparative

statics, indicating that they learn to decode latent demand shocks from prices and internalize the

price impact of their trades.

Yet quantitative differences with the benchmark emerge. When multiple AI traders interact,

their actions introduce additional noise that distorts each agent’s learning process. This “negative

learning externality” degrades performance relative to the benchmark—particularly when trader

size increases and competition intensifies. Relatedly, while AI-driven trading consistently improves

market efficiency by reducing predictable return components—albeit less than the benchmark—AI

agents provide less liquidity than rational speculators would. Their model-free algorithms do not

fully anticipate short-lived arbitrage opportunities from transient supply shocks, leading to more

pronounced price drops.

These results have important practical implications for how AI-driven investors transform
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market outcomes. They do reduce return predictability from public signals, thus enhancing semi-

strong form market efficiency. At the same time, they provide less liquidity than predicted by ratio-

nal models, illustrating how structural knowledge—not just pattern recognition—remains crucial

for market-stabilizing behavior. This tension highlights the importance of modeling the interplay

between traders’ learning processes and market dynamics, rather than treating AI strategies as

atomistic or frictionless.
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A Appendix

A.1 Model solution

Derivation of Eq. (7). Using the portfolio formula for the representative investor in Eq. (1)

together with the representative investor’s budget constraint
řN

m“1wm,t `w0,t ` γt “ 1, we obtain

wn,t “
δn,t

1 `
řN

m“1 δm,t

.

The market clearing condition Eq. (6) for each stock can be equivalently written as

Atwn,t “ Pn,tS̃n,t. (A1)

Using Eq. (1) into the market clearing condition Eq. (A1) we obtain

δn,tAt “

˜

1 `

N
ÿ

m“1

δm,t

¸

Pn,tS̃n,t.

Summing the last equation over n and rearranging, we obtain

δn,t “
Pn,tS̃n,t

At ´
řN

m“1 Pm,tS̃m,t

.

Using Eq. (1) to substitute for δn,t in the last equation and taking logs, we obtain

β0ppn,t ` snq `

K´1
ÿ

k“1

βkxk,n,t ` βK ` ϵn,t “ pn,t ` s̃n,t ´ log

˜

At ´

N
ÿ

m“1

Pm,tS̃m,t

¸

. (A2)

The budget constraint for trader j is

Aj
t “

N
ÿ

m“1

Sj
m,tPm,t ` Sj

0,t. (A3)

Combining Eq. (A3) with the traders’ wealth dynamics in Eq. (5) we obtain

N
ÿ

m“1

Sj
m,tPm,t ` Sj

0,t “

N
ÿ

m“1

Sj
m,t´1 pPm,t ` Dm,tq ` Sj

0,t´1Rf . (A4)

Using the representative investor’s wealth dynamics Eq. (4) and Eq. (A4) into Eq. (A2) and rear-

ranging, we obtain Eq. (7) in the text.
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Derivation of Eq. (8). We define the aggregate dividend DM,t as

DM,t “

N
ÿ

m“1

SmDm,t.

Under Assumption 1, the argument of the logarithm in the r.h.s. of Eq. (7) reduces to DM,t `

S0,t´1Rf . With Assumption 2, the representative investor’s budget constraint reads

At “

N
ÿ

m“1

S̃m,tPm,t ` S0,t ` λpDM,t ` S0,t´1Rf q,

which, together with Eq. (4) and Assumption 1, imply

S0,t “ p1 ´ λqpDM,t ` S0,t´1Rf q.

Using the previous equation recursively, we obtain

DM,t ` S0,t´1Rf “

t
ÿ

τ“0

DM,t´τ p1 ´ λqτRτ
f . (A5)

Assumptions 3 and 4 imply

t
ÿ

τ“0

DM,t´τ p1 ´ λqτRτ
f “ DM,t

p1 ` gq

„

1 ´

´

Rf p1´λq

1`g

¯t´1
ȷ

1 ` g ´ Rf p1 ´ λq
« DM,t

p1 ` gq

1 ` g ´ Rf p1 ´ λq
,

where the approximation is exact for t Ñ 8. Taken together, Assumptions 1-4 imply that the price

equation Eq. (7) simplifies to

pn,t “
β0sn ´ s̃n,t `

řK´1
k“1 βkxk,n,t ` βK ` ϵn,t ` log pDM,tq ` ϕ

1 ´ β0
, (A6)

where

ϕ “ log

ˆ

p1 ` gq

1 ` g ´ Rf p1 ´ λq

˙

.

Using the definition αa
n,t “

Sa
n,t

Sn
into Eq. (A6) and simplifying we obtain Eq. (8) in the text.

A.2 Proofs of propositions

Note: In the following proofs we denote Etp¨q “ Ep¨ | In,tq and V artp¨q “ V arp¨ | In,tq.

Proof of Proposition 1

Part-(i): Existence and uniqueness We begin by showing that speculators’ objective functions
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are concave in portfolio shares. Using Eqs. (15)-(16) we obtain

B2EtpR
j
p,tq

pBθjn,tq
2

“ Et

#

´
Pn,t`1

Pn,t

« ˜

1

Pn,t

BPn,t

Bθjn,t

¸ ˜

1 ´
θjn,t
Pn,t

BPn,t

Bθjn,t

¸

`

As
t

„

p1 ´ β0qSn Pn,t

ˆ

1 ´
θjn,t

Pn,t

BPn,t

Bθjn,t

˙

` β0
řJ

i‰j θ
i
n,tA

s
t

ȷ

”

p1 ´ β0qSn Pn,t ` β0
řJ

i“1 θ
i
n,tA

s
t

ı2

ff+

.

(A7)

Since
θjn,t

Pn,t

BPn,t

Bθjn,t

ă 1 (see Eq. (A9) below), then Eq. (A7) is indeed strictly negative.

Next, combine Eqs. (15)-(16) as follows:

BEtpR
j
p,tq

Bθjn,t
“ Et

«

Pn,t`1

Pn,t

˜

1 ´
θjn,tA

s
t

p1 ´ β0qSnPn,t ` β0
řJ

i“1 θ
i
n,tA

s
t

¸ff

` EtpDYn,t`1q ´ Rf :“ δj (A8)

Eq. (A8) implies that if an equilibrium exists, it must be unique. To see this, assume θjn,t ą θin,t, in

which case Eq. (A8) implies δj ă δi. In case both θjn,t, θ
i
n,t P p0, 1q, optimality requires δj “ δi “ 0, a

contradiction. In case θjn,t “ 1, θin,t P r0, 1q, optimality requires δj ě 0, δi ď 0, again a contradiction.

Using the definitions θjn,t “
Sj
n,tPn,t

As
t

, αj
n,t “

Sj
n,t

Sn
and αS

n,t “
řJ

i“1 α
i
n,t, we can rewrite Eq. (16)

as
θjn,t
Pn,t

BPn,t

Bθjn,t
“

θjn,tA
j
t

p1 ´ β0qSnPn,t ` β0
řJ

i“1 θ
i
n,tA

i
t

“
αj
n,t

p1 ´ β0q ` β0αS
n,t

. (A9)

We proceed to show that a symmetric equilibrium exists and is unique. We will first solve for an

equilibrium in terms of αS
n,t. Given αS

n,t, and using the definitions θjn,t “
Pn,tS

j
n,t

As
t

and As
t “ ωP ˚

n,tSn,

and the fact that P ˚
n,t{Pn,t “

`

1 ´ αS
n,t

˘
1

1´β0 , we can uniquely determine the equilibrium portfolio

share of each speculator as

θn,t “
αS
n,t

Jω
`

1 ´ αS
n,t

˘
1

1´β0

. (A10)

Since each θn,t P r0, 1s, the symmetric equilibrium must satisfy αS
n,t P r0, ᾱs where ᾱ solves

1 “
ᾱ

Jω p1 ´ ᾱq
1

1´β0

. (A11)

Using Eqs. (2)-(3) and the price functions in Eqs. (13)-(14) we can compute the expected

capital gain as

Et

ˆ

Pn,t`1

Pn,t

˙

“ exp

˜

´

řK´1
k“1 βkp1 ´ ρk,nqxk,n,t ` p1 ´ ρϵnqEt pϵn,tq

1 ´ β0

¸

Φn

`

1 ´ αS
n,t

˘

1
p1´β0q , (A12)
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where

Φn “ exp

˜

řK´1
k“1 βkcn,k ` cn,ϵ ` logp1 ` gq

1 ´ β0
`

řK´1
k“1 β2

kσ
2
ηk,n

` σ2
ξn

2p1 ´ β0q2

¸

(A13)

and, as already derived in the main text,

Etpϵn,tq “ p1 ´ β0qme˚
n,t ´

˜

K´1
ÿ

k“1

βkxk,n,t ` βK ` ϕ

¸

“ ϵn,t. (A14)

We define zn,t to be the following linear combination of me˚
n,t, x1,n,t, . . . , xK´1,n,t:

zn,t “

řK´1
k“1 βkcn,k ` cn,ϵ ` logp1 ` gq ` p1 ´ ρϵnq pβK ` ϕq

1 ´ β0
`

řK´1
k“1 β2

kσ
2
ηk,n

` σ2
ξn

2p1 ´ β0q2

`

řK´1
k“1 βkpρk,n ´ ρϵnq

1 ´ β0
xk,n,t ´ p1 ´ ρϵnqme˚

n,t.

