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1 Introduction

Financial markets have undergone profound changes due to advances in computing power
and algorithmic sophistication. Early algorithmic trading, rooted in fixed, rule-based paradigms,
has evolved into data- and computation-intensive machine learning systems capable of placing
orders on the market and adjusting to changing market conditions. Recent evidence suggests that
machine learning can improve price discovery by extracting information relevant to predicting future
returns and by better analyzing corporate success, thereby making stock prices more informative
(e.g., Bai et al., 2016; Dugast and Foucault, 2018; Farboodi et al., 2022, among others).

Reflecting these advances, algorithmic trading has become pervasive in financial markets
(SEC, 2020, p. 5). Both retail and institutional investors use algorithms to process market infor-
mation, assess trading opportunities, and implement trading decisions in real time (SEC, 2020,
p. 30,34). This raises concerns that widespread adoption of similar trading strategies may be a
source of fragility, impairing market liquidity during shocks (Federal Reserve Board, 2022). While
such systemic risks are still debated, a more immediate question emerges: how does increased
adoption of Al-based trading reshape the very market structure and return patterns it initially
sought to exploit? Do Al traders help markets achieve greater efficiency and resilience? Or do their
interactions generate new frictions that degrade market quality?

We contribute to this debate by examining a learning friction that can undermine the
effectiveness of algorithmic trading and degrade stock market performance. The computer science
literature shows that reinforcement learning algorithms face significant challenges in multi-agent
settings: the environment becomes non-stationary as each agent’s learning both influences and
is influenced by others’ behavior (Lowe et al., 2017; Albrecht et al., 2024). In financial markets,
algorithms learn from price signals that reflect the collective behavior of all market participants.
We refer to the noise generated by one agent that interferes with the learning of others as a learning
externality. Understanding this externality in a financial market setting is central to assessing both
the performance of Al-based trading strategies and their systemic market impact. Yet empirical
identification of such frictions is inherently difficult: without a clear counterfactual, it is nearly
impossible to determine how AI traders influence each other and the market using observational

market data alone.



To overcome these difficulties, we adopt an experimental approach that embeds Al-based
traders—modeled via deep reinforcement learning (DRL) algorithms—within a theoretically grounded
and empirically calibrated asset pricing framework. In this setting, DRL agents learn to trade with-
out prior knowledge of the data-generating process and interact in equilibrium through their price
impact. This analysis requires a conceptual framework that goes beyond the current state of the
art in economics, finance, and computer science.

Our approach departs from existing literature by combining insights from two separate fields
within an equilibrium framework. The computer science literature applies reinforcement learning to
portfolio selection problems,! while the finance literature demonstrates machine learning’s ability
to detect return predictability from historical data.? Both approaches, however, treat algorithmic
agents as atomistic and price-taking, deploying strategies on fixed historical data. Unlike these
partial-equilibrium frameworks, we model traders as learning and optimizing within a market where
prices respond endogenously to demand. This equilibrium approach allows us to study how Al
traders’ learning is affected by their own price impact and by the noise generated by others.

To generate a realistic learning and trading environment, we nest our DRL agents in a
demand-based asset pricing model based on the approach of Koijen and Yogo (2019) in which
the marginal investor’s asset demand is calibrated from data.” To maintain tractability while
preserving realism, we focus on ten U.S. equities spanning a broad range of characteristics and
return dynamics. For each stock, DRL agents solve the one-period portfolio allocation problem
between that risky asset and a riskless asset, learning over time how to respond to market signals
and their own price impact.

This demand system implies that stock prices reflect both persistent firm characteristics
(e.g., book-to-market, profitability, market beta) and latent institutional demand. Return pre-
dictability arises from partial mean reversion in both observable and unobservable components.
We examine whether AI traders can uncover and exploit this structure, and how their trading

strategies affect market outcomes. In particular, if Al agents can infer latent demand from prices,

!See, among others, Cartea ct al. (2021); Jiang et al. (2017); Yang et al. (2018, 2020); Zhang et al. (2020); Wang
and Zhou (2020); see also Hambly et al. (2023) for a literature review.

2B.g., Gu et al. (2020); see also Vives (2019), Nagel (2021) and Kelly and Xiu (2023) for comprehensive reviews.

3Recent work explores alternative demand estimation methods (e.g., van der Beck, 2022; Fuchs et al., 2024). While

the quantification of our effects may be affected by the specific demand specification employed, our qualitative results
on learning and equilibrium outcomes should not.



they may generate excess returns—while modifying the very patterns they aim to exploit. This
framework also enables us to evaluate how Al trading influences market efficiency and liquidity as
more Al agents interact or grow in scale.

Most existing work on reinforcement learning in economics and finance employs the tabular
Q-learning framework introduced by Watkins (1989) to model economic agents (e.g., Calvano et al.,
2020; Colliard et al., 2023; Dou et al., 2023; Abada and Lambin, 2023; Johnson et al., 2023). While
these algorithms, designed for discrete state and action spaces, reduce computational complexity,
this discretization can distort the learning of optimal portfolio policies in settings with return
predictability. In such environments, both relevant state variables (such as predictive signals from
prices or stock characteristics) and optimal actions (portfolio weights) are inherently continuous.
To address this, we employ deep deterministic policy gradient (DDPG) algorithms, which support
continuous state and action spaces through neural network function approximation (Lillicrap et al.,
2015; Kiline and Montana, 2018). This enables our Al traders to learn smooth portfolio policy
functions and generalize across previously unseen market conditions, capabilities that tabular Q-
learning cannot provide.

Our AT agents must identify and exploit return predictability solely through their trading
experience, without prior knowledge of market structure. This leads to a central question: how can
we evaluate the extent to which Al traders are learning? To address this, we introduce a theoretical
benchmark in which rational speculators can perfectly infer latent demand from prices, understand
the underlying price formation process, and anticipate their price impact. Both the benchmark
and the algorithms solve a standard portfolio allocation problem between a risky and a riskless
asset to maximize one-period returns. Since they operate under identical conditions—facing the
same information set, trading constraints, and objectives—any difference in behavior must reflect
algorithmic learning frictions. The benchmark thus represents the upper bound of what algorithms
could achieve if they were able to learn optimal behavior from experience.

The theoretical benchmark delivers three propositions. First, optimal portfolio weights
depend only on a single composite signal, z, which compresses all publicly available information into
a sufficient statistic for next-period returns. The optimal portfolio weight rises with z, falls as each
trader’s portfolio size grows larger, and rises when the same aggregate capital is split across more

competing traders. Second, market efficiency (measured by the share of return variance unexplained



by public signals) improves when either total wealth or the number of rational speculators increases,
as their trades remove predictable patterns. Third, liquidity (inversely related to price response
to transient supply shocks) likewise improves as better-capitalized or more numerous speculators
trade more aggressively to absorb supply shocks.

Our experimental results show that Al traders’ portfolio policies exhibit strong qualitative
alignment with the theoretical benchmark. In line with the theoretical prediction, AI traders’
portfolio weights increase monotonically in the sufficient statistic z. Portfolio weights also decrease
with the trader’s own size—reflecting internalization of price impact—and increase with the number
of competing traders, as greater competition dilutes individual influence on prices. Al traders also
improve market outcomes: they enhance market efficiency by reducing the share of returns explained
by public signals and improve liquidity by attenuating price responses to transient supply shocks,
in ways qualitatively consistent with the theoretical benchmark.

However, as the number of Al traders increases or their collective wealth share grows,
systematic quantitative deviations from the benchmark emerge. While the direction of policy
responses remains consistent with theory, the magnitude becomes distorted. Al traders scale down
their portfolio shares too little when their size grows and scale up positions too aggressively as
competition intensifies. These behaviors degrade portfolio performance relative to the rational
benchmark and generate persistent inefficiencies. Specifically, return predictability remains elevated
and prices react more sharply to transitory supply shocks than in the benchmark.

Diagnostics from controlled simulations reveal that these quantitative gaps are driven by a
negative learning externality: each agent’s exploratory trades inject order flow orthogonal to public
information, adding variance to prices and diluting the learning signals available to others. Since no
agent observes the identity or strategy of its peers, it cannot disentangle its own price impact from
noise created by others nor fully adjust to the systematic co-movement between peers’ demand and
fundamentals that will prevail once learned policies are deployed. The result is a learning friction
that reduces individual performance and dampens market-level benefits of algorithmic learning.

These findings highlight the value of studying Al trading within an equilibrium framework:
without it, partial-equilibrium back-tests may overstate both the effectiveness of Al-based trading
strategies and their market impact. In isolation, Al agents may appear to learn successfully and

enhance market efficiency, but when multiple agents interact and adapt jointly, endogenous feedback



and learning frictions emerge that degrade performance and reduce efficiency gains. Capturing these
dynamics requires a framework where agents endogenously affect the environment they learn from,
something partial-equilibrium approaches reliant on fixed historical data cannot account for.

We contribute to the nascent literature on Al-based trading and market quality by iden-
tifying a novel learning externality that emerges from Al trader interactions in equilibrium. This
literature has revealed important behavioral patterns in algorithmic decision-making that deviate
from classical predictions. Colliard et al. (2023) demonstrate that Q-learning algorithms acting
as market makers in a Glosten-Milgrom framework learn to deal with adverse selection, but fail
to achieve competitive pricing because of noise in the reward and limited exploration of the state
space. Conversely, Dou et al. (2023) show that Q-learning algorithms possessing fundamental in-
formation can learn to collude without explicit coordination or communication. They demonstrate
that collusive behavior can be sustained by two distinct mechanisms, a price-trigger strategy and
a learning bias causing Al traders to become overly conservative. Yang (20241) studies Q-learning
algorithms’ coordination in a speculative attack framework a la Morris and Shin (1998). Barberis
and Jin (2023) emphasize biases in the portfolio choice of Q-learning algorithms. Lopez-Lira (2025)
tests the ability of Large Language Models (LLMs) to serve as different types of trading agents (for
instance, value or momentum investors, market makers) in an experimental setting.

Our work differs fundamentally from these studies in both focus and mechanism. Method-
ologically, we advance the literature by embedding deep reinforcement learning agents within an
empirically calibrated demand-based asset pricing framework. This approach allows us to study
algorithmic learning and portfolio policies in realistic market environments with endogenous price
formation and latent demand dynamics. In this respect, we are closely related to the strand of lit-
erature exploring how machine learning techniques (Nagel, 2021; Kelly and Xiu, 2023; Kelly et al.,
2024) and reinforcement learning (Heaton et al.; 2017; Yang et al., 2018, 2020; Zhang et al., 2020)
can be used to detect signals from the data and implement profitable trading strategies. However,
we differ from this literature in that we focus on the predictability of returns in an equilibrium
setting, where prices respond endogenously to the portfolio choice of reinforcement learning agents.

Substantively, we investigate how algorithmic learning itself becomes impaired through
multi-agent interactions, identifying a learning externality where each agent’s exploratory trades

inject noise into the price process, contaminating the learning signals available to others and degrad-



ing overall performance. Importantly, our experimental design prevents tacit collusion by restricting
the state space to exogenous variables that do not depend on past trading decisions. This ensures
that the market-wide effects we observe are due to learning frictions, not strategic coordination.
Our contribution lies in showing that even when the experimental design prevents coordination, the
collective learning of algorithms can still undermine market efficiency through purely informational
channels—a mechanism distinct from the competition failures or collusion highlighted in prior work.

The rest of the paper is organized as follows. Section 2 introduces the asset-pricing envi-
ronment and derives the rational expectations benchmark, highlighting how speculators with full
knowledge of the price-formation process behave. Section 3 describes the empirical calibration of
the market and investor demand, the construction of the state variables, and the reinforcement
learning implementation. Section 4 presents our experimental results, comparing Al traders to
the rational benchmark in terms of portfolio policies and market outcomes. It also identifies the
learning externality that arises from Al interaction and quantifies its impact. Section 5 discusses

policy implications. Section 6 concludes.

2 The market environment

2.1 Overview

In this section, we introduce a market environment featuring return predictability and price
impact, both arising endogenously from a representative investor’s demand function. Although our
numerical experiments with Al traders in Section 4 focus on repeated one-period portfolio choices
involving a single risky asset and a riskless asset, we embed these choices in a dynamic framework;
this adds realism by ensuring that portfolio returns depend on future price changes (capital gains)
rather than dividends alone. At the same time, the one-period, single-asset setting allows us to
isolate the core algorithmic learning challenges under different market conditions (such as varying
assets, trader competition, and assets under management) while avoiding the complexities inherent
in fully dynamic, multi-asset portfolio optimization.

In the remainder of this section, we first derive asset prices with a representative investor
and a set of J traders. These traders will later be interpreted as either rational or Al-driven,

but at this stage their portfolio choices are exogenous. Then we discuss how traders might learn



from prices and exploit return predictability embedded within the data-generating process. To this
end, we introduce a rational expectations benchmark, which serves as a baseline for evaluating the

performance of Al-driven traders in Section 4.

2.2 Representative investor and equilibrium prices

We consider a market for N risky assets and a risk-less asset. Time is discrete and runs
from 0 to co. For each risky asset n = 1,..., N, we denote its price and dividend per share in period
t with P,; and D, , respectively, and its number of shares with S,,, which we assume constant
over time. Risky asset prices are determined endogenously, as explained below. The risk-free asset
is elastically supplied at an exogenous gross return Ry constant over time.

The market is populated by a representative investor and J traders. Let Svj";,t denote the
number of shares of asset n held by the j-th trader at time ¢. The aggregate holdings of asset n
across the J traders are given by Sy, = Z‘j]:l Sit and the residual supply held by the representative
investor is S’n,t = Sp — Sy, 4. Throughout the paper, we use lower-case letters to denote logarithms
and A to indicate first differences.”

To model the representative investor’s asset demand, we adapt the framework of Koijen

and Yogo (2019) and specify the following log-exponential form:

Wn,t

K-1
= 5n,t; 5n,t = €xp <ﬁ0(pn,t + Sn) + Z /kak,n,t + Br + 5n,t> , (]—)
k=1

wo,t + Yt B

where w;, ¢ is the representative investor’s portfolio weight in asset n, wo; is the weight in the risk-
free asset, and ~; represents the fraction of assets consumed by the representative investor, which
we define below. The variables {xn,ht}kK:_ll represent publicly observable characteristics for asset n
(e.g., book-to-value, profitability, etc.). The term €, ; represents the representative investor’s latent
demand for asset n, capturing investor sentiment and other demand components not explained by
asset fundamentals. Koijen and Yogo (2019) document that latent demand accounts for a significant

portion of cross-sectional variation in stock returns.

“For example, pn,: = log(Pn,:) represents the log price, and AS%, = S&, — S&,_; denotes the change in the J
traders’ aggregate holdings.



We assume that stock characteristics and latent demand follow the autoregressive processes:

LTk nt+1 = Ckn + PknTkmn,t + Nkn,t+1, (2)

€Ent+l = Cen + Pen€nt + 5n,t+1> (3)

where pgpn,pen € (0,1) are the autoregressive coefficients, and 7y, 41 and &, 441 are mean-
zero normally distributed innovations, independent over time and across variables, with variances
Var(mene) = ng,n’ Var(&ne) = agn.

To conduct our numerical experiments in Section 4, we estimate the representative investor
demand coefficients in Eq. (1) and calibrate the parameters of the processes in Egs. (2)—(3), as
detailed in Section 3.

The representative investor’s wealth A evolves according to
N ~
Ay = Z Sm,t—1 (Pm,t + Dmyt) + Sot—1 Ry + T't, (4)
m=1

where Sp;—1 is the units of the risk-free asset held at time ¢ — 1 and I'; is an exogenous inflow of

resources which is specified below. Similarly, trader-j’s wealth A7 evolves according to

N
A{ = Z Sﬁn,tfl (Pm,t + Dm,t) + S(]),tflRf‘ (5)

m=1

The market clearing condition for each stock n reads as follows:
At’wmt + PmtSZ’t = Pn,tSn- (6)

We initially take the J traders’ holdings {ng,t}}]:l as given and derive the price function for each
security, as implied by (i) the representative investor’s demand in Eq. (1), (ii) the market clearing
condition in Eq. (6), and (iii) the asset dynamics of both the representative investor and the .J
traders’ in Eqgs. (4)-(5) together with the respective budget constraints. In Appendix A.1, we

derive the resulting equilibrium price function as



Bosn — 3t + Spy! BeThns + Bi + €ny + log (Darg + Sop1Ry + T + S5, Ry — S§,)
1—Bo ’
(7)

DPnt =
where the aggregate dividend Dy is defined as

N
DM,t = Z SmDm,t-

m=1

We make the following additional assumptions to enhance analytical tractability:

Assumption 1. The exogenous change in the representative investor’s assets equals I't = SG, —

Sg,t—lRf'

Assumption 2. The representative investor’s consumption at time t equals Ay = XN Dare +

So,i—1Ry), where A€ (0,1) is a constant.