(A15)

Eqs. (A12)-(A14) imply that we can write the expected capital gain in Eq. (A12) as

Et

ˆ

Pn,t`1

Pn,t

˙

“ exp pzn,tq
`

1 ´ αS
n,t

˘

1
1´β0 . (A16)

It follows that speculators’ expected return can be expressed as a function of zn,t alone.

Consider the case where all J speculators choose the same strategy θn,t “ x

Jωp1´xq
1

1´β0

,

so that αS
n,t “ x by Eq. (A10). Using Eqs. (A8)-(A9) and Eq. (A16), we can write the the first

derivative of a speculator’s objective function as

BEtpR
j
p,tq

Bθjn,t
|tθin,t“θn,t@iu “ G px, zn,tq ,

where we define

G px, zn,tq “ exp pzn,tq p1 ´ xq
1

p1´β0q

ˆ

1 ´
x{J

p1 ´ β0q ` β0x

˙

` DY n ´ Rf . (A17)

With this formulation, a symmetric equilibrium of the trading game is a fraction αS
n,t P

r0, ᾱs with ᾱ P p0, 1q such that either (i) αS
n,t “ 0 and G p0, zn,tq ď 0, or (ii) αS

n,t P p0, 1q and

G
`

αS
n,t, zn,t

˘

“ 0, or (iii) αS
n,t “ ᾱ and G pᾱ, zn,tq ě 0.

Eq. (A17) implies that G is strictly decreasing in the first argument and and strictly increas-

ing in the second argument, and, furthermore, that limzÓ´8 Gpx, zq ă 0 and limzÒ8 Gpx, zq “ 8.15

This implies that there exist values zL ă zH such that G p0, zLq “ G pᾱ, zHq “ 0. It is immediate,

therefore, that an equilibrium exists and is unique for any zn,t, and is such that αS
n,t “ 0 for all

zn,t ď zL and αS
n,t “ ᾱ for all zn,t ě zH , whereas for all zn,t P pzL, zHq, equilibrium αS

n,t is interior

15This argument implicitly assumes DY n ´ Rf ă 0.
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and solves

G
`

αS
n,t, zn,t

˘

“ 0. (A18)

Part-(ii): Linear sufficiency. Since G
`

αS
n,t; zn,t

˘

is strictly decreasing in αS
n,t and strictly in-

creasing in zn,t , implicit differentiation of Eq. (A18) implies that αS
n,t is strictly increasing in zn,t

in an interior equilibrium.

The equilibrium portfolio share θn,t corresponding to each αS
n,t is determined by Eq. (A10),

and is strictly increasing in αS
n,t. Since αS

n,t is only a function of zn,t, it follows that θn,t is only a

function of zn,t and is weakly increasing.

Finally, using the price equations in Eqs. (13)–(14) and the definition of zn,t in Eq. (A15)

we can write the capital gain as

Pn,t`1

Pn,t
“ exp

˜

zn,t `

řK´1
k“1 βkηk,n,t`1 ` ξn,t`1

p1 ´ β0q
´

řK´1
k“1 β2

kσ
2
ηk,n

` σ2
ξn

2p1 ´ β0q2

¸

`

1 ´ αS
n,t

˘

1
1´β0 . (A19)

Since αS
n,t is only a function of zn,t and the dividend yield is i.i.d., zn,t is indeed a sufficient statistic

for In,t with respect to Rn,t`1.

Part-(iii): comparative statics Eq. (A15) implies that zn,t is decreasing in me˚
n,t and increasing

in xk,n,t if and only if βkpρn,k ´ρϵq ą 0. Since θn,t is only a function of zn,t and is weakly increasing,

then θn,t is weakly decreasing in me˚
n,t and is weakly increasing in xk,n,t if and only if βkpρn,k´ρϵq ą

0.

Since G
`

αS
n,t; zn,t

˘

is independent of ω, then so is αS
n,t. Therefore, the equilibrium portfolio

share is decreasing in ω by Eq. (A10). Finally, since G
`

αS
n,t; zn,t

˘

is increasing in J , implicit

differentiation of Eq. (A18) implies that αS
n,t is also increasing in J . Then, for fixed ωJ, Eq. (A10)

implies that the equilibrium portfolio share is increasing in J.

Proof of Proposition 2. Taking the logarithm of Eqs. (A19) and using the definition of zn,t in

Eq. (A15) we can write

pn,t`1 ´ pn,t “ gnpIn,tq ` en,t`1, (A20)

where

gnpIn,tq “ ´

řK´1
k“1 β2

kσ
2
ηk,n

` σ2
ξn

2p1 ´ β0q2
` zn,t `

log
`

1 ´ αS
n,t

˘

1 ´ β0
; en,t`1 “

řK´1
k“1 βkηk,n,t`1 ` ξn,t`1

p1 ´ β0q
.

(A21)

Therefore,

ME “
Varpen,t`1q

Var

ˆ

zn,t `
logp1´αS

n,tq
1´β0

˙

` Varpen,t`1q

. (A22)

Since en,t`1 is exogenous and independent of ω and J, we will show that the first term in the

denominator of Eq. (A22) is decreasing in ω and is decreasing in J for ωJ sufficiently high.
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For an arbitrary parameter y (later either y “ J or J “ ω) set

fpz; yq “ z `
log

`

1 ´ αpz; yq
˘

1 ´ β0
,

where αpz; yq denotes αS
n,t valued at zn,t “ z and indexed by the parameter y. We note that

the equilibrium condition Eq. (A18) and Eq. (A17) imply that fpz; yq is strictly increasing in z.

Omitting subscripts, we denote V pyq the first variance term in the denominator of Eq. (A22):

V pyq “

ż 8

´8

fpz; yq2 dP pzq ´

´

ż 8

´8

fpz; yq dP pzq

¯2
,

where P denotes the unconditional distribution of the random variable z. We have:

dV pyq

dy
“ 2

ż 8

´8

fpz; yq
Bfpz; yq

By
dP pzq ´ 2

´

ż 8

´8

fpz; yq dP pzq

¯´

ż 8

´8

Bfpz; yq

By
dP pzq

¯

,

where
Bfpz; yq

By
“ ´

1

p1 ´ β0q
`

1 ´ αpz; yq
˘

Bαpz; yq

By
.

The proof of Proposition 1 implies αpz; yq “ 0 for z ď zL and αpz; yq “ ᾱpyq for z ě zH . Hence,

dV pyq

dy
“ ´

2

1 ´ β0

”

ż zH

zL

fpz; yq
1

1 ´ αpz; yq

Bαpz; yq

By
dP pzq `

ż 8

zH

fpz; yq
1

1 ´ ᾱpyq

dᾱpyq

dy
dP pzq

ı

`
2

1 ´ β0

´

ż 8

´8

fpz; yq dP pzq

¯”

ż zH

zL

1

1 ´ αpz; yq

Bαpz; yq

By
dP pzq `

ż 8

zH

1

1 ´ ᾱpyq

dᾱpyq

dy
dP pzq

ı

.

Case y “ ω. By Eq. (A17) and Eq. (A11),

Bαpz;ωq

Bω
“ 0 pzL ă z ă zHq,

dᾱpωq

dω
ą 0.

Let µω :“ Erfpz;ωqs. Then

dV pωq

dω
“

2

p1 ´ β0q
`

1 ´ ᾱpωq
˘

dᾱpωq

dω
E
“

pµω ´ fpz;ωqq1tzězHu

‰

.

Since fp¨, ωq is strictly increasing, Erfpz;ωq | z ě zHs ą µω ñ Erpµω ´ fpz;ωqq1tzězHus ă 0, and

therefore
dV pωq

dω
ă 0.

Case y “ J . Fix Jω. By Eq. (A17) and Eq. (A11),

Bαpz; Jq

BJ
ą 0 pzL ă z ă zHq,

dᾱpJq

dJ
“ 0. (A23)
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Put µJ :“ Erfpz; Jqs. The derivative reduces to

dV pJq

dJ
“ 2

ż zH

zL

`

µJ ´ fpz; Jq
˘

hpz; JqdP pzq,

where we define

hpz; Jq “
1

p1 ´ β0qp1 ´ αpz; Jqq

Bαpz; Jq

BJ
. (A24)

Since zL, zH are defined such that G p0, zLq “ G pᾱ, zHq “ 0, then Eqs. (A11) and (A17) imply that

zL is independent of ω whereas zH is increasing in ω with limωÒ8 zH “ 8. Thus,

lim
ωÒ8

dV pJq

dJ
“ ErpµJ ´ fpz; Jqqhpz; Jq1tzězLus. (A25)

We now prove that under the standing assumptions that hpz; Jq is non-decreasing in z, the

limit in (A25) is strictly negative:

lim
ωÒ8

dV pJq

dJ
“ E

“

pµJ ´ fpz; Jqqhpz; Jq1tzězLu

‰

ă 0.