Assumption 3. Aggregate dividends grow deterministically at the constant rate g: Dyry = (1 +

9) D1
Assumption 4. The parameters X, g, Ry satisfy the condition 1 + g > R¢(1 — ).

These assumptions are imposed for analytical convenience. Assumption 1 eliminates in-
direct cross-asset price effects from the J traders’ positions in the risk-free asset, simplifying the
equilibrium price expression in Eq. (7) to depend only on Dy + So—1Ry. This is justified by our
focus on single risky asset portfolio decisions, where cross-asset interactions are irrelevant. Assump-
tion 2 allows expressing Dyr¢ + So,—1 Ry recursively as a function of past dividends (see Eq. (A5)
in Appendix A.1). Assumption 3 removes aggregate uncertainty from returns, reducing noise in Al
investors’ learning. Finally, Assumption 4 ensures time-invariance of the price function as t — 0.

In Appendix A.1, we prove that under Assumptions 1-4, the price function in Eq. (7)

simplifies to

—log (1 —af,) + S Brhms + B + €ng + dary + 6
1—po ’

Pnt = —Sp +

10



a
n,t

S . . .
where of, ; = = is the fraction of asset supply held collectively by the J traders, and

_ (1+9) . _
¢ = log (1 Yg— Rf(l — /\)) ;o dye = log(DM,t)-

Equation (8) has a straightforward interpretation. The price of asset n is inversely related to
its supply s,, and it is positively related to its observable characteristics, weighted by the demand
coefficients ZkK:_ll Bk Tk ne- Additionally, it increases with the aggregate dividend dps¢. All these
variables are publicly observed.

The price is also influenced by the latent demand €, ;. Although latent demand is unob-
servable, in the next subsection we show how investors who understand the price-formation process
can combine the observed price with other public signals to infer this latent demand.

Finally, the demand from the J traders enters the price through ay ;. From Eq. (8), the

elasticity of price with respect to the residual supply held by the representative investor is’

o apn,t _ 1
alog(gm) 11—

Hence, if the J traders purchase an additional 1% of the asset supply, the price P,; rises by
1/(1 — Bp)%. Intuitively, when [y is close to one, the representative investor’s demand is less

elastic, increasing the price impact faced by the J traders.

2.3 The rational expectations benchmark as a learning frontier

In this subsection, we consider the case where the J traders introduced previously have
rational expectations, and refer to them as “speculators.” These speculators operate in the same
market environment, face the same trading protocol, and observe the same public information
as the Al traders introduced later in Section 3. The key distinction is that speculators have
full knowledge of the data generating process: they understand the price formation mechanism
described in Section 2.2, including the dynamics of the exogenous processes in Egs. (2)—(3) and the
pricing rule in Eq. (8). They are able to decode the information embedded in prices and anticipate

the price impact of their trades, thereby fully internalizing both return predictability and price

®Notice that log (1 — af ;) = log (S"%f"’) = log <5'n,f,> — Sn.

11



impact in their optimization (as explained later in this section).

The purpose of this rational expectations (RE) setup is not to model how human traders
behave, nor to suggest that such fully informed optimization is within reach of institutional in-
vestors. Rather, it serves as a theoretical “learning frontier”: an upper bound on the performance
that could, in principle, be achieved by model-free Al traders if they were to perfectly infer the
structure of the market environment through experience.

This benchmark plays a central role in our numerical experiments in Section 4, where we
evaluate how closely the behavior of reinforcement learning agents approximates this theoretical
outcome. It allows us to quantify the performance gaps that emerge in practice—gaps we later
attribute to learning frictions, such as the externality arising in multi-agent learning. A detailed

discussion of these mechanisms is deferred to Section 4.

Setup Speculators enter the market at time ¢, allocate their wealth between risky asset n and
the riskless asset to maximize next period wealth, and exit at time ¢ + 1. In the remainder of this
section, we use the notation asj for the fraction of the supply of shares held collectively by the J

speculators at time 7 (as opposed to the generic ay, - used in Section 2.2, where the .J investors’

-
holdings were taken as given).

Because they enter at time ¢ and liquidate their holdings at time ¢ + 1, ag’t is determined
in equilibrium, whereas a;?’t +1 = 0. We first analyze the learning and predictability aspects of

the data-generating process, then describe the trading game in more detail and characterize its

equilibrium.

S

e and

Predictability and learning in the data generating process By setting oy, = «
i = ozf;tﬂ = 0 in Eq. (8) to compute prices at ¢ and t + 1, and using Egs. (2)—(3), we can

compute the conditional expectation of the capital gain as

Pris1 log (1—af) = Shy Be(X = prn) T — (1= pe, ey
E|—=—— ) =exp ,,(9)
Pn,t 1- BO

where ®,, is a constant value defined in Eq. (A13) in the Appendix. Eq. (9) shows that mean
reversion in the observable characteristics {xj .} and in the latent demand €, ; gives rise to return

predictability. However, €, is not observable by investors, who must infer it from market data.
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In a RE equilibrium where traders can condition their asset demand on public information and
the equilibrium price itself, the equilibrium price in Eq. (8) fully reveals €,;.° Therefore, in a RE
equilibrium, investor expectations of capital gains coincide with the full-information in Eq. (9).
This learning process, though standard in RE models, is difficult to replicate with algorithms
due to its fixed-point nature: the equilibrium price depends on speculators’ demands, but each
speculator’s demand is itself a function of that same equilibrium price. In a reinforcement learning
framework, such as the one developed in the next section, the agent’s action depends on the current
state which must be fully realized before the action is taken. Hence, using the equilibrium price as
an input to each trader’s policy introduces circular logic: the policy would depend on a price that

itself depends on the policy.

Putting rational and AI traders on equal footing To address this conceptual issue, we
introduce a “pre-trade” price P,jt that incorporates public information, namely {$n,k,t}kK:_11,dM,t,
and the representative investor’s latent demand €, ¢, but not the time-¢ trading decisions of the J
speculators. Hence, P}, is exogenous to the speculators’ actions in period ¢. We define the log of

the pre-trade price setting a;fyt =0 in Eq. (8):

K—1
N Dt BrTrnt + Br +ene +dae + @

- (10)

p;kz,t = —8n
Accordingly, we let Z,, ; = {p;,t{xn,k,t}kK:_ll, d M,t} denote the public information set. Since
py+ depends on €, ¢, investors who understand the pricing rule can invert Eq. (10) to perfectly

recover the latent demand:

K-1
E (En,t ’ In,t) = (1 - ﬁO) (p:,t + sn) - ( 2 Bkwk,n,t + BK + dM,t + ¢> = €n,t, (11)

k=1

where FE(-) denotes the rational expectations operator. Thus, p;‘:’t fully reveals €, just as the
equilibrium price would in a classical RE model, but pj, ; is determined prior to time-¢ trading by
the speculators.

This design places rational speculators and Al traders—implemented as reinforcement-learning

5We are implicitly assuming the standard RE arguments: the price function is common knowledge, speculators
correctly anticipate other traders’ demand, and therefore correctly infer the value of ozTSm. Under these assumptions,
speculators can invert Eq. (8) to recover the latent demand.
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algorithms—on an equal footing with respect to observable information. Both agent types first ob-
serve the exogenous signals 7, ; and then choose their portfolios. This setup lets us test whether Al
traders can decode prices to infer latent demand while avoiding the fixed-point problem of learning

from the equilibrium price.

The trading game The trading game unfolds as follows. Each speculator enters the market
at ¢t with initial wealth A = A}, where A} = wPy; Sy, and w, J satisfy w < 1/J. That is, each
speculator has the same initial wealth, and collectively, the J speculators’ wealth equals a fraction
Jw of the pre-trade market capitalization of asset n. Next, each speculator observes the public
information set Z,,; and, conditional on this information, speculators simultaneously choose their
portfolio share ¢ ot 10 the risky asset n, subject to no-short-selling and no-borrowing constraints.

Each speculator aims to maximize the expectation of the portfolio return
Rp t+1 — Rf + 0 (Rn,tJrl - Rf) s (12)

where Ry, 141 = P" L+ DY, 41, and DY), 44 = DI’;Z:I denotes the dividend yield. In the rest of
the paper we assume the dividend yield is exogenous and i.i.d. over time with mean DY,.”

Formally, a speculator’s strategy is a mapping 6% : 7 — [0,1], which, given the public
information set, specifies what fraction of wealth to invest in the risky asset. No-short-selling
implies Gf;bt > 0, and no-borrowing implies Hﬁ;t <1

Given the speculators’ chosen portfolio shares {0 t} the asset price is determined ac-

Jj=D

. : A3 00, . . N : o
cording to Eq. (8). We substitute Sfm = —p* into Eq. (8), obtaining an implicit relationship in

terms of {GZW}:

J K-1
0= BO(pn,t + Sn) - 10@; <SnPn,t - Z %,tAf) + Z kakm,,t + BK + €nt + dM,t + ¢ (13)
= k=1
"This assumption is for simplicity and to focus on predictability of capital gains. See Koijen and Yogo (2019)

for evidence that dividend yields explain only 0.4% of the cross-sectional variance of stock returns, suggesting that
capital gains drive most price variation.
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Because the speculators liquidate their positions at time ¢ + 1, we have

K—1
N Dkt BeTrni+1 + Br + €ngr1 +dryirr + @
1—fo '

(14)

Pnt+1 = —Sn

When choosing their portfolio share, a rational speculator correctly anticipates the effect of

their price impact on the expected portfolio return:

Pn,t-‘rl 1 wa,t aPmt ‘ T
- : t
Pn,t Pn,t (99;717,5 "

OE(R., | T,.)

. = + DY, — Ry. (15)
00}, ;

Taking other traders’ strategies as given, we can calculate the price impact factor in Eq. (15) from
implicit differentiation of Eq. (13) as follows:
0 om0 A

- = : : ) 16
Pn,t (99%775 (1 - 5O)Snpn,t + BO Z{:l 9%,#48 ( )

Information compression to a sufficient statistic For expositional simplicity we define “ad-

justed market equity” as

dprt

1—50’

* *
men,t = pn,t + Sp — (17)
and we rewrite speculators’ information set more compactly as Z,; = {me} ;, {Tn ke hi ). This is

*

without loss of generality because (i) by observing {mej, ;, {xn,k’t}kK;ll} investors can fully learn the

latent demand,® and (ii) neither the expected capital gain in Eq. (9) nor the price impact factor in
Eq. (16) depend on dpy .’

We define z,; as
K—1

Znt = Y0 + Z YeTknt + VKme;kz,t’ (19)
k=1

for some coefficients 7o, ...k shown in Eq. (A15) in the Appendix. The proof of Proposition 1

8Notice that Eq. (10) and Eq. (17) imply

K—1
(1-— ﬁo)mei,t — ( Z BrTint + Br + <75> = €n,t, (18)

k=1

9While immaterial in this RE setting where inference is exact, this change of variable becomes useful in later
sections when we implement the model algorithmically. In particular, scaling pf%t by dar,: removes the trend in
aggregate dividends and makes the variables stationary. This improves the stability of the reinforcement learning
algorithm, which benefits from stationary inputs.
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below establishes that z,; is a sufficient statistic for Z,, ; with respect to the future return on asset-
n, and is such that the expected capital gain increase in z,;. Hence, each speculator’s optimal

weight in the risky asset depends on their information set only through z,, ;.

Equilibrium portfolio choice An equilibrium of the trading game is a vector of portfolio shares
{Gfm} that maximises each speculator’s expected utility given their information set Z, ; and the
price functions in Egs. (13)—(14). In the following proposition, “increasing” and “decreasing” mean
weakly increasing and weakly decreasing as no-short-sale or borrowing constraints may bind at

Hf‘m =0or 1.
Proposition 1 (Portfolio choice).
(i) Existence and uniqueness. An equilibrium exists, is unique, and is symmetric.

(i) Linear sufficiency. The equilibrium portfolio share depends only on the sufficient statistic

Znts Ont = On(2nt), and is increasing.
(11i)) Comparative statics. For all values of zn4 :

a € equilrorium portfolto snare 1S aecreasing tn eacn Specutator's wea w ( S1ze elrect ).
The equilibrium portfolio share is d ing in each speculator’s wealth w (size effect

(b) The equilibrium portfolio share is increasing in the number of speculators J holding

aggregate speculator wealth wJ fized (competition effect ).

The comparative statics results in Proposition 1 are intuitive. First, a higher z,; raises
expected capital gains for asset n, so the optimal 6,, rises.'’
Second, 6,, falls with speculators’ wealth w because their own price impact becomes stronger.
Third, for a fixed aggregate wealth wJ, increasing the number of speculators rises 6,,. Each

speculator internalizes only their individual price impact, so when total wealth is spread over more

agents they each trade more aggressively.

%The proof of the proposition further shows that in terms of the original variables in Z, ¢, 6, is (i) decreasing in
adjusted market equity mei’t and (ii) is increasing in asset characteristic xx ¢ if and only if Bk (pk,n — pe,n) > 0. The
intuition for these comparative statics is that, holding characteristics fixed, higher me}; ; signals a stronger current
latent demand (see Eq. (18) in Footnote 8); mean reversion then predicts a lower capital gain (see Eq. (9)). In
response, speculators allocate a smaller fraction of their wealth to the risky asset. As for the characteristics, a larger
value of the k-th characteristic has two effects. First, it decreases the expectation of Az, i4+1 due to mean reversion,
thereby affecting the expected capital gain depending on the sign of Bx (see Eq. (9)). Second, for a fixed value of
me;: ,, a larger value of n i+ also affects the expectation of latent demand (see Eq. (18)). The overall effect depends
on the relative mean reversion speeds of ¢, and x,,, times S.
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Next, we analyze how speculators’ trading affects two key market characteristics: market

efficiency and liquidity.

Market Efficiency. In the benchmark model with only a representative investor, returns are
predictable based on public information. We remain agnostic as to whether this predictability
reflects risk premia or mispricing, and adopt the semi-strong market efficiency view that returns
should not be predictable from public signals. Thus, the extent to which this predictability persists
directly measures market (in)efficiency.

Since dividend yields are unpredictable by assumption, we focus on the capital gain com-

ponent of returns. We write:

Pnt+1 — Pnt = gn(In,t) + ent+1, (20)

where g,,(Z,,) is an equilibrium function that depends on z,; and on the trading strategies of the

1

J speculators via a2 ,, and en,t+1 is the unpredictable component of the capital gain.!

n,ts
We define market efficiency as the fraction of capital gain variance that is not explained by

public information:

ME — Var (e, 14+1) ‘
Var (pn,tJrl - pn,t)

(21)
Note that ¢,,(Z, ) in Eq. (20) is derived from the true data-generating process. In this sense, ME
is computed “inside the model.” In Section 4 we also consider an alternative measure of market
efficiency where the g,(Z, ) is approximated by a linear function.

In the model, speculators’ trading on predictive signals shrinks the predictable component
gn(Znt), thereby increasing ME. When speculators have more capital or trade more aggressively,

this effect strengthens. In the limit case where all return predictability is eliminated, then g,,(Z, +)

is constant and ME = 1.

Proposition 2. Market efficiency ME increases in speculator size w and, for fived aggregate size

wd, in the number of speculators J, provided wJ is large enough.

The requirement that wJ is large enough for monotonicity in J is driven by the borrowing

constraint. A larger number of speculators trade more aggressively, which improves efficiency over

' See Eq. (A21) in the Appendix for the derivation of gn(Zn.t), €n,i+1-
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the range of z,; values where the constraint is not binding, but also implies that the constraint
binds over a wider range of z,; values, partially offsetting this gain. When individual size w is
sufficiently large, the former effect dominates, so market efficiency rises monotonically with both w

and J.