To this end, introduce the conditional expectation ELr¨s :“ Er¨ | z ě zLs and set p :“ Ppz ě zLq.

Then,

E
“

pµJ ´ fpz; Jqqhpz; Jq1tzězLu

‰

“ p
”

µJ EL

“

hpz; Jq
‰

´ EL

“

fpz; Jqhpz; Jq
‰

ı

. (A26)

Because both fp¨; Jq and hp¨; Jq are non-decreasing,

CovL
`

fpz; Jq, hpz; Jq
˘

“ ELrfpz; Jqhpz; Jqs ´ ELrfpz; JqsELrhpz; Jqs ě 0,

so that

EL

“

fpz; Jqhpz; Jq
‰

ě EL

“

fpz; Jq
‰

EL

“

hpz; Jq
‰

. (A27)

Inserting (A27) into (A26) we obtain

E
“

pµJ ´ fpz; Jqqhpz; Jq1tzězLu

‰

ď p EL

“

hpz; Jq
‰ “

µJ ´ EL

“

fpz; Jq
‰‰

ă 0,

where the last inequality follows from the fact that p ą 0 (the unconditional distribution of zhas

support above zL), EL

“

hpz; Jq
‰

ą 0 (by Eq. (A23)) and, since fpz; Jq is strictly increasing in z,

EL

“

fpz; Jq
‰

ą µJ . To complete the proof it remains to show 1
p1´β0qp1´αpz;Jqq

Bαpz;Jq

BJ in non-decreasing

in z, which, using implicit differentiation of Eq. (A17), can be verified to be true.
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Proof of Proposition 3 The supply shock implies that pn,t equals

pn,t “ ´psn ` σq `
´ log

`

1 ´ αS
n,t

˘

`
řK´1

k“1 βkxk,n,t ` βK ` ϵn,t ` log pDM,tq ` ϕ

1 ´ β0
, (A28)

And therefore the expected capital gain changes to

Et

ˆ

Pn,t`1

Pn,t

˙

“ exp pzn,t ` σq
`

1 ´ αS
n,t

˘

1
p1´β0q . (A29)

The equilibrium condition is as in the proof of Proposition 1. Denote the resulting equilibrium

value αSpzn,t ` σq. Therefore, the definition of liquidity implies

L “ 1 ` E

ˆ

Bpn,t
Bσ

ˇ

ˇ

ˇ

ˇ

σ“0

˙

“ E

ˆ

B

Bσ

“

´ log
`

1 ´ αSpzn,t ` σq
˘‰

ˇ

ˇ

ˇ

ˇ

σ“0

˙

1

1 ´ β0
. (A30)

The proof for the comparative statics of L with respect to ω and J follows similar steps as in the

proof of Proposition 2 and is omitted for brevity.

For the case with AI trading, the supply shock changes the state variable me˚
n,t to me˚

n,t ´

σ. Thus, defining the aggregate share of supply held by the AI traders as αAI
`

me˚
n,t, txn,tu

˘

“
řJ

j“1 α
j
`

In,t
˘

, the definition of liquidity implies

L “ E

ˆ

B

Bσ

“

´ log
`

1 ´ αAI
`

me˚
n,t ´ σ, txn,tu

˘˘‰

ˇ

ˇ

ˇ

ˇ

σ“0

˙

1

1 ´ β0
. (A31)

Numerically, we approximate the derivatives

B

Bσ

“

´ log
`

1 ´ αSpzn,t ` σq
˘‰

ˇ

ˇ

ˇ

ˇ

σ“0

« ´
1

σ
log

ˆ

1 ´ αSpzn,t ` σq

1 ´ αSpzn,tq

˙

, (A32)

and

B

Bσ

“

´ log
`

1 ´ αAI
`

me˚
n,t ´ σ, txn,tu

˘˘‰

ˇ

ˇ

ˇ

ˇ

σ“0

« ´
1

σ
log

˜

1 ´ αAI
`

me˚
n,t ´ σ, txn,tu

˘

1 ´ αAI
`

me˚
n,t, txn,tu

˘

¸

(A33)

for a numerical value of σ “ logp1.01q, corresponding to a 1% increase in the supply of the asset.

A.3 Simulating stock characteristics and latent demand

The stock characteristics log book equity, profitability, investment, dividend-to-book equity,

market beta and latent demand are simulated from an AR(1) process such that:

xk,n,t`1 “ ck,n ` ρk,nxk,n,t ` ηk,n,t`1, (A34)

ϵn,t`1 “ cϵ,n ` ρϵ,nϵn,t ` ξn,t`1, (A35)
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where xk,n is the k ´ th the stock’s characteristics, ck,n is the intercept, ρk is the autoregressive

coefficient and ηk,n,t`1 is the error term and similarly for the latent demand. The AR(1) process is

estimated by simulated method of moments, by imposing the following moment conditions on the

data:

Etrxk,n,t`1s “
ck,n

1 ´ ρk,n

V artrxk,t,t`1s “
σ2
k,nε

1 ´ ρ2k,n

Etryk,n,t`1yk,n,ts

V artryk,n,t`1
s

“ ρk,n

By exploiting empirical moments, we recover the parameters of the AR(1) process. Stock

characteristics are then simulated accordingly using the empirical mean as initial condition.

We construct the dividend yield,
Dn,t

Pn,t´1
, by sampling with replacement from the data.

Finally, we simulate returns by solving Eq. 7, given the simulated characteristics, dividends and

the consumption rate of the representative investor.

Table A1: Autoregressive coefficients

Characteristic/Asset IBM AXP ABM AEE WEYS GIS KO L SJM ARW

Latent demand 0.871 0.788 0.440 0.858 0.823 0.290 0.834 0.861 0.914 0.880
Log book equity 0.970 0.952 0.932 0.633 0.907 0.559 0.851 0.532 0.977 0.800
Profutability 0.923 0.661 0.673 -0.025 0.315 -0.138 0.184 0.911 0.128 0.582
Investment 0.817 0.763 0.698 0.770 0.340 0.903 0.769 0.842 0.930 0.564
Dividend to book equity 0.965 0.336 0.818 -0.015 0.755 0.074 0.710 0.830 0.986 0.864
Market beta 0.886 0.919 0.842 0.951 0.944 0.855 0.898 0.799 0.906 0.832

Notes: This table reports the estimate coefficient of stock characteristics for each stock. The autoregressive coefficient is
estimated using simulated method of moments described in Section A.3

Table A2 reports the summary statistics, mean and standard deviation of the stock char-

acteristics, dividend, latent demand and returns of the data and the simulation.
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Table A2: Simulated characteristics and returns

Log book equity IBM AXP ABM AEE WEYS GIS KO L SJM ARW

Data (mean) 6.42073 10.9827 9.12387 9.25862 7.08271 8.20547 8.97407 4.7242 9.80731 9.67367
Simulation (mean) 6.34819 10.9951 9.07388 9.25912 7.0522 8.18637 8.97068 4.72302 9.8181 9.65167
Data (std. dev.) 0.92798 0.93983 0.67001 0.53372 1.04751 0.56105 0.93541 0.30192 1.6421 0.70726
Simulation (std. dev.) 0.82138 0.89576 0.6584 0.53391 0.99783 0.56504 0.90323 0.303 1.37342 0.70275
t-stat 1.11986 -0.17463 0.96454 -0.01203 0.38829 0.42961 0.04766 0.04946 -0.09955 0.39788

Profitability IBM AXP ABM AEE WEYS GIS KO L SJM ARW

Data (mean) 0.21889 0.20844 0.30465 0.11783 0.15098 0.26824 0.117 0.06332 0.38611 0.18734
Simulation (mean) 0.22162 0.20721 0.30431 0.11821 0.1515 0.26896 0.11642 0.06688 0.38497 0.18809
Data (std. dev.) 0.09555 0.08512 0.09705 0.04408 0.05707 0.11134 0.08928 0.09923 0.11744 0.14144
Simulation (std. dev.) 0.0923 0.08418 0.09763 0.04363 0.0564 0.11123 0.08914 0.09333 0.11818 0.14133
t-stat -0.37636 0.1857 0.04494 -0.11016 -0.11818 -0.08276 0.08237 -0.48475 0.12209 -0.06699