Market Liquidity. We measure liquidity by the price response to an exogenous “shock” in asset
supply. Suppose (log) supply increases from s, to s, + o at time ¢ before reverting back to s,
at t + 1. In the case where only the representative investor is present (i.e., assuming af = 0),
Eq. (8) implies that the price impact of this supply shock is given by % = —1, so the price drops
one-for-one with supply. In contrast, when speculators are active in the market, they recognize
that the price drop is temporary and anticipate an expected capital gain when the supply reverts
at t+ 1. As a result, they increase their demand for the asset, partially absorbing the supply shock

and reducing its price impact.

We define liquidity as

apn,t
oo

core(

U_()) . (22)

Higher values of £ indicate that the market can absorb supply shocks with smaller price
distortions, reflecting greater liquidity. In the absence of speculators, the full price impact of a
supply shock leads to £ = 0. Conversely, if speculators fully absorb the shock, there is no price
impact, implying £ = 1. As w (the relative size of speculators) or J (the number of speculators)
increase, speculators trade more aggressively on mispricing, allowing the market to absorb larger

shocks, thereby reducing price impact and increasing liquidity.

Proposition 3. Liquidity increases in speculator size w and, for fized aggregate size wJ, in the

number of speculators J, provided wJ is large enough.

The non-monotonicity in J stems from the same borrowing constraint argument highlighted
in Proposition 2, which tempers the liquidity gains from additional speculators unless their indi-

vidual size w is sufficiently large.
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3 Empirical implementation

In this section, we outline the calibration and estimation of our model. First, we outline
the demand estimation procedure for the representative investor, based on Koijen and Yogo (2019).
Second, we detail how we simulate stock characteristics, dividends, and latent demand processes.
Third, we describe our deep reinforcement learning (DRL) approach and how it is integrated into

the environment. Finally, we outline how we run and evaluate our simulation experiments.

3.1 Demand estimation

We calibrate the demand of the representative investor using data on US investors’ holdings
from SEC 13F filings, combined with asset characteristics from Compustat and CRSP. The sample
spans the period from 1982:Q2 to 2021:Q4. We consider log market equity (me) and five additional
stock characteristics: log book equity (be), investment growth (inv), dividend-to-book equity (div),
profitability (prof), and market beta (mkt).

We begin by estimating individual investors’ demand functions using the log-exponential
specification of Koijen and Yogo (2019), and then aggregate these estimates to construct a repre-
sentative demand function. Following Koijen and Yogo (2019), for each investor ¢ = 1,...,I and
each quarter t = 1,...,T, we estimate the following equation, where the elasticity of investor i is

identified using cross-sectional variations in stock characteristics:

Win,t

= exp{f{}° mey +ﬁf§ bet —i—ﬁﬁ:of prof; ,,
W;.0,t (23)

+ B vy, + B dive, +B87 mkty gy +BY + €in -
The dependent variable represents the holdings (in US dollars) of risky asset n by investor i at
time ¢, relative to the outside asset (i.e., cash and other non-equity holdings). The error term €; ¢
captures latent demand, reflecting investor sentiment, private information, and beliefs.

To address price endogeneity, we follow Koijen and Yogo (2019) and instrument market
equity using its counterfactual value, assuming that all other investors hold an equal-weighted
portfolio within their investment universe.

Figure 1 illustrates the estimated demand coefficients, showing how average demand sensi-

tivities (across investors) vary by stock characteristic and over time.
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Figure 1: Estimated demand coefficients for individual investors.
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Next, we use these estimated coeflicients to compute the demand of a representative investor.

3.2 Calibration of the representative investor’s demand

The demand coefficients of the representative investor are computed as an assets-under-
management (AUM) weighted average of the individual investors’ demand coefficients. To ensure

time-invariant parameters, we take the AUM-weighted average across the full sample period:
T I
= 1 AUMZ t k
B = D a8 (24)
T t=14=1 Do AUM;y
Table 1 reports the estimated values of these representative demand coefficients.

Table 1: Demand coefficients of the representative investor

Bme Bbe Bp?'of Binv Bdiv Bmkt
0.6327 0.1810 0.1274 0.2947 2.6960 -0.1984

Notes: This table reports the demand coefficients used to calibrate the representative investor. Coefficients are an assets-under-
management weighted average of individual investors’ demand coefficients estimated according to Eq. 23.

Similarly, the latent demand of the representative investor is computed as the AUM-

weighted average of individual investors’ latent demand:
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I
AU M;
en,t = § i Lt €i,n,t' (25)
i=1 Zi:l AUMi,t

This calibrated demand function provides the foundation for the equilibrium price compu-

tation in Section 2.2.12

3.3 Simulating stock characteristics and latent demand

We select ten stocks that remained active throughout the entire sample period (1982:Q1
to 2021:Q4). Specifically, we aim to obtain a sample that exhibits cross-sectional variation in )
the average dividend yield (Dy/P,_1), ii) the autoregressive coefficient of the latent demand (p),

ii1) the autoregressive coefficients of the stock characteristics (py), and iv) the contribution of the

Var(§i+1) )

latent demand to the capital gain (Var(ptﬂ_pt)

To this end, we first apply principal component analysis to the matrix of standardized
variables. We then project the data onto the principal component space and compute the pairwise
Euclidean distances between all stocks. Finally, we select the ten stocks that are most distant
from one another in this space. Put differently, we choose the ten stocks that exhibit the greatest

heterogeneity in the variables listed above. Table 2 lists the selected stocks.

Table 2: Company Information and Business Sectors

Ticker Company Name Business Sector

IBM International Business Machines Corporation Information Technology Services
AXP American Express Company Credit Services

ABM  ABM Industries Incorporated Specialty Business Services

AEE Ameren Corporation Utilities - Regulated Electric
WEYS Weyco Group, Inc. Footwear & Accessories

GIS General Mills, Inc. Packaged Foods

KO The Coca-Cola Company Beverages - Non-Alcoholic

L Loews Corporation Insurance - Property & Casualty
SJM The J. M. Smucker Company Packaged Foods

ARW  Arrow Electronics, Inc. Electronics & Computer Distribution

Notes: This table reports the ticker, company name and business sector for each stock in our dataset.

For each of the five stock characteristics—log book equity, profitability, investment, dividend-

12Consistent with Koijen and Yogo (2019), we hold the representative-investor agent demand elasticities fixed
during our experiments in Section 4, so that any variations in prices, return predictability and liquidity can be
attributed solely to Al trading rather than to contemporaneous adjustments in the representative-investor demand.
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to-book equity, and market beta—as well as for latent demand, we estimate an AR(1) process using
the simulated method of moments, based on Egs. (2)—(3), and using data from CRSP and Com-
pustat. We use the estimated stock-specific AR(1) parameters to generate simulated time series
for each variable. For dividend yields, which we model as i.i.d., we instead sample values with
replacement from the historical time series. Appendix A.3 provides further details on the estima-
tion process and summary statistics of empirical and simulated stock characteristics and dividend

yields.

3.4 Calibration of other parameters

Consumption rate (\). The consumption rate A is set to 0.99. Since this parameter does not
affect stock returns, it is chosen to ensure that equilibrium price levels are on the same scale as in

the data.

Aggregate dividend growth (g). The aggregate dividend growth rate, g, is calibrated by
minimizing the mean absolute error (MAE) between empirical and simulated stock returns. We

find the optimal value to be 0.4%.

Variance of innovations of latent demand. To align realized and simulated return volatility,
we calibrate a parameter («) to scale the variance of innovations in latent demand. The optimal
value of « is determined by minimizing the MAE between the empirical and simulated standard

deviations of log stock returns. The estimated value of « is 0.4916.

Risk-free rate (R;). We calibrate the risk-free rate using the 3-month Treasury bill rate from
1982:Q2 to 2021:Q4, retrieved from FRED Economic Data. The annualized average over this period
is 3.54%.

3.5 Reinforcement Learning Model

We model Al traders using the Deep Deterministic Policy Gradient (DDPG) algorithm
(Lillicrap et al., 2015), which combines reinforcement learning with deep neural networks. The
deep learning component enables the algorithm to operate in continuous state and action spaces

and to generalize across unvisited states by learning functional relationships. This is critical in our
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setting, where portfolio weights and predictive signals are continuous, and market conditions can
move into regions not seen during training.

A high-level description of the algorithm is as follows. The DDPG algorithm is based on
an actor—critic architecture. The critic network, parameterized by ©F, approximates the opti-
mal state-action value function Q*(Z, 6), which evaluates the expected future rewards of a given
state—action pair. The actor network, parameterized by ©, approximates the optimal policy func-
tion p*(Z) giving the optimal action given the current state. To stabilize learning, DDPG employs
target networks—slowly updated copies of both networks, denoted as 0% and @“,, that provide sta-
ble targets for learning. Additionally, a replay buffer stores past transitions {Z, 6, R,Z'}, breaking
temporal correlations and improving learning efficiency.

At each time step, the Al trader observes the current market state Z, selects an action 6,
and receives a reward R. The reward is defined as the one-period portfolio return as in Eq.(12). The
transition tuple {Z, 0, R, 7'} is stored in the replay buffer B. Training updates occur by drawing, at
each time step, a minibatch of transitions from the replay buffer via uniform random sampling. Let
B denote the index set of the transitions in the minibatch, with cardinality |B|. The corresponding
target (J-values represent the total expected return from taking the action and then continuing to

act optimally in the future:
yi = Ri + ny(I{, (T @u’);@Q’), ieB (26)

where R; is the immediate reward and the second term in the r.h.s. of the equation represents the
discounted continuation value, with v being the discount factor.

The critic network is trained to predict Q-values, i.e. the expected future reward of a
state-action pair (Z, #). Its training implies a loss minimization between the target and predicted

Q-values:

L6?) = E|(y- Qz.6069)*], (27)

which is approximated by the minibatch average:

L(e?) = |;| 3 (u - Q. 0:09)) " (25)

€B
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Critic parameters are updated by stochastic gradient descent, changing the neural network weights

in the direction that minimizes the loss at learning rate g:
09 « 09 — BVgel(09), (29)

Unlike the critic network, the actor network learns by maximizing the expected reward.
Formally, its goal is to find a policy u(Z;O) that maximizes the prediction of the critic network

Q(Z, w(Z; OH); @Q) over a continuous space:
J(©") = E[Q(T, u(Z;0");69)],

In practice, the expectation is approximated using a minibatch of transitions:

Jer) = |;| > Q(Ti, u(Ti; 0+);69). (30)
1€B

Gradient ascent is applied to J(©#). This requires computing the gradient of the Q-function with
respect to actions, evaluated at the actor’s output. Using the chain rule, the gradient is computed
as:

1

Voul(OM) = 5 ZveQ(zi,e;@Q)\ezu(z_'eu)v@w(zﬁeﬂ). (31)
i€B v

This gradient decomposes into two components: VgQ(Z;,0; ©%), which captures the sensitivity
of the critic’s Q-value prediction to changes in actions, and Veuu(Z;; ©%), which captures how
the actor’s policy responds to changes in its parameters. Overall, these two effects quantify how
changes in the actor’s parameters induce a change in actions, which in turn influences the critic’s
evaluation of that action. This provides the direction in which the actor’s parameters adjust to
maximize expected returns, as estimated by the critic network. The actor parameters are updated

by stochastic gradient ascent, at learning rate «:
OF — OF + aVeul(OH). (32)

Target networks are updated using a soft update rule that slowly incorporates the current
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network parameters. At each training step, the target network parameters are updated according

to:

O — 70!+ (1—1)0H,

0¥ 709+ (1-71)0%,

where 7 « 1 is the update rate.

In the subsequent time step, a new transition is added to the replay buffer, a new minibatch
is sampled, and the learning protocol repeats.

Our implementation follows standard practices in deep reinforcement learning. Both the
actor and critic networks consist of two fully connected hidden layers with 400 and 300 neurons,
respectively. The final layer of the actor network employs a softmaz activation function, ensuring
the risky-asset portfolio weight lies in the [0, 1] interval. To enhance exploration, the risky-asset
portfolio weight is uniformly distributed over the [0,1] interval during training. The network
weights are initialized using the Glorot normal distribution. The agent learns from mini-batches
of size 500, and to ensure sufficient variability in the data we start the learning process when the
replay buffer includes at least 10,000 transitions.

Table 3 summarizes the key hyperparameters used in our implementation, following Lillicrap
et al. (2015).

Table 3: Hyperparameters for the DDPG algorithm.

T 0.001 Target update rate
o 0.0001 Actor learning rate
15} 0.001 Critic learning rate
|B| 500 Minibatch size

|B| 10° Replay buffer size
0% 0.99 Discount rate

3.6 Investigation strategy

In our simulations (experiments) we focus on the 10 large-cap U.S. stocks in Table 2; this
choice keeps the dimensionality tractable yet reflects a diverse range of fundamentals and latent-

demand dynamics. Let N = {IBM,...,XRX} denote the set of stocks considered in our simula-
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tions. The set J = {1,2,5} represents the number of Al traders populating a given simulation,
and Q = {1%,5%,10%} specifies the set of Al traders’ initial wealth relative to the beginning-of-
period market capitalization of the asset. For each triple (n,J,w) € N x J x Q we run a total
of S independent simulations.'® In each simulation, the AI traders face H independent episodes
of T time periods each; the time series of stock characteristics and latent demand in each episode
is simulated as explained in Section 3.3. Al traders live each episode T times. We set S = 50,
H =100,T7 =97,and T = 5.

In each time period, a trader’s information set in asset n is Zn; = {me;}, ;, {Zn}}, where
T, ¢ is the vector of stock characteristics for stock n at time t. Given Z,,;, the Al trader decides
the fraction QZL,t € [0, 1] of its wealth to allocate to the stock. Given all Als’ portfolio decisions, the

market clears and P, ; is determined. Then, the AI observes its reward given by the portfolio return

R;Hl and the next-period state Z, ;1. The tuple (Z,+, Hii, R;%Hl, T,,++1) constitutes a transition,
which is the basis for algorithmic learning as explained in Section 3.5.
For each simulation s and triple (n, J,w) we obtain a set of J portfolio policy functions, one

per Al trader, such that H%S(-; w,J): Z — [0,1]. We define the average policy across agents as

S 0w, )
J )

0,1 (s, J) =
and we define the average of this policy across time periods and simulations as

S H T
81, 1= D Bis Busigan( ., ), (33)

We denote the corresponding quantities in the rational benchmark with 028 (- w, J) and 055 (w, J).

To assess Al traders’ performance and market impact, we generate 100 independent out-
of-sample episodes of 97 periods each. Drawn from the same process as in training but unseen
during learning, these episodes allow us to evaluate portfolio returns and measure market efficiency,

liquidity, and volatility out-of-sample.

'3Running multiple independent simulations mitigates the effect of random neural network weight initialization.
Additionally, randomness in exploration and mini-batch selection remains independent across simulations.
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4 Experimental results

This section presents the outcomes of our numerical experiments. First, we analyze Al
traders’ portfolio policies and out-of-sample returns, examining how these are impacted by trader
size and competition intensity. Second, we investigate how these trading behaviors affect market

efficiency, liquidity, and volatility.

4.1 Portfolio choice and returns
4.1.1 Portfolio policies

Comparative statics in z,;. Figure 2 shows that, across all stocks in our simulations, the Al
traders’ policy functions are strictly increasing in z,, the sufficient statistic for Z,, ; with respect
to the stock’s future return. This aligns with Proposition 1. Intuitively, a higher z, ; reflects higher
expected capital gains, so both the rational benchmark and the Al traders’ portfolio choices are
increasing in z, ¢, suggesting that the DDPG-based investors internalize the fundamental relation-
ship between latent demand, asset characteristics, and future returns in a manner consistent with

theory. Figures A2-A11 show that this result is consistent for all ten stocks individually.

The effect of trader size (larger w for fixed J). Holding the number of AI traders J fixed,
increasing Jw raises each trader’s wealth, so a marginal increase in the portfolio weight in the
risky asset (for brevity, simply “portfolio weight” in the following) corresponds to a larger order
in shares and therefore a stronger price impact. As shown in both Figure 3 and Table 4, the Al
traders reduce their portfolio weights as w increases, consistent with Proposition 1. This reflects
a degree of internalization of price impact. However, compared to the rational benchmark, the
decline in Al portfolio weights is more muted, especially for J = 5. This suggests that while the Al
traders qualitatively understand the relationship between size and optimal trading intensity, they

fall short quantitatively of fully internalizing their price impact.