Investment IBM AXP ABM AEE WEYS GIS KO L SJM ARW

Data (mean) 0.07682 0.05851 0.0643 0.04703 0.08052 0.05172 0.06906 0.0015 0.14528 0.05576
Simulation (mean) 0.07964 0.06095 0.06401 0.04604 0.0822 0.05487 0.06589 -0.0037 0.15288 0.05884
Data (std. dev.) 0.11684 0.12934 0.11971 0.08153 0.18329 0.1003 0.21201 0.12631 0.12132 0.07414
Simulation (std. dev.) 0.11848 0.12482 0.11894 0.08002 0.17955 0.09629 0.21051 0.12452 0.11936 0.07497
t-stat -0.3021 -0.2478 0.03097 0.15715 -0.11863 -0.41607 0.19138 0.53064 -0.80959 -0.52221

Dividend-to-book equity IBM AXP ABM AEE WEYS GIS KO L SJM ARW

Data (mean) 0.02268 0.04472 0.06078 0.03469 0.03105 0.01457 0.03598 0.00519 0.04535 0.03676
Simulation (mean) 0.02248 0.04507 0.06082 0.03467 0.0315 0.01456 0.04121 0.01358 0.04537 0.04012
Data (std. dev.) 0.00984 0.01128 0.02259 0.01242 0.01843 0.00625 0.03402 0.01869 0.01963 0.02838
Simulation (std. dev.) 0.00904 0.01134 0.02233 0.01239 0.01723 0.00608 0.02947 0.01264 0.01587 0.02478
t-stat 0.28184 -0.39266 -0.0233 0.02207 -0.33005 0.03591 -2.2517 -8.3563 -0.01684 -1.7186

Market beta IBM AXP ABM AEE WEYS GIS KO L SJM ARW

Data (mean) -0.00115 0.00373 0.00301 0.00657 0.00056 2e-05 -0.00242 0.00272 0.00359 0.00118
Simulation (mean) -0.00035 0.00407 0.00267 0.00719 0.00099 -0.0013 -0.00243 0.00272 0.0037 0.00143
Data (std. dev.) 0.01495 0.01105 0.01112 0.01267 0.01478 0.0132 0.01631 0.0164 0.01067 0.0089
Simulation (std. dev.) 0.01525 0.01091 0.01089 0.01174 0.01328 0.01287 0.01634 0.01643 0.01059 0.0089
t-stat -0.66117 -0.3934 0.40746 -0.66577 -0.40642 1.3024 0.00912 0.00492 -0.12959 -0.36119

Dividend yield IBM AXP ABM AEE WEYS GIS KO L SJM ARW

Data (mean) 0.0009 0 0 0.01526 0 0.00068 0.00568 0.0008 0.00181 0.01158
Simulation (mean) 0.00086 0 0 0.01511 0 0.00074 0.00561 0.00112 0.0018 0.01195
Data (std. dev.) 0.00222 0 0 0.00718 0 0.00191 0.00683 0.01025 0.00212 0.00865
Simulation (std. dev.) 0.00217 0 0 0.00707 0 0.00196 0.00646 0.01206 0.00207 0.00878
t-stat 0.19258 0 0 0.25434 0 -0.37526 0.14317 -0.39294 0.0408 -0.54033

Latent demand IBM AXP ABM AEE WEYS GIS KO L SJM ARW

Data (mean) -0.20346 0.04419 -0.07862 -0.18407 -0.2019 -0.68296 -0.33884 -0.24875 0.16588 -0.25759
Simulation (mean) -0.19883 0.04132 -0.07849 -0.16776 -0.19298 -0.68338 -0.32888 -0.21586 0.16073 -0.23081
Data (std. dev.) 0.23989 0.13805 0.1569 0.16367 0.21682 0.40716 0.19511 0.42572 0.21157 0.24939
Simulation (std. dev.) 0.16791 0.09728 0.1099 0.12794 0.15707 0.28656 0.13923 0.30138 0.14371 0.17841
t-stat -0.34786 0.37264 -0.01472 -1.6129 -0.7171 0.01858 -0.9023 -1.3765 0.45114 -1.8936

Returns (%) IBM AXP ABM AEE WEYS GIS KO L SJM ARW

Data (mean) 0.91451 1.08485 0.09177 0.75742 -0.21003 2.04382 0.88848 1.14193 2.00448 0.99955
Simulation (mean) 0.48439 1.00017 0.47566 1.34435 0.39247 0.76183 1.06302 1.18892 0.39994 0.5064
Data (std. dev.) 20.9169 12.7746 20.9741 12.5096 30.0809 21.2705 24.0883 14.1679 13.4409 14.4851
Simulation (std. dev.) 26.5417 25.2129 30.3453 59.572 35.9562 28.8055 39.2624 22.485 37.6887 25.9773
t-stat 0.20622 0.04287 -0.16119 -0.12596 -0.21318 0.56698 -0.05667 -0.02664 0.54416 0.24232

Notes: This table reports the summary statistics (mean and standard deviation) of stock characteristics, dividend, latent
demand and returns of the data and simulation. Stock characteristics and latent demand are modeled as stock-specific AR(1)
processes fitted on data. Statistics are based on 100 simulated processes. Dividend yields are sampled with replacement from
the data. Returns are from prices computed according to Eq. 7
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A.4 Price variance decomposition

In this section we study the contribution of latent demand on the variance of the capital

gain. To assess the role of the unobserved latent demand we compute:

Varpξn,t`1q

Varppn,t`1 ´ pn,tq

where ξn,t`1 is the innovation in the latent demand and pn,t`1 ´ pn,t refers to the capital

gain. Figure A1 reports the distribution of the latent demand to the capital gain variance across

100 simulated time-series for the ten stocks.

Figure A1: Contribution of latent demand on the variance of the capital gain.

Notes: This figure reports the distribution the contribution of the variance of the latent demand on the variance of the capital

gain (
Varpξn,t`1q

Varppn,t`1´pn,tq
) across 100 simulated time-series for the ten selected stocks.

The latent demand explains on average from around 2% (The Coca Cola Company, KO) to

24% (Loews Corporation, L). The mean and standard deviation across the 100 simulated time-series

is shown in Table A3

Table A3: Summary statistics of the variance contibution of the latent demand to the variance of
the capital gain

IBM AXP ABM AEE WEYS GIS KO L SJM ARW

Mean (%) 9.777 3.503 10.689 1.940 3.100 21.792 2.035 23.655 2.263 3.304
Std. Dev. (%) 2.304 0.703 2.261 0.405 0.619 2.870 0.440 3.333 0.572 0.653

Notes: This table reports the mean and standard deviation the contribution of the variance of the latent demand on the variance

of the capital gain (
Varpξn,t`1q

Varppn,t`1´pn,tq
) across 100 simulated time-series for the ten selected stocks.
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B Additional results

B.1 Portfolio distances

Table A4: Distance between AIs and benchmark across stocks, DtAI,bu

Panel A: IBM Panel F: GIS
Jω “ 1% Jω “ 5% Jω “ 10% Jω “ 1% Jω “ 5% Jω “ 10%

DtAI,bu θ̄AI DtAI,bu θ̄AI DtAI,bu θ̄AI DtAI,bu θ̄AI DtAI,bu θ̄AI DtAI,bu θ̄AI

J=1
32.139

0.436
46.199

0.146
68.894

0.049 J=1
49.215

0.550
56.381

0.464
59.467

0.411
(9.821) (6.266) (21.749) (7.255) (6.624) (9.179)

J=2
24.906

0.527
50.615

0.305
80.268

0.158 J=2
48.037

0.558
52.889

0.507
54.631

0.453
(6.972) (8.970) (22.501) (3.325) (4.218) (4.210)

J=5
24.64

0.596
71.118

0.500
163.422

0.395 J=5
48.133

0.569
48.945

0.548
49.635

0.527
(5.824) (17.901) (25.352) (2.851) (2.946) (2.785)

Panel B: AXP Panel G: KO
Jω “ 1% Jω “ 5% Jω “ 10% Jω “ 1% Jω “ 5% Jω “ 10%

DtAI,bu θ̄AI DtAI,bu θ̄AI DtAI,bu θ̄AI DtAI,bu θ̄AI DtAI,bu θ̄AI DtAI,bu θ̄AI

J=1
44.813

0.400
65.194

0.100
98.207

0.002 J=1
35.515

0.485
66.445

0.496
45.999

0.12
(11.353) (19.218) (8.780) (7.864) (37.080) (10.206)

J=2
45.912

0.580
55.041

0.216
69.922

0.058 J=2
34.367

0.630
29.09

0.396
41.671

0.265
(13.842) (10.841) (14.844) (7.948) (8.554) (6.040)

J=5
42.382

0.633
67.197

0.478
102.235

0.314 J=5
33.366

0.651
36.555

0.560
70.152

0.483
(4.669) (18.759) (36.595) (4.307) (12.575) (23.476)