The effect of competition (larger J for fixed Jw). In the rational benchmark, increasing J
while holding Jw constant leads each trader to behave more aggressively, since collective wealth is

distributed across more agents and each faces smaller marginal price impact. The same comparative
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Figure 2: Portfolio weights in the risky asset as a function of the sufficient statistic z,
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Notes: The figure shows portfolio weights in the risky asset averaged across agents and simulations for Al traders (orange line)
and for the rational benchmark (blue line) as a function of the sufficient statistic zn,t- The shaded area indicating the 5th-95th
percentile range across 50 simulations. The black line displays the empirical probability density function of z, . All curves
are computed separately for each of the ten stocks and then averaged across stocks. The nine panels correspond to different
combinations of (J, Jw).
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Figure 3: Average portfolio weights in the risky asset
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Notes: This figure reports the average portfolio weight for the rational benchmark, 855 (solid line) and the Al traders 621
(dashed line), averaged across stocks, for Jw = 1%, (red line), Jw = 5% (blue line) and Jw = 10% (black line) as function of
the number of competing agents, J.

static arises in the Al setting: average portfolio weights rise with J, as shown in Figure 3 and
Table 4. Yet Al traders systematically overshoot the rational benchmark—especially at higher

values of J—indicating that they only partially internalize the collective impact of their trades.

Table 4: Regressions of average portfolio weights in the risky asset

Jw=1% Jw = 5% Jw = 10%
Al RB Al RB Al RB

J—1 -0.165 -0.238 -0.281 -0.374
(0.019) (0.015) (0.021) (0.016)

J=2 0.059 0.047 -0.106 -0.191 -0.221 -0.326
(0.020) (0.014) (0.039) (0.028) (0.041) (0.029)

J—5 0.208 0.083 0.043 -0.155 -0.072 -0.29
(0.020) (0.014) (0.038) (0.029) (0.040) (0.030)

Notes: This table reports the effects of increasing the number of agents, J, and the relative size of the agents, Jw, on the
average portfolio weight on the risky asset, 5;;” for the AT case and 2B for the rational benchmark (RB). The baseline is
(J =1,Jw = 1%). The effects are estimated from regressing 827, 658 on dummies Dj_o, Dj—5, D,_59 and D, _1g%. Stock
fixed effect are included. Sample size: 90.

Linear sufficiency. Proposition 1 establishes that in the rational benchmark, portfolio weights

depend only on the sufficient statistic z,;, implying that any variation in the information set
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T, holding z,; fixed should not affect optimal portfolio choice. Table 5 (and Table A5 for all
10 stocks) tests this prediction for AI traders. For each realized value of z,: in training data,
we generate 100 perturbations of the state variables that leave z,; unchanged. If the AI policy
perfectly implemented linear sufficiency, the resulting portfolio weights would be invariant across

those perturbations. In practice, we find that the standard deviation of 647

conditional on z, ;
remains sizable, especially when J or w is low. This indicates that Al traders do not fully compress

the information into z,;, and instead respond to irrelevant variation in Z, ;.

Table 5: Average standard deviation of 47 for given Zn,t values

Jw = 1% Jw = 5% Jw = 10%
J=1 0.414 0.355 0.242
(0.019) (0.042) (0.107)
J=2 0.378 0.398 0.321
(0.041) (0.027) (0.095)
J=5 0.352 0.393 0.404
(0.055) (0.027) (0.022)

Notes: This table reports the standard deviation of 0,,‘?5 across 100 random realizations of state variables that leave z, ¢
unchanged, averaged across zn,¢ values, stocks, and simulations. Standard deviation across stocks in parenthesis.

Explaining the quantitative gap: a learning externality. While the Al traders’ behavior
aligns qualitatively with the theoretical predictions in Proposition 1, there are notable quantitative
deviations. In particular, Al agents tend to trade too aggressively as the number of traders increases,
and they fail to sufficiently scale down their holdings when their size grows. These discrepancies
point to a learning friction that becomes more pronounced when many Al agents are trained
simultaneously.

The core challenge stems from the model-free nature of DDPG. Lacking a structural under-
standing of how their actions influence prices, the agents must learn from observed reward signals
alone. When multiple traders explore concurrently, each agent influences the market price through
its own experimentation. This injects noise into the price process by creating order flow orthogonal
to public information, adding variance to prices and diluting the informativeness of reward signals.
Additionally, because training occurs while others explore, each Al fails to adapt to the systematic
co-movement between others’ demand and fundamentals that will prevail once learned strategies

are deployed. This is the essence of the learning externality—exploration by one agent disrupts
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others’ learning by contaminating the very signals they rely on.

To isolate these effects, we conduct a controlled experiment. Table 6 (and Table A6 for
all 10 stocks individually) reports the average out-of-sample performance difference between a
counterfactual Al trader trained alongside J — 1 rational speculators (who play the equilibrium
strategy of the J-trader game) and an Al trader trained alongside other J — 1 Al traders while
exploring simultaneously (the standard AI setting). In both cases, the evaluation environment
is identical: the focal Al trades against J — 1 Als in exploitation (deterministic) mode. Hence,
the return difference is attributable purely to the training environment. The Al trained with
rational peers consistently achieves higher returns, with the gap widening in both J and Jw and
achieving a maximum of 2.8% in the (J, Jw) = (5,10%) case. This is evidence that concurrent
exploration by other agents disrupts learning. This learning externality reduces both price-impact
internalization and the ability to recover the correct mapping from public signals to expected
returns: the profitability of a signal depends on how others’ demand co-moves with it—something

an Al agent cannot fully observe under joint exploration.

Table 6: Causal effect of training environment on performance, AR;_1

Jw = 1% Jw = 5% Jw = 10%
J=2 0.195 0.233 0.342
(0.489) (0.171) (0.161)
J=5 0.275 1.468 2.782
(0.354) (0.360) (0.308)

Notes: This table reports portfolio return differences between two settings: (i) an Al trader trained while competing with
J — 1 rational speculators, and (ii) an AI trader trained jointly with J — 1 AI traders in exploration mode. RAIIb denotes
the per-period out-of-sample gross portfolio return for setting (i) averaged across episodes, simulations, and stocks, and R4!
denotes the corresponding quantity for setting (ii). Then we define AR;_; = (RA”b/RAI — 1) x 100. Standard deviations
across stocks are reported in parentheses.

We now examine how these portfolio policy choices translate into portfolio returns, market

efficiency, and liquidity.

4.1.2 Returns

Average Returns. Table 7 (and Table A7 for all 10 stocks) implies that in the J=1, w=1%
case the AT’s net return is about 3.7% per period versus 4.6% for the benchmark—a shortfall of
roughly 90 bps. Thus a single AT with modest price impact comes close (but does not fully match)

the learning frontier.
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Table 7: Average portfolio returns

Jw=1% Jw = 5% Jw =10%
Aarp 70 Aarp I Aaryp 70
J=1 ('3'53805) 4.645 ('11.'5’35) 2.859 (126127;) 2.186
J=2 ('11.'20881) 4.483 ( f.'gj; 2.357 ( 10529 68) 1.764
J=5 (_11_'30?3?) 4.373 ( 11()7;53) 1.850 ( 02.51754) 1.170

Notes: This table reports information on average per-period out-of-sample gross portfolio returns for (i) the rational benchmark
(RY) and (ii) the AT case (R4T), averaged across episodes, simulations, and stocks. We report the deviation of Al returns from
the benchmark, defined as A 47 = (RAI/RZ’ —1) x 100, and the benchmark’s average net percent return r® = (R® — 1) x 100.
Standard deviations across stocks are reported in parentheses.

As Jw rises, the AI-benchmark gap widens: the gross return ratio A 47 shifts from roughly
—1% at Jw = 1% to about —2% to —3% at Jw = 10%, which translates into economically meaning-
ful net shortfalls. This pattern indicates that learning frictions become more severe when portfolio
size—and thus price impact—grows. The performance gap is further amplified when multiple Als
are trained simultaneously: each agent’s exploration perturbs market prices, distorting the re-
ward signals observed by its peers and hindering learning. This effect is particularly clear when
J raises from one to five, both when aggregate Al wealth is held constant—for instance, from
(J,Jw) = (1,10%) to (J,Jw) = (5,10%)— and when individual size is fixed—for instance, from
(J, Jw) = (1,1%) to (J, Jw) = (5,5%).

The increased sensitivity of performance to learning frictions at larger portfolio sizes can
be understood more formally. Let 0} denote the optimal portfolio weight solving Eq. (15), and
consider a small deviation € around this optimum. Assuming 6 is interior, a second-order Taylor

expansion of the expected return function implies that

~ 1a2]E(Rp,t+1 ’In,t)‘ 2
0

E(Rp7t+1 | In,t)‘92k+€ - E(Rp,t-&-l | Imt)’gzk 2 (aet)g x X €7

t

Thus, the performance loss from a small portfolio misallocation is proportional to the curva-
ture of the expected return function. Importantly, we can show that this second derivative increases
(in absolute value) with portfolio size w, making the objective more concave. In other words, the
cost of small errors in portfolio weights rises with portfolio size, magnifying the consequences of

imperfect learning for larger positions.
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These results also caution against extrapolating individual performance from partial equi-
librium setups. In many empirical studies, Al-based portfolio strategies are evaluated out-of-sample
on historical price data. Our findings show that such strategies may appear to perform well in isola-
tion and without feedback effects on the market environment (similarly to the J = 1,w = 1% case),
but their performance can degrade substantially when they interact and learn jointly with others,
and when the portfolio grows in size. This divergence highlights the need to assess Al portfolio

strategies in equilibrium environments to understand their true impact on returns.

4.1.3 Decomposing the rational benchmark—AlI return gap

To inspect further the sources of the return gap between the rational benchmark and the
AT outcome in Table 7, we take the perspective of the j-th Al trader and decompose the return
difference R® — RAT into three economically distinct legs that measure the impact of (i) the trading
environment, (ii) the quality of the best response to the environment, and (iii) others’ exploration
during training.

To this end, we introduce two counterfactual return series:

e RA. return of the j-th Al trader trained against J — 1 Al opponents in execution mode
(i.e., no exploration by opponents during training), evaluated against the same AI opponents.
Compared to R4, this return series removes the effect of simultaneous exploration from the
training environment and helps isolate the intrinsic difficulty of learning a best response to

the policies the other Als have converged to.

o RBREIAL theoretical best response of the j-th trader to J—1 AT opponents in execution mode,
computed numerically from the FOC in Eq. (15) assuming perfect knowledge of the other AI

traders’ strategies Hfls(-;w, J),ie{l,...,J}\J.

With these objects, the rational benchmark—AT return gap satisfies the identity

Rb _ RAI _ Rb . RBR‘AI + RBR|AI . RAI + RAI . RAI ) (34)
—_— —_— — —_—
Total gap (i) Composition gap (ii) Best-response learning gap (iii) Training-noise externality

The three parts in the r.h.s. of Eq. (34) have the following interpretation:
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Table 8: Decomposing the rational benchmark—Al return gap.

(J, Jw) Total gap (i) Composition (ii) BR learning (iii) Training-noise
(2, 1%) 1.023 -0.721 1.660 0.084
(5, 1%) 1.066 -0.629 1.872 -0.177
(2, 5%) 0.735 ~1.569 2.087 0.217
(5, 5%) 1.768 -1.387 2.533 0.622
(2, 10%) 0.906 -1.278 1.825 0.359
(5, 10%) 3.020 -0.882 2.911 0.990

Notes: “Total gap” reproduces the RB—AI difference in Table 7, now additively split as in Eq. (34). “Composition” compares
best-responding to Al opponents vs. competing in the RB world. “BR learning” holds Al opponents fixed and measures the
shortfall against the analytical best response. “Training-noise” holds deployment opponents fixed and changes only the training
regime from opponents in exploitation mode to opponents in exploration mode. (i)+(ii)+(iii) equals “Total gap”. All entries
are expressed in percentage points.

(i) Composition. This wedge compares the j-th rational trader’s performance in the rational
benchmark to the hypothetical return this rational trader would achieve when best responding

to the strategies deployed by the other J — 1 Al traders during trading.

(ii) Best-response learning gap. This wedge isolates the intrinsic difficulty of learning an optimal
policy against fixed Al opponents (i.e., holding the opponents’ deployment policies fixed at

their learned strategies).

(iii) Training-noise externality. This wedge holds Al opponents’ deployment fixed and changes
only the training environment: from one where other AI traders deploy learned strategies

(exploitation) to one where all AT traders explore.

The sum of (ii) and (iii) constitutes the overall learning friction: REFIAT — RAI This represents the
total performance loss attributable to the j-th AI’s inability to learn and deploy the theoretically
optimal strategy against its J — 1 Al opponents.

Table 8 shows the results. First, the composition gap is consistently negative: a rational
trader with perfect knowledge of the Als’ strategies would earn more than in the rational bench-
mark, as the Al opponents exploit return predictability to a lesser extent than in the benchmark.

However, this theoretical advantage is overturned by a larger overall learning friction, the
sum of wedges (ii) and (iii), which stems from two sources. First, a large best-response learning
wedge (about 1.7-2.9 percentage points) reflects the difficulty of learning an optimal response to Al

opponents’ strategies that react to payoff-irrelevant variation in the state Z,,; (Table 5). Second,
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the training-noise wedge (iii) is positive in all cases except for (J, Jw) = (5,1%), confirming that
concurrent exploration contaminates learning and degrades performance. Furthermore, this wedge
becomes quantitatively more important at larger values of w for given J and at larger values of J

for given Jw = 5%, 10%. Together, these forces explain the total performance gap.

4.2 Market outcomes

We now examine how Al traders, through their portfolio policies, affect overall market qual-
ity. We focus on three key metrics: market efficiency (how well prices reflect public information),
liquidity (the market’s ability to absorb supply shocks), and return volatility. Market efficiency

and liquidity are computed according to the definitions in Section 2.3, averaged across simulations.

Market efficiency. Table 9 (also Table A8 for all 10 stocks individually) reports market efficiency,
defined as the share of return variance that is unpredictable given the public information set Z,, ;,
consistent with Eq. (21). Panel A shows that Al traders consistently improve market efficiency
relative to the no-Al baseline. As either greater capital is deployed by Als or competition is more
intense, market efficiency generally improves in line with Proposition 2, reflecting the Als’ ability to
partially exploit return predictability. However, across all configurations, the case with Al traders
lags behind the rational benchmark. Panel B quantifies this gap, showing that it is most pronounced
at high levels of Jw. These results confirm that while Al agents make markets more efficient, they
remain limited in their ability to eliminate predictability due to learning frictions.

These results highlight an additional key limitation of the partial equilibrium approach to
AI, which may suggest that widespread adoption of Al will lead to highly efficient markets. In
contrast, our results show that when AI agents learn and interact in equilibrium, frictions emerge
that can significantly constrain market-wide efficiency improvements.

Table A9 shows the results for an alternative measure of market efficiency based on the
R? of predictive OLS regressions of future returns on observable state variables. In other words,
in contrast to Table 9 which reflects the true data generating process and is therefore computed
“inside the model,” Table A9 reflects the perspective of an econometrician who observes the public
signals Z,, ; but does not know the true return process and approximates the equilibrium function

gn With a linear specification. The results are qualitatively consistent across both approaches.
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Table 9: Average market efficiency (as A % from ME(J = 0))

Panel A: AME(J, Jw) (ME(J = 0) = 0.867)

Jw=1% Jw = 5% Jw = 10%
Al RB Al RB Al RB
J=1 1.265 2.041 3.320 6.528 3.165 7.656
(0.425) (0.605) (1.530) (3.038) (2.254) (4.419)
J—2 1.179 2.025 4.426 7.215 5.002 9.209
(0.401) (0.609) (1.823) (3.080) (2.478) (5.077)
J=5 1.106 2.008 4.725 7.529 6.547 10.098
(0.405) (0.613) (1.893) (3.056) (3.871) (5.350)
Panel B: AMEA(J, Jw) - AMEFB(J, Jw)
Jw=1% Jw = 5% Jw = 10%
J=1 -0.776 -3.208 -4.491
J=2 -0.846 -2.789 -4.207
J=5 -0.902 -2.804 -3.551

Notes: This table reports average market efficiency across stocks. Market efficiency is defined as the share of return variance
that is unpredictable given the public information set I, ¢, as in Eq. (21). Panel A shows the percentage deviation from baseline
market efficiency with only the representative investor, i.e., ME(J = 0), for both the AI case and the rational benchmark (RB).
Panel B reports the difference between the rational benchmark and Al traders’ deviations from baseline. For each (J, Jw) pair,
we compute the average out-of-sample market efficiency for each stock and simulation, then take the average across simulations
and stocks. Standard deviations across stocks are reported in parentheses.

Market Liquidity. Table 10 (also Table A10 for all 10 stocks individually) shows that the
comparative statics of liquidity with respect to Al competition and size are only partially in line
with the predictions of Proposition 3. Furthermore, liquidity is an order of magnitude lower relative
to the benchmark. The explanation for this result is that in the rational benchmark, traders
understand the temporary nature of the shock and anticipate the price reversal in the following
period, so they buy aggressively to profit from the anticipated reversal. By contrast, the Al
interprets the initial price drop as a sign of reduced latent demand, which is only partly reversed
by mean reversion. Thus, the Al perceives the price drop as a weaker signal of price reversal and
it does not fully exploit such dips, resulting in lower liquidity provision.

In other words, the Al sees “price down” — “latent demand down,”

which is not a guaran-
teed short-run arbitrage opportunity. Consequently, it fails to supply liquidity in situations where an
investor with structural knowledge of the shock would act aggressively, leading to under-provision of
liquidity. This illustrates how structural knowledge—not just pattern recognition—remains crucial
for market-stabilizing behavior.

For the case (J, Jw) = (5,10%)-where learning frictions are most severe and the deviation

from the rational benchmark is largest—Al trading results in even lower liquidity than in the

absence of Al traders (the J = 0 case).
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Table 10: Average liquidity, £

Panel A: £(J, Jw)

Jw=1% Jw = 5% Jw = 10%
Al RB Al RB Al RB
J=1 0.536 2.943 1.038 8.815 0.420 9.715
(0.218) (1.735) (0.393) (3.162) (0.492) (3.052)
J—2 0.496 2.902 1.628 10.532 0.324 12.736
(0.201) (1.702) (0.652) (4.276) (0.760) (4.187)
J=5 0.459 2.870 0.930 11.652 -0.503 15.147
(0.209) (1.663) (0.513) (5.303) (0.646) (5.257)
Panel B: £LAT(J, Jw) - LEB(J, Jw)
Jw=1% Jw = 5% Jw =10%
J=1 -2.407 -7.0T7 -9.295
J=2 -2.406 -8.904 -12.412
J=5 -2.411 -10.722 -15.65

Notes: This table reports average market liquidity across stocks. Liquidity is measured as the price impact of a 1% supply
shock, as defined in Eq. (22). AI represents the market liquidity level with AI traders. RB denotes the average liquidity level
of the rational benchmark. Entries are multiplied by 100. For each (J, Jw) pair, we compute the average out-of-sample market
liquidity for each stock and simulation, then take the average across simulations and stocks. Panel B reports the difference
between the market liquidity level of the Al traders’ and the rational benchmark. Standard deviations across stocks are reported
in parentheses.

Volatility. Finally, we examine the impact of Al trading on stock return volatility. Panel A of
Table 11 (also Table A1l for all 10 stocks individually) reports the percentage deviation of stock
return volatility relative to a baseline market populated by the representative investor. The results
for the rational benchmark align with the prediction on market efficiency in Proposition 2: the
greater the capital allocated to the agents, and the more agents compete (for large enough Jw), the
larger the reduction in volatility. This is intuitive because rational agents trade on mean reversion,
thereby aligning current prices to future prices and reducing return volatility. The market with
AT traders exhibit a similar property, but quantitative disparities with the rational benchmark
emerge, especially when multiple Als compete or when their managed capital is larger. These
results further corroborate the learning frictions emerging when Al agents interact with each other

and the environment in an equilibrium framework.
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Table 11: Average volatility (as A% from o(R)j—o)

Panel A: Ac(R)(J, Jw)

Jw=1% Jw = 5% Jw =10%
Al RB Al RB Al RB
J=1 -0.626 -1.003 -1.607 -3.083 -1.509 -3.562
(0.208) (0.203) (0.720) (1.366) (1.055) (1.928)
J=2 -0.583 -0.996 -2.129 -3.394 -2.386 -4.234
(0.196) (0.295) (0.846) (1.374) (1.140) (2.170)
J=5 -0.548 -0.988 -2.268 -3.535 -3.073 -4.614
(0.198) (0.297) (0.871) (1.358) (1.718) (2.263)
Panel B: Ac(R)M(J, Jw) - Ac(R)FB(J, Jw)
Jw=1% Jw = 5% Jw = 10%
J=1 0.377 1.476 2.053
J=2 0.413 1.265 1.848
J=5 0.44 1.267 1.541

Notes: This table reports average return volatility across stocks. Panel A shows the percentage deviation from baseline return
volatility with only the representative investor, i.e., J = 0, for both the AI case and the rational benchmark (RB). Panel B
reports the difference between the rational benchmark and Al traders’ deviations from baseline. For each (J, Jw) pair, we
compute the average out-of-sample return volatility for each stock and simulation, then take the average across simulations and
stocks. Standard deviations across stocks are reported in parentheses.

5 Discussion

5.1 Learning Externalities in Practice

Our model highlights learning externalities in multi-agent reinforcement learning (MARL),
which arise when agents experiment and adapt policies online in a shared environment. While this
setup may overstate the extent of real-time (online) learning in financial markets, it serves as a
useful benchmark for the potential impact of algorithmic experimentation in dynamic, multi-agent
environments because of several reasons.

First, some degree of ongoing adaptation is likely unavoidable. As financial market dynamics
evolve over time, strategies trained purely on historical data may fail to generalize out of sample.
As a result, models are recalibrated or retrained frequently. Although this adaptation may occur in
discrete intervals rather than continuously, it still introduces a form of strategic experimentation:
when one agent updates its policy and redeploys, it alters the environment faced by others. In this
sense, staggered or asynchronous learning can generate externalities similar to those in fully online
MARL.

Even in the extreme case where algorithmic learning is entirely offline, the training data
reflects the influence of previously deployed algorithms. As financial institutions test and iterate

Al strategies in live markets, their actions shape asset prices. In this broader sense, the market
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functions as a “meta-experiment”: the behavior of deployed models influences the data on which
future models are trained. This feedback loop creates indirect learning externalities that, while

subtler than in MARL, are conceptually similar.

5.2 Policy Implications

These considerations have implications for the ongoing policy debate on algorithmic trad-
ing. Regulators treat algorithmic trading as a multi-dimensional risk that spans market integrity,
operational resilience and systemic coordination failures. To address such concerns, Article 7 of
MiFID II RTS-6 obliges investment firms to test algorithms “in controlled environments” before
deployment.

Our simulations reveal that algorithmic exploration creates a negative learning externality
that impairs learning and market functioning. Therefore, our policy implication is that such a con-
trolled environment should replicate general-equilibrium (GE) feedback while holding rival agents’
behavior constant. In practice this means certifying each model inside a single-agent GE sandbox
where prices endogenously respond to its own orders; only once the agent has shown impact-aware
stability should it enter multi-agent stress tests. This sequencing contrasts with recent proposals
which prioritize multi-agent sandboxes to capture interaction effects, overlooking the impact of
learning externalities on market outcomes.'*

Our findings also suggest a broader policy consideration. In our setup, Al agents act
as contrarian investors who, in principle, provide liquidity by absorbing transient supply shocks.
However, they do so less effectively than fully rational agents because they fail to anticipate the
structural nature of temporary price reversals. This underprovision of liquidity implies that learning
frictions—rather than collusion or manipulation—can be a source of market fragility. In extreme
cases, our simulations show that this may lead to amplification of shocks.

Thus, the model-free nature of algorithmic learning introduces a new channel of systemic
risk which arises from endogenously in the learning environment. This suggests that regulators
should expand their risk assessment frameworks to include such algorithm-induced externalities.

Testing protocols should emphasize how agents behave in the presence of structural supply or

14Gee, for example, Jonathan Hall, of the Bank of England’s Financial Policy Committee, suggesting that “[a]ny
deep trading algorithms will need to be trained extensively, tested in multi-agent sandbox environments” (https:
//www .bankofengland.co.uk/speech/2024/may/jon-hall-speech-at-the-university-of-exeter).
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demand shocks and whether their responses exacerbate or attenuate market volatility.

In sum, safe deployment of Al in trading requires not only robustness to adversarial inputs
or algorithmic failures but also learning-aware certification procedures that account for general-
equilibrium effects, feedback loops, and potential amplification mechanisms. Future work should
explore the design of regulatory sandboxes that can isolate and measure these risks in realistic

settings.

6 Conclusion

This paper studies how Al-driven investors, modeled using deep reinforcement learning,
trade in an empirically calibrated demand-based asset pricing model with price impact and return
predictability. Our work helps fill two gaps in the literature. First, we are the first to study Al-based
trader behavior in an equilibrium environment with empirically plausible return predictability and
price impact. Second, while recent studies often employ tabular Q-learning schemes with discrete
action sets, we adopt a continuous-control DRL method. This allows the trading agent to learn
flexibly and avoid coarse discretization of portfolio weights.

Our experimental results deliver several key insights. In line with the theoretical benchmark,
the AI agents learn to exploit return predictability arising from mean-reverting fundamentals and
latent demand. In particular, the Al policies qualitatively reproduce the benchmark comparative
statics, indicating that they learn to decode latent demand shocks from prices and internalize the
price impact of their trades.

Yet quantitative differences with the benchmark emerge. When multiple Al traders interact,
their actions introduce additional noise that distorts each agent’s learning process. This “negative
learning externality” degrades performance relative to the benchmark—particularly when trader
size increases and competition intensifies. Relatedly, while Al-driven trading consistently improves
market efficiency by reducing predictable return components—albeit less than the benchmark—AI
agents provide less liquidity than rational speculators would. Their model-free algorithms do not
fully anticipate short-lived arbitrage opportunities from transient supply shocks, leading to more
pronounced price drops.

These results have important practical implications for how Al-driven investors transform
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market outcomes. They do reduce return predictability from public signals, thus enhancing semi-
strong form market efficiency. At the same time, they provide less liquidity than predicted by ratio-
nal models, illustrating how structural knowledge—mnot just pattern recognition—remains crucial
for market-stabilizing behavior. This tension highlights the importance of modeling the interplay
between traders’ learning processes and market dynamics, rather than treating Al strategies as

atomistic or frictionless.
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A Appendix

A.1 Model solution

Derivation of Eq. (7). Using the portfolio formula for the representative investor in Eq. (1)

together with the representative investor’s budget constraint Z%:I Wit +Wot +7¢ = 1, we obtain

_ 5n,t
1+ Z%:I Om.t

Wnt

The market clearing condition Eq. (6) for each stock can be equivalently written as
Atwn,t = Pn,tgn,t‘ (Al)

Using Eq. (1) into the market clearing condition Eq. (A1) we obtain

N
Ont Ay = <1 + Z 5m,t> Pn,tgn,t-
m=1

Summing the last equation over n and rearranging, we obtain

5 . Pn,tgn,t
n,t — N ~ .
At - Z Pm,tSm,t

m=1

Using Eq. (1) to substitute for d,+ in the last equation and taking logs, we obtain

K-1 N
BO(pn,t + Sn) + Z kak,n,t + ﬁK + €n,t = Pn,t + gn,t - log (At - Z Pm,tSm,t> . (A2)

k=1 m=1

The budget constraint for trader j is
Al = > S0 P+ S5, (A3)
m=1

Combining Eq. (A3) with the traders’ wealth dynamics in Eq. (5) we obtain

N N
2 an,tpm,t + S(J),t = Z Sin,t—l (Pt + Dm,t) + S(j),t—lRf- (A4)
m=1 m=1

Using the representative investor’s wealth dynamics Eq. (4) and Eq. (A4) into Eq. (A2) and rear-
ranging, we obtain Eq. (7) in the text. O
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Derivation of Eq. (8). We define the aggregate dividend Dy, as

N
DM,t = Z SmDm,t-

m=1

Under Assumption 1, the argument of the logarithm in the r.h.s. of Eq. (7) reduces to Dy +

So,t—1Ry. With Assumption 2, the representative investor’s budget constraint reads
N ~
Ay = Z St Pt + S0t + M Dt + So—1Ry),
m=1

which, together with Eq. (4) and Assumption 1, imply
507,5 = (1 — )\)(DM,t + So7t_1Rf).

Using the previous equation recursively, we obtain

t
DMJ + S()’t_lRf = Z DMJ_T(l — )\)TR} (A5)
7=0

Assumptions 3 and 4 imply

(1+g) {1 - (Rfl(i?))t_l] 1+ g)

~D
1+g—Rp(1—\) M g =Ry (1= N)

t
Y Dusi-(1= AR} = Dy
7=0

where the approximation is exact for t — oo. Taken together, Assumptions 1-4 imply that the price

equation Eq. (7) simplifies to

Bosn — Bni + S0y Brthns + Bic + €ns + log (Dars) + 6
Pnt = 1— BO

, (A6)

where

¢=1og< (1+g) >

14+g—Re(1-X)

a
n,t

Using the definition af, , = Ssn into Eq. (A6) and simplifying we obtain Eq. (8) in the text. O

A.2 Proofs of propositions

Note: In the following proofs we denote Ey(-) = E(- | Z,4) and Vary(-) = Var(- | I ).