Panel C: ABM Panel H: L
Jω “ 1% Jω “ 5% Jω “ 10% Jω “ 1% Jω “ 5% Jω “ 10%

DtAI,bu θ̄AI DtAI,bu θ̄AI DtAI,bu θ̄AI DtAI,bu θ̄AI DtAI,bu θ̄AI DtAI,bu θ̄AI

J=1
36.423

0.461
57.567

0.328
111.17

0.247 J=1
40.458

0.499
56.754

0.375
92.412

0.292
(6.570) (8.709) (60.214) (7.795) (18.070) (51.436)

J=2
34.141

0.556
35.342

0.371
47.681

0.199 J=2
36.007

0.545
38.002

0.425
45.954

0.316
(9.727) (4.141) (14.167) (5.276) (4.744) (6.537)

J=5
33.297

0.609
35.144

0.519
44.247

0.428 J=5
34.825

0.560
35.683

0.527
52.02

0.470
(4.796) (7.162) (5.851) (2.851) (4.045) (7.148)

Panel D: AEE Panel I: SJM
Jω “ 1% Jω “ 5% Jω “ 10% Jω “ 1% Jω “ 5% Jω “ 10%

DtAI,bu θ̄AI DtAI,bu θ̄AI DtAI,bu θ̄AI DtAI,bu θ̄AI DtAI,bu θ̄AI DtAI,bu θ̄AI

J=1
54.957

0.446
70.075

0.178
149.988

0.288 J=1
53.86

0.446
134.167

0.220
325.935

0.252
(5.373) (1.996) (102.827) (7.804) (98.111) (305.219)

J=2
54.155

0.605
65.927

0.364
76.236

0.189 J=2
48.621

0.630
76.213

0.213
82.626

0.032
(5.876) (8.946) (3.659) (5.836) (15.122) (12.685)

J=5
53.581

0.679
69.604

0.559
89.904

0.422 J=5
44.309

0.749
106.348

0.525
164.743

0.325
(4.013) (10.592) (12.581) (2.881) (19.932) (47.128)

Panel E: WEYS Panel J: ARW
Jω “ 1% Jω “ 5% Jω “ 10% Jω “ 1% Jω “ 5% Jω “ 10%

DtAI,bu θ̄AI DtAI,bu θ̄AI DtAI,bu θ̄AI DtAI,bu θ̄AI DtAI,bu θ̄AI DtAI,bu θ̄AI

J=1
41.720

0.460
66.666

0.351
107.706

0.269 J=1
33.031

0.521
70.931

0.356
52.084

0.091
(8.009) (33.939) (79.112) (9.788) (45.237) (17.844)

J=2
36.654

0.539
40.419

0.377
51.167

0.244 J=2
32.557

0.632
34.021

0.400
51.154

0.229
(5.401) (7.603) (6.903) (7.806) (16.469) (22.185)

J=5
37.213

0.617
42.27

0.529
61.873

0.448 J=5
32.764

0.706
44.495

0.583
90.615

0.478
(3.863) (8.893) (14.392) (5.872) (17.363) (25.623)

Notes: This table reports the distance between the AI traders and the rational benchmark, DtAI.bupω, Jq, scaled by the average

portfolio weight of the rational benchmark, θb. Values are expressed in percentage. Standard deviation across simulations is
reported in parenthesis.
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B.2 Portfolio comparative statics in zn,t

Figure A2: Portfolio policy: IBM

Notes: This figure plots the portfolio weight of the rational benchmark (blue line), the average portfolio weight of the AI traders
θAI (orange line) and 5th-95th percentiles interval across 50 simulations (orange shaded area) and the empirical probability
density function of the sufficient statistic zn,t (black line) as function of zn,t for each pJ, Jωq pair. The stock is IBM.
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Figure A3: Average across AIs - Stock: AXP

Notes: This figure plots the portfolio weight of the rational benchmark (blue line), the average portfolio weight of the AI traders
θAI (orange line) and 5th-95th percentiles interval across 50 simulations (orange shaded area) and the empirical probability
density function of the sufficient statistic zn,t (black line) as function of zn,t for each pJ, Jωq pair. The stock is AXP.
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Figure A4: Average across AIs - Stock: ABM

Notes: This figure reports the portfolio weight of the rational benchmark (blue line), the average portfolio weight of the AI
traders (orange line) and 5th-95th percentiles interval across 50 simulations (orange shaded area) and the empirical probability
density function of the expected return zn,t (black line) as function of the expected return zn,t for each pJ, Jωq. The stock is
ABM.
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Figure A5: Average across AIs - Stock: AEE

Notes: This figure plots the portfolio weight of the rational benchmark (blue line), the average portfolio weight of the AI traders
θAI (orange line) and 5th-95th percentiles interval across 50 simulations (orange shaded area) and the empirical probability
density function of the sufficient statistic zn,t (black line) as function of zn,t for each pJ, Jωq pair.The stock is AEE.
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Figure A6: Average across AIs - Stock: WEYS

Notes: This figure plots the portfolio weight of the rational benchmark (blue line), the average portfolio weight of the AI traders
θAI (orange line) and 5th-95th percentiles interval across 50 simulations (orange shaded area) and the empirical probability
density function of the sufficient statistic zn,t (black line) as function of zn,t for each pJ, Jωq pair. The stock is WEYS.
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Figure A7: Average across AIs - Stock: GIS

Notes: This figure plots the portfolio weight of the rational benchmark (blue line), the average portfolio weight of the AI traders
θAI (orange line) and 5th-95th percentiles interval across 50 simulations (orange shaded area) and the empirical probability
density function of the sufficient statistic zn,t (black line) as function of zn,t for each pJ, Jωq pair. The stock is GIS.
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Figure A8: Average across AIs - Stock: KO

Notes: This figure plots the portfolio weight of the rational benchmark (blue line), the average portfolio weight of the AI traders
θAI (orange line) and 5th-95th percentiles interval across 50 simulations (orange shaded area) and the empirical probability
density function of the sufficient statistic zn,t (black line) as function of zn,t for each pJ, Jωq pair. The stock is KO.
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Figure A9: Average across AIs - Stock: L

Notes: This figure plots the portfolio weight of the rational benchmark (blue line), the average portfolio weight of the AI traders
θAI (orange line) and 5th-95th percentiles interval across 50 simulations (orange shaded area) and the empirical probability
density function of the sufficient statistic zn,t (black line) as function of zn,t for each pJ, Jωq pair. The stock is L.
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Figure A10: Average across AIs - Stock: SJM

Notes: This figure plots the portfolio weight of the rational benchmark (blue line), the average portfolio weight of the AI traders
θAI (orange line) and 5th-95th percentiles interval across 50 simulations (orange shaded area) and the empirical probability
density function of the sufficient statistic zn,t (black line) as function of zn,t for each pJ, Jωq pair. The stock is SJM.
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Figure A11: Average across AIs - Stock: ARW

Notes: This figure plots the portfolio weight of the rational benchmark (blue line), the average portfolio weight of the AI traders
θAI (orange line) and 5th-95th percentiles interval across 50 simulations (orange shaded area) and the empirical probability
density function of the sufficient statistic zn,t (black line) as function of zn,t for each pJ, Jωq pair. The stock is ARW.
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B.3 Standard deviation of θAI

Table A5: Standard deviation of θAIpzn,tq and bias

Panel A: IBM Panel F: GIS
Jω “ 1% Jω “ 5% Jω “ 10% Jω “ 1% Jω “ 5% Jω “ 10%

stdpθAIq bias stdpθAIq bias stdpθAIq bias stdpθAIq bias stdpθAIq bias stdpθAIq bias
J=1 0.436 0.442 0.356 0.225 0.175 0.091 0.410 0.447 0.403 0.464 0.399 0.401
J=2 0.427 0.427 0.418 0.168 0.344 0.167 0.419 0.419 0.414 -0.205 0.413 -0.126
J=5 0.400 0.400 0.422 0.222 0.433 0.287 0.421 0.421 0.417 -0.191 0.412 -0.130

Panel B: AXP Panel G: KO
Jω “ 1% Jω “ 5% Jω “ 10% Jω “ 1% Jω “ 5% Jω “ 10%

stdpθAIq bias stdpθAIq bias stdpθAIq bias stdpθAIq bias stdpθAIq bias stdpθAIq bias
J=1 0.430 0.408 0.262 0.173 0.020 0.014 0.379 0.376 0.370 0.388 0.165 0.075
J=2 0.352 0.352 0.339 0.048 0.145 -0.008 0.315 0.315 0.368 0.006 0.319 0.052
J=5 0.347 0.347 0.402 0.175 0.380 0.192 0.317 0.317 0.364 0.072 0.358 0.159