Proof of Proposition 1

Part-(i): Existence and uniqueness We begin by showing that speculators’ objective functions
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are concave in portfolio shares. Using Eqgs. (15)-(16) we obtain

1 aPM 1— %apn,t

Py 067, Poy 067,

s 01]'; t 0 n,t 7 s
Aj {(1 — Bo) Sn Pt (1 T Poy agj ’t> + o Z%];ej gn,tAt]

. 2
(1= B0) S P+ o S 67,047

aQEt(R;,t) _gl P
(067, ,)? Pt

(A7)

+

}_

j
Since 10;’:; ZZ.:Z < 1 (see Eq. (A9) below), then Eq. (A7) is indeed strictly negative.
Next, combine Eqs. (15)-(16) as follows:
OE(R) P 07 A .
t(] p7t) = L Zt—i_l ( - Lt J i s + Et(DYn,t-‘rl) - Rf =07 (AS)
&HM n,t (1-— BO)SnPn,t + Bo Zizl gn,tAt

Eq. (A8) implies that if an equilibrium exists, it must be unique. To see this, assume Gfm > Hﬁm, in
which case Eq. (A8) implies 67 < 6. In case both 6

bt 9,’;775 e (0, 1), optimality requires 0/ = 6° = 0, a
contradiction. In case Q;J =1,6 + €[0,1), optimality requires 87 > 0,8 <0, again a contradiction.

n
. o ; S Pn ; s . )
Using the definitions 67 , = 7" of | = “2 and o, = 37 al, ,, we can rewrite Eq. (16)
’ t b mn bl - b
as ) . . .
j Y j
Hn,t 0P, 0,1 A «Q

n,t
= ’ — = d ) A9
Pt 595%1«/ (1 = Bo)SnPni + Bo 25:1 92,#4% (1—5o) + 500475;15 (4

We proceed to show that a symmetric equilibrium exists and is unique. We will first solve for an

. . i P87
and using the definitions 67 ; = ;‘g”’t and A} = wP;;Sn,

equilibrium in terms of o ,. Given a2 ,,
) )

1
and the fact that Py ,/Pn; = (1 — ag?t) 1=fo  we can uniquely determine the equilibrium portfolio

share of each speculator as

Oyt = R (A10)
Jw(l—af )T
Since each 6y, € [0,1], the symmetric equilibrium must satisfy o , € [0, a] where @ solves
[ — (A11)
Jw (1 —a) P
Using Egs. (2)-(3) and the price functions in Egs. (13)-(14) we can compute the expected

capital gain as

P, ! Bl — +(1 - pe,)E .
B, ( ;),t-&-l) — exp (_Zk_l ﬂk‘( pk,n)fk’,ngo ( pEn) t(€n,t)> o, (1 _ ait) (1-Bo) 7(A12)
n,t -
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where

_ K-1
®, = exp 5:11 BrCnk + cne +log(l + g) I k=1 ’Biagk,n + "gn (A13)
" 1— By 2(1 — fo)?
and, as already derived in the main text,
Ei(enys) = (1 - 50)7716 ( Z BrTrnt + B + ¢> = €n,t- (A14)
We define z,; to be the following linear combination of me;’;t, Tl TK—1m,t
_ 2 o2 2
Zé{:ll Bkcn,k + Cne + IOg(l + g) ( Psn) (ﬁK + <f>) Z 77k n + Ufn
e 1— o =P
K—1 (A15)
_1 Bk(Pkn = Pen
g emt PlPln ZPen) (1 g, Jme
1= 5o
Egs. (A12)-(A14) imply that we can write the expected capital gain in Eq. (A12) as
P, 1
E, (n’tH> = exp (2n,t) (1 — a;?t) =60 (A16)
Pn,t ’
It follows that speculators’ expected return can be expressed as a function of z,; alone.
Consider the case where all J speculators choose the same strategy 6,; = —*——,
Jw(l—z)1=Po

so that oz;it = x by Eq. (A10). Using Egs. (A8)-(A9) and Eq. (A16), we can write the the first

derivative of a speculator’s objective function as

OE(R),)

T 00 = G @),

where we define

x/J

G (,2n) = exp (2ny) (1 — 2) T=F0) (1 T 0= ) + fox

>+DYn R, (A17)

With this formulation, a symmetric equilibrium of the trading game is a fraction a;?t €

[0,&] with & € (0,1) such that either (i) oz;?’t = 0 and G(0,2z,4) < 0, or (i) a nt € (0,1) and
G (af;,t,zn,t) =0, or (iii) o , = @ and G (@, znt) = 0.

n,t
Eq. (A17) implies that G is strictly decreasing in the first argument and and strictly increas-

ing in the second argument, and, furthermore, that lim,| o, G(z,z) < 0 and lim,1+o, G(z,2) = 0.1

This implies that there exist values z;, < zy such that G (0, z1) = G (@, zg) = 0. It is immediate,
= 0 for all

n,t —
S

n,t

therefore, that an equilibrium exists and is unique for any z,;, and is such that ad

Znt < 21, and O‘n,t = a for all z,; > 2y, whereas for all 2, € (21, zn), equilibrium «, , is interior

'5This argument implicitly assumes DY, — Ry < 0.
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and solves
G (ait, Znt) = 0. (A18)

O]

Part-(ii): Linear sufficiency. Since G (ait; Zn,t) is strictly decreasing in ait and strictly in-
creasing in z,; , implicit differentiation of Eq. (A18) implies that oz;s;t is strictly increasing in z, ¢
in an interior equilibrium.

The equilibrium portfolio share 6,, ; corresponding to each oz;s;t is determined by Eq. (A10),
S

and is strictly increasing in o ,. Since o,
bl k)

is only a function of z, 4, it follows that 60, ; is only a
function of z,; and is weakly increasing.
Finally, using the price equations in Eqgs. (13)—(14) and the definition of z,; in Eq. (A15)

we can write the capital gain as

K- K—1 g2 2 2
Pmt—&-l — exp | 25 + Zkzll ﬁknk,n,t+1 + 5n,t+1 . Zk=1 Bkank,n + U&n (1 . OzS )ﬁ (Alg)
Py " (1= Bo) 2(1 = fo)? "
Since ozf;t is only a function of z,; and the dividend yield is i.i.d., 2, is indeed a sufficient statistic

for Z,, + with respect to Ry, ¢41.

Part-(iii): comparative statics Eq. (A15) implies that 2, is decreasing in me}, ; and increasing
in @y, if and only if By (pnk —pe) > 0. Since 6,4 is only a function of z,; and is weakly increasing,
then 0, ; is weakly decreasing in me;"m and is weakly increasing in xy, ,, + if and only if By (pn k —pe) >
0.

Since G (a;:’:t; Zn,t) is independent of w, then so is ait. Therefore, the equilibrium portfolio
share is decreasing in w by Eq. (A10). Finally, since G (af;t; zn,t) is increasing in J, implicit
differentiation of Eq. (A18) implies that afm is also increasing in J. Then, for fixed wJ, Eq. (A10)

implies that the equilibrium portfolio share is increasing in J. O

Proof of Proposition 2. Taking the logarithm of Eqs. (A19) and using the definition of z,; in
Eq. (A15) we can write

Pnt+1 — Pnt = gn(In,t) + €n,t+1, (A2O)
where
K—-1 2 2 2 -
9T s) = 2k—1 Bkank,n +og, s log (1 - afm)‘ et = ZkK:f BrMk,ni+1 + Enjtr1
t) = — tt+t —————3 G+l =
e 2(1 — Bo)? " 1—Bo mi (1—Bo)
(A21)
Therefore,

ME = Var(ens+1) . (A22)
log(l—aTSL t)
Var Znt + 1—7,807 + Var(en,tH)

Since ep 41 is exogenous and independent of w and J, we will show that the first term in the

denominator of Eq. (A22) is decreasing in w and is decreasing in J for w.J sufficiently high.
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For an arbitrary parameter y (later either y = J or J = w) set

log(l —a(z; y))
1—Po ’

flziy) =2+

where a(z;y) denotes agvt valued at z,; = z and indexed by the parameter y. We note that

the equilibrium condition Eq. (A18) and Eq. (A17) imply that f(z;y) is strictly increasing in z.

Omitting subscripts, we denote V(y) the first variance term in the denominator of Eq. (A22):

0= sewrare) - ([ renare)’
where P denotes the unconditional distribution of the random variable z. We have:

V0o [ e LED apey o [* seiar) ([ LED apes),

—0 oy
where
of(zy) _ 1 0a(zy)
dy (1-Bo)(1—alzy)

The proof of Proposition 1 implies a(z;y) = 0 for z < 2z, and «a(z;y) = a(y) for z = zy. Hence,
dv(y) 1 604 da(y)

dy — 1-8 J fz9)7 —a(2;y) J S @y) dy dp(z)]

*H 1 6a (z;9) a(y)
1—50 f fziy) dP(z )) UZL 1 —a(zy) f dy dP(Z)]'

Case y = w. By Eq. (A17) and Eq. (A11),

oa(z;w)
ow

da(w)

1o > 0.

=0 (2 <z<zn),

Let uy, := E[f(z;w)]. Then

dV(w) 2 da(w)
do (1-Bo)(1—aw) dw B (e

- f(Z, w)>1{z>ZH}]'

Since f(-,w) is strictly increasing, E[f(z;w) | 2 = zu] > plw = E[(pw — f(2;w))1z22,3] < 0, and

therefore
dV(w)

dw

<0. O

Case y = J. Fix Jw. By Eq. (A17) and Eq. (A11),

604(;;]; J) >0 (2 <2z<zpy), da(J)

= 0. (A23)
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Put py:=E[f(z;J)]. The derivative reduces to

DD s ZLH (s — £ (2. 1)) bz T)dP(z),
where we define
Mz J) = 1 a(z; J) (A24)

(1=Bo)(I —alz ) oJ
Since zr,, zg are defined such that G (0, z1) = G (&, zg) = 0, then Egs. (A11) and (A17) imply that

2z, is independent of w whereas zp is increasing in w with limg1 2z = 00. Thus,

d
lim V(J)

wtoo 7 - E[(MJ - f(Z; J))h(Z; J)l{ZZZL}]’ (A25)

We now prove that under the standing assumptions that h(z; J) is non-decreasing in z, the
limit in (A25) is strictly negative:

lim d‘ggj) = (s — f(z ) Mz J) 1zzzy] <O

wloo

To this end, introduce the conditional expectation Ez[-] := E[- | 2 = z1] and set p := P(z > z1.).
Then,

B (10 = £z IR D)Lz | = 2|1 Bl h(z50)] = B £ (25 D)z )] |. (A26)
Because both f(-;J) and h(-;J) are non-decreasing,
Covi(f(zJ), bz J)) = ELlf (25 J) h(z; J)] = BLLf (2 J)] EL[h(2; T)] =0,

so that
Er[f(z J)h(z )| = Er]f(z; )| Erh(z; )] (A27)

Inserting (A27) into (A26) we obtain

B (s — f(z:I))h(z; ))lizsapy] < pEM(z0)] [ps — EL[f (2 ])]] <0,

where the last inequality follows from the fact that p > 0 (the unconditional distribution of zhas

support above z1,), Ef[h(z;J)] > 0 (by Eq. (A23)) and, since f(z;J) is strictly increasing in z,

IEL[f(z; J)] > py. To complete the proof it remains to show (1—60)(11—a(z;J)) aaé?‘]) in non-decreasing

in z, which, using implicit differentiation of Eq. (A17), can be verified to be true.
]
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Proof of Proposition 3 The supply shock implies that p,; equals

—log (1 - O‘g,t) + ZkK:_f Brxknt + Br + €nt +1og (Darg) + ¢

Pnt = —(sp+0) + = , (A28)
And therefore the expected capital gain changes to
P’n,tJrl _ S (17715)
E, 5 ) =exp (zng +0) (1 — ) O7F0 (A29)
n,t

The equilibrium condition is as in the proof of Proposition 1. Denote the resulting equilibrium

value o (2,4 + o). Therefore, the definition of liquidity implies
apn t 0 S 1
=1+F| —= =F| —|—log(l-— n . A
L + < P U_0> (80[ og( a” (zn +J))] Y Sy (A30)

The proof for the comparative statics of £ with respect to w and J follows similar steps as in the

proof of Proposition 2 and is omitted for brevity.

* —_—
n,t

m@;’;,t’ {ajmt}) =

For the case with Al trading, the supply shock changes the state variable mej, ; to me
o. Thus, defining the aggregate share of supply held by the AI traders as a4/ (

Z}le o (Z,,4), the definition of liquidity implies

con (21 tos(- 0 (et - o o))

1
0) - (A31)

Numerically, we approximate the derivatives

%[— log(1 — o (zns + o))]

1—a(z,
m—llog< a”(z ’t+a>>, (A32)
o

o=0

and

2 [tog (1~ 0¥ (meg, . {o0s}))]

1 1— Al ;l; — o, n
~ ——log ¢ Igne ’t* 7 (@nt}) (A33)
o=0 g -« (men,t7 {wni})

for a numerical value of o = log(1.01), corresponding to a 1% increase in the supply of the asset.

A.3 Simulating stock characteristics and latent demand

The stock characteristics log book equity, profitability, investment, dividend-to-book equity,

market beta and latent demand are simulated from an AR(1) process such that:

Thnt+l = Chn T PknThnt T Mkn,t+1, (A34)

€n,t+1 = Cen + Pen€nt T gn,t-i-l, (A35)
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where xy,,, is the k — th the stock’s characteristics, ¢y, is the intercept, p; is the autoregressive
coefficient and 7y, , 141 is the error term and similarly for the latent demand. The AR(1) process is
estimated by simulated method of moments, by imposing the following moment conditions on the
data:

Ck,
E¢[2rnr1] = ﬁ
n
2
Va?"t[ffk7t,t+1] = 17712
~ Prn
Et[yk,n,t+1yk,n,t] = D
T = D
Vart[yk,n,t+l]

By exploiting empirical moments, we recover the parameters of the AR(1) process. Stock

characteristics are then simulated accordingly using the empirical mean as initial condition.

We construct the dividend yield, PD”’t

n,t—1 ’

by sampling with replacement from the data.
Finally, we simulate returns by solving Eq. 7, given the simulated characteristics, dividends and

the consumption rate of the representative investor.

Table Al: Autoregressive coefficients

Characteristic/Asset IBM AXP ABM AEE WEYS GIS KO L SIM ARW
Latent demand 0.871 0.788 0.440 0.858 0.823 0.290 0.834 0.861 0.914 0.880
Log book equity 0.970 0.952 0.932 0.633 0.907 0.559 0.851 0.532 0.977 0.800
Profutability 0.923 0.661 0.673 -0.025 0.315 -0.138 0.184 0.911 0.128 0.582
Investment 0.817 0.763 0.698  0.770 0.340 0.903 0.769 0.842 0.930 0.564
Dividend to book equity 0.965 0.336 0.818 -0.015  0.755 0.074 0.710 0.830 0.986 0.864
Market beta 0.886 0.919 0.842 0.951 0.944 0.855 0.898 0.799 0.906 0.832

Notes: This table reports the estimate coefficient of stock characteristics for each stock. The autoregressive coefficient is
estimated using simulated method of moments described in Section A.3

Table A2 reports the summary statistics, mean and standard deviation of the stock char-

acteristics, dividend, latent demand and returns of the data and the simulation.
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Table A2: Simulated characteristics and returns

Log book equity IBM AXP ABM AEE WEYS GIS KO L SIM ARW
Data (mean) 6.42073  10.9827  9.12387  9.25862  7.08271  8.20547  8.97407  4.7242  9.80731  9.67367
Simulation (mean) 6.34819  10.9951 9.07388  9.25912  7.0522  8.18637 8.97068 4.72302  9.8181  9.65167
Data (std. dev.) 0.92798  0.93983  0.67001  0.53372 1.04751 0.56105 0.93541 0.30192  1.6421  0.70726
Simulation (std. dev.) 0.82138  0.89576  0.6584  0.53391  0.99783  0.56504  0.90323 0.303 1.37342  0.70275
t-stat 1.11986 -0.17463 0.96454 -0.01203 0.38829  0.42961 0.04766 0.04946 -0.09955 0.39788
Profitability IBM AXP ABM AEE WEYS GIS KO L SIM ARW
Data (mean) 0.21889  0.20844  0.30465 0.11783  0.15098  0.26824 0.117 0.06332 0.38611  0.18734
Simulation (mean) 0.22162  0.20721  0.30431  0.11821  0.1515  0.26896 0.11642 0.06688  0.38497  0.18809
Data (std. dev.) 0.09555 0.08512  0.09705 0.04408 0.05707 0.11134 0.08928 0.09923 0.11744 0.14144
Simulation (std. dev.) 0.0923  0.08418 0.09763 0.04363  0.0564  0.11123  0.08914 0.09333  0.11818  0.14133
t-stat -0.37636  0.1857  0.04494 -0.11016 -0.11818 -0.08276 0.08237 -0.48475 0.12209 -0.06699
Investment IBM AXP ABM AEE WEYS GIS KO L SJIM ARW
Data (mean) 0.07682  0.05851  0.0643  0.04703 0.08052 0.05172 0.06906  0.0015  0.14528  0.05576
Simulation (mean) 0.07964  0.06095 0.06401 0.04604  0.0822  0.05487 0.06589 -0.0037  0.15288  0.05884
Data (std. dev.) 0.11684 0.12934 0.11971 0.08153 0.18329  0.1003  0.21201  0.12631 0.12132  0.07414
Simulation (std. dev.) 0.11848  0.12482  0.11894  0.08002  0.17955  0.09629  0.21051  0.12452  0.11936  0.07497
t-stat -0.3021  -0.2478  0.03097  0.15715 -0.11863 -0.41607 0.19138 0.53064 -0.80959 -0.52221
Dividend-to-book equity = IBM AXP ABM AEE WEYS GIS KO L SIM ARW
Data (mean) 0.02268  0.04472  0.06078  0.03469 0.03105 0.01457 0.03598 0.00519 0.04535 0.03676
Simulation (mean) 0.02248  0.04507  0.06082  0.03467  0.0315  0.01456 0.04121 0.01358  0.04537  0.04012
Data (std. dev.) 0.00984 0.01128 0.02259 0.01242 0.01843 0.00625 0.03402 0.01869 0.01963  0.02838
Simulation (std. dev.) 0.00904 0.01134 0.02233 0.01239 0.01723  0.00608 0.02947 0.01264 0.01587  0.02478
t-stat 0.28184 -0.39266 -0.0233  0.02207 -0.33005 0.03591 -2.2517 -8.3563 -0.01684 -1.7186
Market beta IBM AXP ABM AEE WEYS GIS KO L SIM ARW
Data (mean) -0.00115  0.00373  0.00301  0.00657  0.00056 2e-05  -0.00242 0.00272  0.00359  0.00118
Simulation (mean) -0.00035  0.00407  0.00267  0.00719  0.00099  -0.0013 -0.00243 0.00272  0.0037  0.00143
Data (std. dev.) 0.01495 0.01105 0.01112 0.01267 0.01478  0.0132  0.01631  0.0164  0.01067  0.0089
Simulation (std. dev.) 0.01525 0.01091  0.01089 0.01174 0.01328 0.01287 0.01634 0.01643  0.01059  0.0089
t-stat -0.66117  -0.3934  0.40746 -0.66577 -0.40642 1.3024  0.00912 0.00492 -0.12959 -0.36119
Dividend yield IBM AXP ABM AEE WEYS GIS KO L SIM ARW
Data (mean) 0.0009 0 0 0.01526 0 0.00068  0.00568  0.0008  0.00181  0.01158
Simulation (mean) 0.00086 0 0 0.01511 0 0.00074 0.00561 0.00112  0.0018  0.01195
Data (std. dev.) 0.00222 0 0 0.00718 0 0.00191  0.00683  0.01025 0.00212  0.00865
Simulation (std. dev.) 0.00217 0 0 0.00707 0 0.00196  0.00646 0.01206  0.00207  0.00878
t-stat 0.19258 0 0 0.25434 0 -0.37526  0.14317 -0.39294  0.0408  -0.54033
Latent demand IBM AXP ABM AEE WEYS GIS KO L SIM ARW
Data (mean) -0.20346  0.04419 -0.07862 -0.18407 -0.2019 -0.68296 -0.33884 -0.24875 0.16588 -0.25759
Simulation (mean) -0.19883  0.04132 -0.07849 -0.16776 -0.19298 -0.68338 -0.32888 -0.21586 0.16073 -0.23081
Data (std. dev.) 0.23989  0.13805  0.1569  0.16367 0.21682  0.40716 0.19511  0.42572  0.21157  0.24939
Simulation (std. dev.) 0.16791  0.09728  0.1099  0.12794  0.15707  0.28656  0.13923 0.30138  0.14371  0.17841
t-stat -0.34786  0.37264 -0.01472 -1.6129 -0.7171  0.01858 -0.9023  -1.3765 0.45114 -1.8936
Returns (%) IBM AXP ABM AEE WEYS GIS KO L SJIM ARW
Data (mean) 0.91451 1.08485 0.09177 0.75742 -0.21003 2.04382 0.88848 1.14193  2.00448  0.99955
Simulation (mean) 0.48439  1.00017  0.47566  1.34435 0.39247 0.76183 1.06302 1.18892 0.39994  0.5064
Data (std. dev.) 20.9169  12.7746  20.9741 12.5096 30.0809  21.2705 24.0883 14.1679  13.4409 14.4851
Simulation (std. dev.) 26.5417  25.2129  30.3453  59.572  35.9562 28.8055 39.2624  22.485  37.6887  25.9773
t-stat 0.20622  0.04287 -0.16119 -0.12596 -0.21318 0.56698 -0.05667 -0.02664 0.54416  0.24232

Notes: This table reports the summary statistics (mean and standard deviation) of stock characteristics, dividend, latent
demand and returns of the data and simulation. Stock characteristics and latent demand are modeled as stock-specific AR(1)
processes fitted on data. Statistics are based on 100 simulated processes. Dividend yields are sampled with replacement from
the data. Returns are from prices computed according to Eq. 7
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A.4 Price variance decomposition

In this section we study the contribution of latent demand on the variance of the capital

gain. To assess the role of the unobserved latent demand we compute:

Var(gn,t+1 )
Var (pn,tJrl - pn,t)

where &, ¢+1 is the innovation in the latent demand and py ;41 — pn refers to the capital
gain. Figure A1l reports the distribution of the latent demand to the capital gain variance across

100 simulated time-series for the ten stocks.

Figure Al: Contribution of latent demand on the variance of the capital gain.
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Notes: This figure reports the distribution the contribution of the variance of the latent demand on the variance of the capital
. Var(€n,t+1)
gain ( Var(pn,t4+1—Pn,t)

) across 100 simulated time-series for the ten selected stocks.

The latent demand explains on average from around 2% (The Coca Cola Company, KO) to
24% (Loews Corporation, L). The mean and standard deviation across the 100 simulated time-series
is shown in Table A3

Table A3: Summary statistics of the variance contibution of the latent demand to the variance of
the capital gain

IBM AXP ABM AEE WEYS GIS KO L SJIM ARW
Mean (%) 9777 3.503  10.689  1.940 3.100 21.792  2.035 23.655  2.263 3.304
Std. Dev. (%) 2.304 0.703 2.261 0.405 0.619 2.870 0.440  3.333 0.572 0.653

Notes: This table reports the mean and standard deviation the contribution of the variance of the latent demand on the variance

of the capital gain (%) across 100 simulated time-series for the ten selected stocks.
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Additional results

B.1 Portfolio distances
Table A4: Distance between Als and benchmark across stocks, Dyaz
Panel A: IBM Panel F: GIS
Jw=1% Jw =5% Jw = 10% Jw=1% Jw=5% Jw = 10%
Diary) 647 Diaryy 647 Diaryy 647 Diary 647 Diaryy 647 Diaryy 647
- 32.139 X 46.199 68.894 - 49.215 - 56.381 . 59.467
J=1 (9.821) 0.436 (6.266) 0.146 (21.749) 0.049 J=1 (7.255) 0.550 (6.624) 0.464 (9.179) 0.411
5 5 5
J=2 (264'997026) 0.527 58056710") 0.305 égggf) 0158  J=2 (438502357) 0.558 5)3,281889) 0.507 ("44'261301) 0.453
L 2464 . 71118 163.422 . . 48133 48.945 . 49.635
J=5 (5.824) 0.596 (17.901) 0.500 (25.352) 0.395 J=5 (2.851) 0.569 (2.946) 0.548 (2.785) 0.527
Panel B: AXP Panel G: KO
Jw=1% Jw = 5% Jw =10% Jw=1% Jw=5% Jw = 10%
Dyiarpy 04 Diarp) 041 Diarp) 04 Dyiarpy 04 Diarp) 041 Diarp) 04
g 3 Q [ R 36 e
J=1 (ﬁgég) 0.400 &g;i}g) 0.100 (‘)88-728%7) 0.002 J=1 5,5'856145) 0.485 (ggég; 0.496 éggé% 0.12
45.912 55.041 69.922 34.367 29.09 41.671
J=2 (13.842) 0.580 (10.841) 0.216 (14.844) 0.058 J=2 (7.948) 0.630 (8.554) 0.396 (6.040) 0.265
42.382 o 67.197 102.235 . - 33.366 y 36.555 N 70.152 .
J=5 (4.669) 0.633 (18.759) 0.478 (36.595) 0.314 J=5 (4.307) 0.651 (12.575) 0.560 (23.476) 0.483
Panel C: ABM Panel H: L
Jw=1% Jw =5% Jw = 10% Jw=1% Jw =5% Jw =10%
Diaryy 64 Diarp) 641 Diar) 64 Dyiaryy 641 Diarb) 641 Diar) 64
36.423 57.567 111.17 40.458 56.754 . 92.412
J=1 (6.570) 0.461 (8.709) 0.328 (60.214) 0.247 J=1 (7.795) 0.499 (18.070) 0.375 (51.436) 0.292
K =4
J=2 (3()4:712471) 0.556 (345'1?:;112) 0.371 (;Z?z;) 0.199 J=2 356'207067) 0.545 (348704042) 0.425 ?605935% 0.316
33.297 35.144 44.247 34.825 35.683 52.02
J=5 (4.796) 0.609 (7.162) 0.519 (5.851) 0.428 J=5 (2.851) 0.560 (4.045) 0.527 (7.148) 0.470
Panel D: AEE Panel I: SIM
Jw=1% Jw =5% Jw = 10% Jw=1% Jw=5% Jw = 10%
Diary) 647 Diaryy 647 Diaryy 647 Diary 647 Diaryy 647 Diaryy 647
54.957 X 70.075 149.988 - 53.86 . 134.167 325.935 .
J=1 (5.373) 0.446 (1.996) 0.178 (102.827) 0.288 J=1 (7.804) 0.446 (98.111) 0.220 (305.219) 0.252
=
J=2 (554;7565) 0.605 (68‘)512(;7) 0.364 éﬁéiﬁ) 0.189 J=2 (458563261) 0.630 ggf;; 0.213 (?3253 0.032
. 53581 69.604 . 89.904 L 44.309 106.348 . 164.743 .
J=5 (4.013) 0.679 (10.592) 0.559 (12.581) 0.422 J=5 (2.881) 0.749 (19.932) 0.525 (47.128) 0.325
Panel E: WEYS Panel J: ARW
Jw=1% Jw = 5% Jw =10% Jw=1% Jw=5% Jw = 10%
Dyiarpy 07 Diarp) 04 Diarp) 04 Dyiarpy 04 Diarp 041 Diarp) 04
J=1 (481670290) 0.460 éggg; 0.351 (17097'171026) 0.269 J=1 (JQJ;J;SI) 0.521 (Zggg% 356 (i?gii) 0.091
36.654 40.419 51.167 32.557 34.021 51.154
J=2 (5.401) 0.539 (7.603) 0.377 (6.903) 0.244 J=2 (7.806) 0.632 (16.469) 0.400 (22.185) 0.229
37.213 42.27 61.873 32.764 44.495 90.615
= ] Q _ S B
J=5 (3.863) 0.617 (8.893) 0.529 (14.392) 0.448 J=5 (5.872) 0.706 (17.363) 0.583 (25.623) 0.478

Notes: This table reports the distance between the Al traders and the rational benchmark, Dyar.p) (w, J), scaled by the average

portfolio weight of the rational benchmark, 6°. Values are expressed in percentage. Standard deviation across simulations is
reported in parenthesis.
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B.2 Portfolio comparative statics in z,,

Figure A2: Portfolio policy: IBM
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Notes: This figure plots the portfolio weight of the rational benchmark (blue line), the average portfolio weight of the AI traders
#41 (orange line) and 5th-95th percentiles interval across 50 simulations (orange shaded area) and the empirical probability
density function of the sufficient statistic z, ¢ (black line) as function of z, ; for each (J, Jw) pair. The stock is IBM.
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Figure A3: Average across Als - Stock: AXP
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Notes: This figure plots the portfolio weight of the rational benchmark (blue line), the average portfolio weight of the AI traders
#A1 (orange line) and 5th-95th percentiles interval across 50 simulations (orange shaded area) and the empirical probability
density function of the sufficient statistic z, ¢ (black line) as function of zy, for each (J, Jw) pair. The stock is AXP.
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Figure A4: Average across Als - Stock: ABM
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Notes: This figure reports the portfolio weight of the rational benchmark (blue line), the average portfolio weight of the Al
traders (orange line) and 5th-95th percentiles interval across 50 simulations (orange shaded area) and the empirical probability
density function of the expected return zn,: (black line) as function of the expected return zn ¢ for each (J, Jw). The stock is
ABM.
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Figure A5: Average across Als - Stock: AEE
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Notes: This figure plots the portfolio weight of the rational benchmark (blue line), the average portfolio weight of the AI traders
#A1 (orange line) and 5th-95th percentiles interval across 50 simulations (orange shaded area) and the empirical probability
density function of the sufficient statistic z, ¢ (black line) as function of zy,: for each (J, Jw) pair.The stock is AEE.
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Figure A6: Average across Als - Stock: WEYS
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Notes: This figure plots the portfolio weight of the rational benchmark (blue line), the average portfolio weight of the AI traders
#A1 (orange line) and 5th-95th percentiles interval across 50 simulations (orange shaded area) and the empirical probability
density function of the sufficient statistic z, ¢ (black line) as function of z, ¢ for each (J, Jw) pair. The stock is WEYS.
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Figure A7: Average across Als - Stock: GIS
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Notes: This figure plots the portfolio weight of the rational benchmark (blue line), the average portfolio weight of the AI traders

#A1 (orange line) and 5th-95th percentiles interval across 50 simulations (orange shaded area) and the empirical probability
density function of the sufficient statistic z, ¢ (black line) as function of zy ¢ for each (J, Jw) pair. The stock is GIS.
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Figure A8: Average across Als - Stock: KO
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Notes: This figure plots the portfolio weight of the rational benchmark (blue line), the average portfolio weight of the AI traders
#A1 (orange line) and 5th-95th percentiles interval across 50 simulations (orange shaded area) and the empirical probability
density function of the sufficient statistic z, ¢ (black line) as function of zy,; for each (J, Jw) pair. The stock is KO.
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Figure A9: Average across Als - Stock: L
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Notes: This figure plots the portfolio weight of the rational benchmark (blue line), the average portfolio weight of the AI traders
#A1 (orange line) and 5th-95th percentiles interval across 50 simulations (orange shaded area) and the empirical probability
density function of the sufficient statistic z,,¢ (black line) as function of z, ¢ for each (J, Jw) pair. The stock is L.
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Figure A10: Average across Als - Stock: SJM
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Notes: This figure plots the portfolio weight of the rational benchmark (blue line), the average portfolio weight of the AI traders
#A1 (orange line) and 5th-95th percentiles interval across 50 simulations (orange shaded area) and the empirical probability
density function of the sufficient statistic z, ¢ (black line) as function of z, ; for each (J, Jw) pair. The stock is STM.
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Figure A11: Average across Als - Stock: ARW
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Notes: This figure plots the portfolio weight of the rational benchmark (blue line), the average portfolio weight of the AI traders
#A1 (orange line) and 5th-95th percentiles interval across 50 simulations (orange shaded area) and the empirical probability
density function of the sufficient statistic z, ¢ (black line) as function of z, ¢ for each (J, Jw) pair. The stock is ARW.
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B.3 Standard deviation of 647

Table A5: Standard deviation of 841 (zn,t) and bias

Panel A: IBM Panel F: GIS
Jw=1% Jw = 5% Jw =10% Jw=1% Jw = 5% Jw = 10%
std(047) bias std(647) bias std(017) bias std(047) bias std(647) bias std(017) bias
J=1 0.436 0.442 0.356 0.225 0.175 0.091 0.410 0.447 0.403 0.464 0.399 0.401
J=2 0.427 0.427 0.418 0.168 0.344 0.167 0.419 0.419 0.414 -0.205 0.413 -0.126
J=5 0.400 0.400 0.422 0.222 0.433 0.287 0.421 0.421 0.417 -0.191 0.412 -0.130
Panel B: AXP Panel G: KO
Jw=1% Jw = 5% Jw =10% Jw=1% Jw = 5% Jw = 10%
std(017) bias std(647) bias std(047) bias std(047) bias std(647) bias std(017) bias
J=1 0.430 0.408 0.262 0.173 0.020 0.014 0.379 0.376 0.370 0.388 0.165 0.075
J=2 0.352 0.352 0.339 0.048 0.145 -0.008 0.315 0.315 0.368 0.006 0.319 0.052
J=5 0.347 0.347 0.402 0.175 0.380 0.192 0.317 0.317 0.364 0.072 0.358 0.159
Panel C: ABM Panel H: L
Jw=1% Jw = 5% Jw =10% Jw=1% Jw = 5% Jw = 10%
std(917) bias std(647) bias std(917) bias std(947) bias std(647) bias std(917) bias
J=1 0.417 0.368 0.361 0.263 0.237 0.237 0.418 0.459 0.394 0.348 0.361 0.280
J=2 0.397 0.397 0.395 -0.050 0.313 0.011 0.432 0.432 0.419 0.009 0.397 0.098
J=5 0.387 0.387 0.411 0.000 0.418 0.080 0.427 0.427 0.418 -0.026 0.422 0.119
Panel D: AEE Panel I: SIM
Jw=1% Jw = 5% Jw = 10% Jw=1% Jw = 5% Jw = 10%
std(917) bias std(647) bias std(017) bias std(947) bias std(647) bias std(017) bias
J=1 0.386 0.342 0.306 0.173 0.254 0.254 0.441 0.555 0.326 0.353 0.181 0.253
J=2 0.342 0.342 0.380 -0.002 0.313 0.020 0.339 0.339 0.433 0.283 0.150 0.049
J=5 0.296 0.296 0.347 0.089 0.384 0.105 0.265 0.265 0.383 0.378 0.424 0.392
Panel E: WEYS Panel J: ARW
Jw =1% Jw = 5% Jw =10% Jw=1% Jw = 5% Jw = 10%
std(947) bias std(647) bias std(947) bias std(947) bias std(647) bias std(047) bias
J=1 0.423 0.467 0.377 0.400 0.352 0.316 0.402 0.612 0.391 0.482 0.271 0.183
J=2 0.409 0.409 0.411 0.044 0.399 0.123 0.346 0.346 0.408 0.315 0.413 0.292
J=5 0.369 0.369 0.410 0.089 0.412 0.219 0.286 0.286 0.354 0.283 0.400 0.371

Notes: This table reports the standard deviation of 0;?51 across 100 random realizations of state variables that leave zn
unchanged, averaged across z,,: values and simulations.