Panel C: ABM Panel H: L
Jω “ 1% Jω “ 5% Jω “ 10% Jω “ 1% Jω “ 5% Jω “ 10%

stdpθAIq bias stdpθAIq bias stdpθAIq bias stdpθAIq bias stdpθAIq bias stdpθAIq bias
J=1 0.417 0.368 0.361 0.263 0.237 0.237 0.418 0.459 0.394 0.348 0.361 0.280
J=2 0.397 0.397 0.395 -0.050 0.313 0.011 0.432 0.432 0.419 0.009 0.397 0.098
J=5 0.387 0.387 0.411 0.000 0.418 0.080 0.427 0.427 0.418 -0.026 0.422 0.119

Panel D: AEE Panel I: SJM
Jω “ 1% Jω “ 5% Jω “ 10% Jω “ 1% Jω “ 5% Jω “ 10%

stdpθAIq bias stdpθAIq bias stdpθAIq bias stdpθAIq bias stdpθAIq bias stdpθAIq bias
J=1 0.386 0.342 0.306 0.173 0.254 0.254 0.441 0.555 0.326 0.353 0.181 0.253
J=2 0.342 0.342 0.380 -0.002 0.313 0.020 0.339 0.339 0.433 0.283 0.150 0.049
J=5 0.296 0.296 0.347 0.089 0.384 0.105 0.265 0.265 0.383 0.378 0.424 0.392

Panel E: WEYS Panel J: ARW
Jω “ 1% Jω “ 5% Jω “ 10% Jω “ 1% Jω “ 5% Jω “ 10%

stdpθAIq bias stdpθAIq bias stdpθAIq bias stdpθAIq bias stdpθAIq bias stdpθAIq bias
J=1 0.423 0.467 0.377 0.400 0.352 0.316 0.402 0.612 0.391 0.482 0.271 0.183
J=2 0.409 0.409 0.411 0.044 0.399 0.123 0.346 0.346 0.408 0.315 0.413 0.292
J=5 0.369 0.369 0.410 0.089 0.412 0.219 0.286 0.286 0.354 0.283 0.400 0.371

Notes: This table reports the standard deviation of θAI
ns

across 100 random realizations of state variables that leave zn,t

unchanged, averaged across zn,t values and simulations.
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Table A6: Causal effect of training environment on performance, ∆RJ´1

Panel A: IBM Panel F: GIS
Jω “ 1% Jω “ 5% Jω “ 10% Jω “ 1% Jω “ 5% Jω “ 10%

J=2
0.001 0.627 0.619 -0.412 0.296 1.321
(0.699) (0.291) (0.505) (0.759) (0.901) (0.816)

J=5
0.239 2.081 3.866 -0.094 0.663 2.474
(0.429) (0.689) (0.710) (0.611) (0.894) (0.827)

Panel B: AXP Panel G: KO
Jω “ 1% Jω “ 5% Jω “ 10% Jω “ 1% Jω “ 5% Jω “ 10%

J=2
0.628 -0.146 -0.272 0.405 0.106 0.601
(1.228) (0.347) (0.187) (1.997) (0.641) (0.315)

J=5
0.201 1.490 2.189 0.463 1.451 3.258
(1.008) (0.870) (1.328) (1.207) (1.072) (1.614)

Panel C: ABM Panel H: L
Jω “ 1% Jω “ 5% Jω “ 10% Jω “ 1% Jω “ 5% Jω “ 10%

J=2
0.208 -0.471 -0.991 -0.143 0.232 0.830
(2.050) (0.488) (0.683) (0.426) (0.558) (0.578)

J=5
0.373 0.202 0.579 -0.474 0.875 2.859
(1.139) (1.233) (0.580) (0.854) (0.613) (0.750)

Panel D: AEE Panel I: SJM
Jω “ 1% Jω “ 5% Jω “ 10% Jω “ 1% Jω “ 5% Jω “ 10%

J=2
0.362 0.610 0.232 0.499 0.349 -0.073
(1.576) (0.914) (0.497) (0.826) (0.458) (0.092)

J=5
0.426 2.018 3.156 0.671 2.593 2.882
(1.548) (1.460) (1.083) (0.723) (0.850) (1.246)

Panel E: WEYS Panel J: ARW
Jω “ 1% Jω “ 5% Jω “ 10% Jω “ 1% Jω “ 5% Jω “ 10%

J=2
-0.155 0.091 0.420 0.558 0.633 0.735
(1.669) (0.703) (0.464) (1.377) (0.980) (0.894)

J=5
0.381 1.260 2.758 0.563 2.045 3.802
(1.090) (1.080) (1.050) (1.659) (1.546) (1.230)

Notes: This table reports portfolio return differences between two settings: (i) an AI trader trained while competing with
J ´ 1 rational speculators, and (ii) an AI trader trained jointly with J ´ 1 AI traders in exploration mode. R˚ denotes the
per-period out-of-sample gross portfolio return for setting (i) averaged across episodes and simulations, and RAI denotes the
corresponding quantity for setting (ii). Then we define ∆RJ´1 “ pR˚{RAI ´ 1q ˆ 100. Standard deviations across stocks are
reported in parentheses.
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B.4 Portfolio returns

Table A7: Portfolio returns

Panel A: IBM Panel F: GIS
Jω “ 1% Jω “ 5% Jω “ 10% Jω “ 1% Jω “ 5% Jω “ 10%

AI RB AI RB AI RB AI RB AI RB AI RB

J=1
-0.034

2.211
-0.139

1.476
-0.190

1.233
-4.556

8.443
-3.980

5.337
-4.407

3.828
(0.606) (0.062) (0.111) (0.665) (0.866) (2.039)

J=2
0.084

2.015
-0.706

1.222
-0.766

1.138
-4.148

8.303
-3.561

4.812
-3.855

3.065
(0.428) (0.258) (0.504) (0.483) (0.672) (0.642)

J=5
0.013

1.871
-1.967

0.815
-3.782

0.938
-4.207

8.215
-3.711

4.391
-4.410

2.254
(0.430) (0.648) (0.660) (0.306) (0.570) (0.622)

Panel B: AXP Panel G: KO
Jω “ 1% Jω “ 5% Jω “ 10% Jω “ 1% Jω “ 5% Jω “ 10%

AI RB AI RB AI RB AI RB AI RB AI RB

J=1
-0.541

3.283
-0.410

1.825
-0.527

1.423
-0.164

4.648
-2.414

2.941
-0.273

2.267
(0.842) (0.285) (0.072) (1.161) (2.768) (0.175)

J=2
-0.962

3.163
-0.308

1.551
-0.120

1.287
-0.640

4.511
-0.097

2.257
-0.797

1.848
(1.168) (0.248) (0.173) (1.209) (0.564) (0.321)

J=5
-0.817

3.077
-1.711

1.161
-2.251

1.003
-0.462

4.409
-1.076

1.609
-3.194

1.153
(0.410) (0.840) (1.251) (0.752) (1.046) (1.440)

Panel C: ABM Panel H: L
Jω “ 1% Jω “ 5% Jω “ 10% Jω “ 1% Jω “ 5% Jω “ 10%

AI RB AI RB AI RB AI RB AI RB AI RB

J=1
-0.729

7.180
-1.290

4.443
-2.918

3.163
0.278

4.364
-1.056

2.910
-2.490

2.504
(0.235) (0.885) (3.318) (0.933) (2.188) (2.883)

J=2
-1.036

7.091
-0.115

3.950
-0.183

2.700
0.622

4.127
0.267

1.924
-0.723

1.563
(1.584) (0.203) (0.171) (0.376) (0.433) (0.561)

J=5
-1.079

7.017
-0.844

3.479
-1.601

2.031
0.861

3.988
0.007

1.075
-2.132

0.435
(0.617) (0.691) (0.502) (0.223) (0.533) (0.673)

Panel D: AEE Panel I: SJM
Jω “ 1% Jω “ 5% Jω “ 10% Jω “ 1% Jω “ 5% Jω “ 10%

AI RB AI RB AI RB AI RB AI RB AI RB

J=1
-1.773

5.633
-0.978

3.174
-3.940

2.240
-0.620

2.278
-1.593

1.446
-4.084

1.199
(0.894) (0.078) (4.851) (0.739) (2.360) (5.569)

J=2
-2.240

5.542
-1.466

2.776
-0.924

1.823
-0.829

2.055
-0.677

1.283
-0.193

1.146
(1.043) (0.861) (0.481) (0.764) (0.453) (0.093)

J=5
-2.396

5.474
-2.799

2.368
-3.373

1.228
-1.004

1.892
-2.633

0.969
-2.925

1.013
(0.760) (1.328) (0.996) (0.455) (0.806) (1.164)

Panel E: WEYS Panel J: ARW
Jω “ 1% Jω “ 5% Jω “ 10% Jω “ 1% Jω “ 5% Jω “ 10%

AI RB AI RB AI RB AI RB AI RB AI RB

J=1
-0.523

4.618
-1.655

2.762
-2.636

2.185
-0.184

3.790
-1.577

2.274
-0.269

1.821
(0.970) (3.195) (3.811) (1.152) (2.583) (0.237)

J=2
-0.420

4.428
-0.160

2.137
-0.570

1.626
-0.439

3.595
-0.426

1.654
-0.845

1.444
(0.797) (0.641) (0.457) (1.142) (0.945) (0.844)

J=5
-0.662

4.309
-1.095

1.573
-2.495

0.825
-0.681

3.474
-1.643

1.064
-3.578

0.821
(0.688) (0.978) (0.968) (1.002) (1.436) (1.120)

This table reports information on average per-period out-of-sample gross portfolio returns for (i)
the rational benchmark (Rb) and (ii) the AI case (RAI), averaged across episodes and simulations.

We report the deviation of AI returns from the benchmark, defined as
∆AI,b “ pRAI{Rb ´ 1q ˆ 100, and the benchmark’s average net percent return rb “ pRb ´ 1q ˆ 100.

Standard deviations across stocks are reported in parentheses.
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B.5 Market outcomes

Table A8: Market efficiency (as ∆ % from MEpJ “ 0q)

Panel A: IBM (MEpJ “ 0q “ 0.942) Panel F: GIS (MEpJ “ 0q “ 0.665)
Jω “ 1% Jω “ 5% Jω “ 10% Jω “ 1% Jω “ 5% Jω “ 10%

AI RB AI RB AI RB AI RB AI RB AI RB

J=1
1.377

1.739
2.517

3.382
1.778

3.386
1.227

1.561
4.606

5.340
3.779

5.758
(0.229) (0.270) (1.156) (0.270) (1.203) (0.714)

J=2
1.455

1.729
3.973

4.133
3.269

4.176
1.015

1.554
4.894

5.859
6.585

7.133
(0.196) (0.225) (0.507) (0.362) (0.488) (0.324)

J=5
1.367

1.706
4.514

4.575
3.552

4.742
0.990

1.544
4.652

6.040
7.284

7.989
(0.208) (0.314) (0.495) (0.226) (0.768) (0.920)

Panel B: AXP (MEpJ “ 0q “ 0.980) Panel G: KO (MEpJ “ 0q “ 0.967)
Jω “ 1% Jω “ 5% Jω “ 10% Jω “ 1% Jω “ 5% Jω “ 10%

AI RB AI RB AI RB AI RB AI RB AI RB

J=1
1.698

2.529
2.475

5.871
0.137

5.943
0.810

1.132
2.744

4.477
3.550

5.185
(0.381) (1.363) (0.666) (0.165) (0.675) (1.012)

J=2
1.520

2.537
4.372

7.081
2.675

7.384
0.833

1.111
3.420

4.759
4.901

6.197
(0.604) (1.304) (1.356) (0.097) (0.289) (0.372)

J=5
1.540

2.535
6.029

7.762
6.046

8.411
0.837

1.096
3.467

4.801
5.587

6.737
(0.236) (0.679) (0.521) (0.065) (0.255) (0.219)

Panel C: ABM (MEpJ “ 0q “ 0.962) Panel H: L (MEpJ “ 0q “ 0.958)
Jω “ 1% Jω “ 5% Jω “ 10% Jω “ 1% Jω “ 5% Jω “ 10%

AI RB AI RB AI RB AI RB AI RB AI RB

J=1
2.097

2.759
6.874

10.649
7.625

13.288
0.788

1.631
0.896

2.658
-0.824

2.658
(0.179) (2.026) (6.131) (0.232) (0.668) (1.577)

J=2
2.030

2.753
8.744

11.346
10.382

16.093
0.653

1.611
1.431

3.282
0.619

3.281
(0.508) (0.518) (3.070) (0.292) (0.371) (0.442)

J=5
1.964

2.744
9.284

11.562
16.243

17.495
0.557

1.575
1.928

3.733
0.135

3.745
(0.259) (0.924) (0.606) (0.164) (0.284) (1.114)

Panel D: AEE (MEpJ “ 0q “ 0.985) Panel I: SJM (MEpJ “ 0q “ 0.995)
Jω “ 1% Jω “ 5% Jω “ 10% Jω “ 1% Jω “ 5% Jω “ 10%

AI RB AI RB AI RB AI RB AI RB AI RB

J=1
1.532

2.878
3.581

10.067
4.214

11.441
1.243

1.560
3.687

4.786
3.258

5.027
(0.340) (0.318) (2.640) (0.333) (1.077) (1.141)

J=2
1.294

2.864
5.278

11.110
5.499

14.017
1.042

1.527
4.550

5.416
5.459

6.147
(0.474) (0.819) (1.050) (0.372) (0.811) (0.752)

J=5
1.151

2.847
5.126

11.531
7.099

15.528
0.897

1.504
4.317

5.714
6.597

6.831
(0.346) (1.064) (0.485) (0.308) (0.810) (0.478)

Panel E: WEYS (MEpJ “ 0q “ 0.975) Panel J: ARW (MEpJ “ 0q “ 0.979)
Jω “ 1% Jω “ 5% Jω “ 10% Jω “ 1% Jω “ 5% Jω “ 10%

AI RB AI RB AI RB AI RB AI RB AI RB

J=1
1.249

1.804
3.625

6.167
4.647

6.950
0.631

2.816
2.192

11.882
3.483

16.927
(0.255) (1.231) (1.713) (0.271) (0.950) (2.041)

J=2
1.251

1.775
4.947

6.813
6.219

8.445
0.701

2.791
2.649

12.348
4.410

19.213
(0.246) (0.514) (0.542) (0.178) (0.849) (1.316)

J=5
1.114

1.757
5.062

7.061
7.830

9.257
0.645

2.775
2.869

12.507
5.095

20.245
(0.204) (0.684) (0.712) (0.115) (0.524) (0.925)

Notes: This table reports average market efficiency across stocks. Market efficiency is defined as the share of return variance
that is unpredictable given the public information set In,t, as in Eq. (21). Panel A shows the percentage deviation from baseline
market efficiency with only the representative investor, i.e., MEpJ “ 0q, for both the AI case and the rational benchmark (RB).
Panel B reports the difference between the rational benchmark and AI traders’ deviations from baseline. For each pn, J, Jωq

triple, we compute the average out-of-sample market efficiency for each simulation, then take the average across simulations.
Standard deviation across simulations is reported in parenthesis.
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Table A9: Average empirical market efficiency (as ∆% from MEpJ “ 0qq

Panel A: ∆MEpJ, Jωq

Jω “ 1% Jω “ 5% Jω “ 10%
AI RB AI RB AI RB

J=1
0.283 0.337 0.787 1.131 0.812 1.278
(0.236) (0.270) (0.552) (0.601) (0.683) (0.646)

J=2
0.238 0.330 1.109 1.289 1.380 1.606
(0.251) (0.270) (0.806) (0.703) (1.043) (0.787)

J=5
0.207 0.324 1.102 1.371 1.827 1.833
(0.244) (0.268) (0.876) (0.773) (1.106) (0.875)

Panel B: ∆MEAIpJ, Jωq - ∆MERBpJ, Jωq

Jω “ 1% Jω “ 5% Jω “ 10%
J=1 -0.054 -0.344 -0.466
J=2 -0.092 -0.18 -0.226
J=5 -0.117 -0.269 -0.006

Notes: This table reports the average market efficiency across stocks, ME, defined as the 1´R2 from regressing excess returns
Re

n,t`1 on me˚
n,t and xk,n,t . Entries in Panel A report the average percentage deviations of AI trader or rational agents from

the baseline market efficiency with representative investor only ∆MEpJ, Jωq, i.e. from MEpJ “ 0q. Standard deviation across
stocks is reported in parenthesis. Panel B reports the difference in the average percentage deviation between the AI traders
and rational agents of ∆MEpJ, Jωq.
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Table A10: Liquidity, L

Panel A: IBM Panel F: GIS
Jω “ 1% Jω “ 5% Jω “ 10% Jω “ 1% Jω “ 5% Jω “ 10%

AI RB AI RB AI RB AI RB AI RB AI RB

J=1
0.594

5.011
1.201

11.187
0.852

11.196
0.245

0.501
0.611

2.172
-0.595

3.068
(0.103) (0.238) (0.559) (0.113) (0.476) (0.961)

J=2
0.615

5.021
1.887

14.721
0.580

15.018
0.281

0.503
0.930

2.267
-1.649

3.608
(0.091) (0.401) (0.454) (0.080) (0.327) (0.878)

J=5
0.572

5.014
1.167

17.474
-0.045

18.696
0.247

0.519
1.042

2.289
-2.297

3.925
(0.094) (0.815) (0.507) (0.052) (0.253) (0.804)

Panel B: AXP Panel G: KO
Jω “ 1% Jω “ 5% Jω “ 10% Jω “ 1% Jω “ 5% Jω “ 10%

AI RB AI RB AI RB AI RB AI RB AI RB

J=1
0.960

3.652
1.422

9.360
0.075

9.507
0.404

2.670
0.727

9.922
1.059

10.980
(0.236) (0.812) (0.364) (0.103) (0.548) (0.362)

J=2
0.860

3.682
2.713

11.880
1.390

12.758
0.325

2.722
1.201

11.188
0.065

14.540
(0.355) (0.985) (0.730) (0.128) (0.322) (0.345)

J=5
0.864

3.532
1.750

13.496
0.282

15.760
0.313

2.733
0.435

11.771
-0.554

17.176
(0.146) (1.526) (1.339) (0.073) (0.637) (0.569)

Panel C: ABM Panel H: L
Jω “ 1% Jω “ 5% Jω “ 10% Jω “ 1% Jω “ 5% Jω “ 10%

AI RB AI RB AI RB AI RB AI RB AI RB

J=1
0.878

0.961
1.882

3.936
0.618

4.982
0.311

2.348
0.653

10.014
0.255

12.290
(0.078) (0.804) (1.362) (0.065) (0.301) (0.464)

J=2
0.842

0.965
2.798

4.303
0.928

6.231
0.319

2.197
0.955

11.032
0.086

15.673
(0.215) (0.632) (1.086) (0.036) (0.297) (0.346)

J=5
0.815

0.968
1.512

4.423
-0.401

6.980
0.320

2.179
0.813

11.371
-0.359

17.719
(0.111) (0.879) (0.504) (0.032) (0.340) (0.309)

Panel D: AEE Panel I: SJM
Jω “ 1% Jω “ 5% Jω “ 10% Jω “ 1% Jω “ 5% Jω “ 10%

AI RB AI RB AI RB AI RB AI RB AI RB

J=1
0.536

2.175
1.312

8.523
0.548

9.993
0.545

6.667
0.738

13.052
-0.159

13.052
(0.135) (0.223) (0.766) (0.172) (0.606) (0.586)

J=2
0.444

2.110
1.454

9.551
0.635

12.935
0.439

6.468
1.828

17.433
0.624

17.494
(0.160) (0.752) (0.609) (0.204) (0.507) (0.436)

J=5
0.394

2.076
0.059

9.999
-0.434

14.904
0.347

6.323
1.277

21.280
-0.215

21.796
(0.123) (0.996) (0.687) (0.111) (0.833) (1.213)

Panel E: WEYS Panel J: ARW
Jω “ 1% Jω “ 5% Jω “ 10% Jω “ 1% Jω “ 5% Jω “ 10%

AI RB AI RB AI RB AI RB AI RB AI RB

J=1
0.508

2.250
1.056

8.832
0.702

10.207
0.383

3.194
0.778

11.147
0.840

11.874
(0.101) (0.535) (0.802) (0.116) (0.526) (0.394)

J=2
0.495

2.241
1.541

9.845
0.270

13.261
0.336

3.114
0.968

13.104
0.315

15.837
(0.117) (0.434) (0.349) (0.130) (0.503) (0.317)

J=5
0.438

2.252
0.960

10.227
-0.458

15.407
0.283

3.105
0.289

14.185
-0.548

19.107
(0.088) (0.825) (0.675) (0.103) (0.726) (0.585)

Notes: This table reports average market liquidity across stocks. Liquidity is measured as the price impact of a 1% supply
shock, as defined in Eq. (22). AI represents the market liquidity level with AI traders. RB denotes the average liquidity level of
the rational benchmark. Entries are multiplied by 100. For each pn, J, Jωq triple, we compute the average out-of-sample market
liquidity for each simulation, then take the average across simulations. Standard deviation across simulations is reported in
parenthesis.
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Table A11: Volatility, σpRq

Panel A: IBM Panel F: GIS
Jω “ 1% Jω “ 5% Jω “ 10% Jω “ 1% Jω “ 5% Jω “ 10%

AI RB AI RB AI RB AI RB AI RB AI RB

J=1
-0.679

-0.856
-1.233

-1.647
-0.870

-1.651
-0.315

-1.379
-1.076

-5.459
-1.684

-7.522
(0.113) (0.130) (0.566) (0.134) (0.460) (0.953)

J=2
-0.718

-0.852
-1.927

-2.001
-1.593

-2.024
-0.350

-1.369
-1.297

-5.657
-2.130

-8.413
(0.097) (0.106) (0.242) (0.088) (0.408) (0.616)

J=5
-0.674

-0.840
-2.181

-2.209
-1.727

-2.288
-0.322

-1.359
-1.405

-5.724
-2.452

-8.807
(0.102) (0.148) (0.235) (0.057) (0.252) (0.428)

Panel B: AXP Panel G: KO
Jω “ 1% Jω “ 5% Jω “ 10% Jω “ 1% Jω “ 5% Jω “ 10%

AI RB AI RB AI RB AI RB AI RB AI RB

J=1
-0.836

-1.238
-1.207

-2.810
-0.065

-2.845
-0.608

-0.771
-2.222

-2.568
-1.836

-2.761
(0.188) (0.664) (0.325) (0.134) (0.579) (0.343)

J=2
-0.749

-1.242
-2.110

-3.363
-1.303

-3.499
-0.504

-0.769
-2.360

-2.806
-3.139

-3.387
(0.296) (0.618) (0.659) (0.178) (0.231) (0.148)

J=5
-0.760

-1.242
-2.882

-3.667
-2.890

-3.955
-0.492

-0.764
-2.247

-2.890
-3.452

-3.770
(0.115) (0.312) (0.239) (0.111) (0.360) (0.419)

Panel C: ABM Panel H: L
Jω “ 1% Jω “ 5% Jω “ 10% Jω “ 1% Jω “ 5% Jω “ 10%

AI RB AI RB AI RB AI RB AI RB AI RB

J=1
-1.032

-1.351
-3.256

-4.933
-3.490

-6.046
-0.403

-0.561
-1.343

-2.167
-1.726

-2.496
(0.087) (0.913) (2.746) (0.082) (0.326) (0.478)

J=2
-0.999

-1.348
-4.103

-5.231
-4.791

-7.188
-0.414

-0.551
-1.668

-2.298
-2.364

-2.962
(0.249) (0.229) (1.348) (0.048) (0.137) (0.174)

J=5
-0.967

-1.343
-4.339

-5.323
-7.248

-7.746
-0.416

-0.544
-1.690

-2.318
-2.682

-3.208
(0.126) (0.407) (0.243) (0.032) (0.121) (0.101)

Panel D: AEE Panel I: SJM
Jω “ 1% Jω “ 5% Jω “ 10% Jω “ 1% Jω “ 5% Jω “ 10%

AI RB AI RB AI RB AI RB AI RB AI RB

J=1
-0.757

-1.408
-1.743

-4.682
-2.019

-5.273
-0.391

-0.806
-0.444

-1.303
0.424

-1.303
(0.168) (0.151) (1.249) (0.115) (0.329) (0.812)

J=2
-0.640

-1.401
-2.537

-5.132
-2.638

-6.348
-0.324

-0.795
-0.707

-1.601
-0.307

-1.601
(0.233) (0.385) (0.488) (0.145) (0.182) (0.219)

J=5
-0.570

-1.395
-2.465

-5.311
-3.370

-6.964
-0.277

-0.779
-0.950

-1.816
-0.063

-1.820
(0.170) (0.497) (0.219) (0.081) (0.138) (0.557)

Panel E: WEYS Panel J: ARW
Jω “ 1% Jω “ 5% Jω “ 10% Jω “ 1% Jω “ 5% Jω “ 10%

AI RB AI RB AI RB AI RB AI RB AI RB

J=1
-0.619

-0.889
-1.760

-2.948
-2.237

-3.305
-0.615

-0.772
-1.790

-2.312
-1.586

-2.423
(0.126) (0.590) (0.797) (0.165) (0.516) (0.554)

J=2
-0.620

-0.876
-2.385

-3.243
-2.971

-3.974
-0.517

-0.754
-2.198

-2.603
-2.621

-2.940
(0.121) (0.242) (0.248) (0.184) (0.385) (0.351)

J=5
-0.553

-0.868
-2.438

-3.355
-3.698

-4.332
-0.446

-0.743
-2.089

-2.740
-3.143

-3.249
(0.101) (0.320) (0.319) (0.152) (0.383) (0.219)

Notes: This table reports average return volatility across stocks. Panel A shows the percentage deviation from baseline return
volatility with only the representative investor, i.e., MEpJ “ 0q, for both the AI case and the rational benchmark (RB). Panel
B reports the difference between the rational benchmark and AI traders’ deviations from baseline. For each pn, J, Jωq triple,
we compute the average out-of-sample return volatility for each simulation, then take the average across simulations. Standard
deviations across simulations are reported in parentheses.
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