67



Table A6: Causal effect of training environment on performance, AR 1

Panel A: IBM Panel F: GIS
Jw=1% Jw = 5% Jw = 10% Jw=1% Jw = 5% Jw =10%
J—2 0.001 0.627 0.619 -0.412 0.296 1.321
(0.699) (0.291) (0.505) (0.759) (0.901) (0.816)
J=5 0.239 2.081 3.866 -0.094 0.663 2.474
(0.429) (0.689) (0.710) (0.611) (0.894) (0.827)
Panel B: AXP Panel G: KO
Jw=1% Jw=5% Jw =10% Jw=1% Jw=5% Jw =10%
J—2 0.628 -0.146 -0.272 0.405 0.106 0.601
(1.228) (0.347) (0.187) (1.997) (0.641) (0.315)
J—5 0.201 1.490 2.189 0.463 1.451 3.258
(1.008) (0.870) (1.328) (1.207) (1.072) (1.614)
Panel C: ABM Panel H: L
Jw=1% Jw =5% Jw = 10% Jw=1% Jw = 5% Jw =10%
J—2 0.208 -0.471 -0.991 -0.143 0.232 0.830
(2.050) (0.488) (0.683) (0.426) (0.558) (0.578)
J—5 0.373 0.202 0.579 -0.474 0.875 2.859
(1.139) (1.233) (0.580) (0.854) (0.613) (0.750)
Panel D: AEE Panel I: SITM
Jw=1% Jw=5% Jw =10% Jw=1% Jw=5% Jw =10%
J—2 0.362 0.610 0.232 0.499 0.349 -0.073
(1.576) (0.914) (0.497) (0.826) (0.458) (0.092)
J—s 0.426 2.018 3.156 0.671 2.593 2.882
(1.548) (1.460) (1.083) (0.723) (0.850) (1.246)
Panel E: WEYS Panel J: ARW
Jw=1% Jw = 5% Jw =10% Jw=1% Jw = 5% Jw =10%
J—9 -0.155 0.091 0.420 0.558 0.633 0.735
(1.669) (0.703) (0.464) (1.377) (0.980) (0.894)
J=5 0.381 1.260 2.758 0.563 2.045 3.802
(1.090) (1.080) (1.050) (1.659) (1.546) (1.230)

Notes: This table reports portfolio return differences between two settings: (i) an Al trader trained while competing with
J — 1 rational speculators, and (ii) an AI trader trained jointly with J — 1 AI traders in exploration mode. R* denotes the
per-period out-of-sample gross portfolio return for setting (i) averaged across episodes and simulations, and RAI denotes the
corresponding quantity for setting (ii). Then we define ARy_; = (R*/RAT — 1) x 100. Standard deviations across stocks are
reported in parentheses.
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B.4

Portfolio returns

Table A7: Portfolio returns

Panel A: IBM Panel F: GIS
Jw=1% Jw = 5% Jw =10% Jw =1% Jw = 5% Jw =10%
Al RB Al RB Al RB Al RB Al RB Al RB
-0.034 -0.139 -0.190 -4.556 -3.980 -4.407
=L 0606 2L 00s2) M oy YB3 0ees) S 0ses) T (2039 388
- 0.084 . -0.706 -0.766 -4.148 -3.561 -3.855 .
=2 gas) 25 gass Y222 hany M1 Ghemy BB (emyy 812 (g 3065
0.013 -1.967 -3.782 -4.207 -3.711 -4.410
=5 ga T oes 85 e 09 ks 52 sy M9 oy 220
Panel B: AXP Panel G: KO
Jw=1% Jw =5% Jw = 10% Jw=1% Jw = 5% Jw =10%
Al RB Al RB Al RB Al RB Al RB Al RB
-0.541 -0.410 -0.527 -0.164 -2.414 -0.273
=1 s BT gass) ISP om0 (g 468 ol 2041 TS 2267
-0.962 -0.308 -0.120 -0.640 -0.097 -0.797
=2 ey 1B g UL (oamm BT (ag0) A5 (heny 3BT (o) 1848
-0.817 -1.711 -2.251 -0.462 -1.076 -3.194
=5 om0 PO s MU oy MO0 gy M09 (e 1609 o 1153
Panel C: ABM Panel H: L
Jw=1% Jw = 5% Jw = 10% Jw=1% Jw = 5% Jw =10%
Al RB Al RB Al RB Al RB Al RB Al RB
o -0.729 -1.290 . -2.918 . 0.278 -1.056 -2.490 .
=g T R M g 316 ey 4364 OGg 2010 g 2504
-1.036 -0.115 -0.183 0.622 0.267 -0.723
— C g C .
=2 sy TN a0z 390 gary 2700 g AT (ghey L9 g 1563
-1.079 -0.844 -1.601 0.861 0.007 -2.132
=5 e O o B0 s 2% 0mm P9 omsy LT gers 04
Panel D: AEE Panel I: STM
Jw=1% Jw = 5% Jw = 10% Jw = 1% Jw = 5% Jw = 10%
Al RB Al RB Al RB Al RB Al RB Al RB
- -1.773 . -0.978 -3.940 -0.620 -1.593 -4.084
=1 om0y P93 ors) 3T sy FH0 0 (orse) 22T (a360) MO (5sg9) MY
. -2.240 . -1.466 -0.924 -0.829 . -0.677 -0.193
=2 Thm o P sy 270 ousy SB oren 200 usy) Y28 goom L6
_ -2.396 . -2.799 -3.373 -1.004 -2.633 -2.925
=5 e AT (e 239 oon 12 hms 1892 ga 0969 AL LI
Panel E: WEYS Panel J: ARW
Jw=1% Jw = 5% Jw = 10% Jw=1% Jw = 5% Jw =10%
Al RB Al RB Al RB Al RB Al RB Al RB
-0.523 -1.655 -2.636 -0.184 -1.577 -0.269
=L gry AOI8 ghemy 2762 gy 2185 o 3T oY 22m gt L8
-0.420 -0.160 -0.570 -0.439 -0.426 -0.845
=2 0en) M ey BT asn 62 (o 35 (o L6 iy L
-0.662 -1.095 -2.495 -0.681 -1.643 -3.578
=5 s M oo B ooy OB ooy BT (s W06 (p) 082

This table reports information on average per-period out-of-sample gross portfolio returns for (i)
the rational benchmark (R?) and (ii) the AI case (R?'), averaged across episodes and simulations.

We report the deviation of Al returns from the benchmark, defined as

Aarp = (RM/RP —1) x 100, and the benchmark’s average net percent return r* = (R’ — 1) x 100.
Standard deviations across stocks are reported in parentheses.
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B.5 Market outcomes

Table A8: Market efficiency (as A % from ME(J = 0))

Panel A: IBM (ME(J =0) = 0.942)

Panel F: GIS (ME(J = 0) = 0.665)

Jw=1% Jw = 5% Jw =10% Jw=1% Jw = 5% Jw = 10%
Al RB Al RB Al RB Al RB Al RB Al RB
_ 1.377 2.517 1.778 1.227 . 4.606 . 3.779 o
=1 oy VT e B2 (s 386 ohm W61 (hgy 5B (nh o 5758
1455 3.973 3.269 1.015 . 4894 . 6.585
=2 0hee M0 (ggmy  AIB onny AIT6 e BB e B8R oy T3
1.367 4.514 3.552 0.990 4.652 7.284
—R B7E |4
=5 oo M6 gy AT ghen A2 (ghog LB Tl G040 ol 7989
Panel B: AXP (ME(J = 0) = 0.080) Panel G: KO (ME(J = 0) = 0.967)
Jw=1% Jw = 5% Jw =10% Jw=1% Jw =5% Jw =10%
Al RB Al RB Al RB Al RB Al RB Al RB
1.698 2.475 0.137 0.810 2.744 3.550
=gy 2 Gsem O oees P oaey M2 ges AT o 01
1.520 4.372 2.675 0.833 3.420 4.901
=2 geon 2T Uy TOSU e TSSE i LI GOl AT oo 6197
1.540 6.029 6.046 0.837 3.467 5.587
=5 g 2 ey 7T gman S gy M6 (oo 4SO RO 6737
Panel C: ABM (ME(J = 0) = 0.962) Panel H: L (ME(J = 0) = 0.958)
Jw=1% Jw =5% Jw =10% Jw=1% Jw =5% Jw =10%
AT RB Al RB AT RB Al RB Al RB Al RB
2.097 6.874 7.625 0.788 0.896 -0.824
=1 onrey 2T (oaggy 1064 (UL 1388 Do LESL e 2658 (oo 2658
2.030 8.744 . 10.382 0.653 1.431 0.619
=2 s 2TH gms U gorg 16098 g L6 32 R0 32wl
_ 1.964 9.284 . 16.243 0.557 . 1.928 0.135
=5 gangy 2TH gy ILSB2 s 17495 (VO LSTS ool 8T 1 874
Panel D: AEE (ME(J = 0) = 0.985) Panel I: SJM (ME(J = 0) = 0.995)
Jw=1% Jw =5% Jw =10% Jw=1% Jw =5% Jw =10%
Al RB AT RB Al RB Al RB Al RB Al RB
1.532 3.581 ) 4.214 1.243 3.687 3.258
=) 2 Gmg 0067 gy MLl Ls60 G 4Tss (TR 507
1.294 5.278 5.499 1.042 4.550 . 5.459
=2 gy 286 (g MU0 s MO e LsT G BAIE R 6T
1.151 5.126 7.099 0.897 4.317 . 6.597
= omie 2T Cosn U sy BB oas U gme TM oy 68
Panel E: WEYS (ME(J = 0) = 0.975) Panel J: ARW (ME(J =0) =0.979)
Jw =1% Jw = 5% Jw = 10% Jw=1% Jw =5% Jw = 10%
Al RB Al RB Al RB Al RB Al RB Al RB
1.249 3.625 i 4.647 . 0.631 . 2.192 3.483 .
=1 sy WS0E (Yo GI6T Gqig 6950l 2816 ol 10882 U 16927
1.251 4.947 . 6.219 0.701 2.649 . 4.410 .
=2 oo VTP ey 8 ohay M gz 2T (e 1238 (g 19213
1.114 5.062 . 7.830 0.645 2.869 5.095 -
= omn VT ey T omay BT omim 2TP sy 20T (g 2025

Notes: This table reports average market efficiency across stocks. Market efficiency is defined as the share of return variance
that is unpredictable given the public information set I, ¢, as in Eq. (21). Panel A shows the percentage deviation from baseline
market efficiency with only the representative investor, i.e., M E(J = 0), for both the AI case and the rational benchmark (RB).
Panel B reports the difference between the rational benchmark and Al traders’ deviations from baseline. For each (n,J, Jw)
triple, we compute the average out-of-sample market efficiency for each simulation, then take the average across simulations.
Standard deviation across simulations is reported in parenthesis.
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Table A9: Average empirical market efficiency (as A% from ME(J = 0))

Panel A: AME(J, Jw)

Jw=1% Jw = 5% Jw = 10%
AT RB AT RB AT RB
11 0.283 0.337 0.787 1.131 0.812 1.278
(0.236) (0.270) (0.552) (0.601) (0.683) (0.646)
J—o 0.238 0.330 1.109 1.289 1.380 1.606
(0.251) (0.270) (0.806) (0.703) (1.043) (0.787)
s 0.207 0.324 1.102 1.371 1.827 1.833
(0.244) (0.268) (0.876) (0.773) (1.106) (0.875)
Panel B: AMEA (J, Jw) - AMERB(J, Jw)
Jw=1% Jw = 5% Jw =10%
J=1 -0.054 -0.344 -0.466
J=2 -0.092 -0.18 -0.226
J=5 -0.117 -0.269 -0.006

Notes: This table reports the average market efficiency across stocks, ME&, defined as the 1 — R? from regressing excess returns
Ry 141 0n mez’t and xy , ; . Entries in Panel A report the average percentage deviations of Al trader or rational agents from
the baseline market efficiency with representative investor only AME(J, Jw), i.e. from ME(J = 0). Standard deviation across
stocks is reported in parenthesis. Panel B reports the difference in the average percentage deviation between the Al traders
and rational agents of AME(J, Jw).
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Table A10: Liquidity, £

Panel A: IBM Panel F: GIS
Jw=1% Jw = 5% Jw =10% Jw=1% Jw = 5% Jw = 10%
Al RB Al RB Al RB Al RB Al RB Al RB
- 0.594 B 1.201 0.852 0.245 . 0.611 -0.595
=1 oqes) SO gggey MIST O gidg LI (T 0501 2.172 (0.961) 3.068
-~ 0.615 B 1.887 0.580 - 0.281 . 0.930 -1.649
=2 goon SN ooy WL sy PO g 0B oo 2267 () ers) 3.608
0.572 1.167 -0.045 0.247 1.042 -2.297
—R |4 4 4
J=5 (0.094) 5.014 (0.815) 17.474 (0.507) 18.696 (0.052) 0.519 (0.253) 2.289 (0.804) 3.925
Panel B: AXP Panel G: KO
Jw=1% Jw =5% Jw =10% Jw=1% Jw =5% Jw =10%
AT RB Al RB AT RB AT RB AT RB AT RB
0.960 1.422 0.075 0.404 0.727 1.059
J=1 (0.236) 3.652 (0.812) 9.360 (0.364) 9.507 (0.103) 2.670 (0.548) 9.922 (0.362) 10.980
0.860 2,713 1.390 0.325 1.201 0.065
=2 o) P2 (gags  ISS0 (Tgp 12T oh 272 oo ILISS ol 14500
0.864 1.750 0.282 0.313 0.435 -0.554
J=5 (0.146) 3.532 (1.526) 13.496 (1.339) 15.760 (0.073) 2.733 (0.637) 11.771 (0.569) 17.176
Panel C: ABM Panel H: L
Jw=1% Jw = 5% Jw =10% Jw=1% Jw =5% Jw =10%
Al RB Al RB AT RB Al RB AT RB Al RB
0.878 1.882 . 0.618 0.311 0.653 0.255
= om0 (oson 3.936 (Lse2) 492 o6 2 (gm0 1004 gy 12:290
0.842 2.798 0.928 . 0.319 0.955 0.086
J=2 (0.215) 0.965 (0.632) 4.303 (1.086) 6.231 (0.036) 2.197 (0.207) 11.032 (0.346) 15.673
0.815 1.512 -0.401 0.320 0.813 -0.359
—r
J=5 (0.111) 0.968 (0.879) 4.423 (0.504) 6.980 (0.032) 2.179 (0.340) 11.371 (0.309) 17.719
Panel D: AEE Panel I: STM
Jw=1% Jw =5% Jw =10% Jw=1% Jw =5% Jw =10%
Al RB Al RB Al RB Al RB Al RB Al RB
0.536 . 1.312 0.548 0.545 o 0.738 . -0.159 -
J=1 (0.135) 2.175 (0.223) 8.523 (0.766) 9.993 (0.172) 6.667 (0.606) 13.052 (0.586) 13.052
0.444 1.454 0.635 0.439 i 1.828 0.624
=2 ey 20 (07my 9.551 0609 1295 (gony 0408 gy 17433 n 17494
0.394 . 0.059 -0.434 0.347 .. 1.277 -0.215 )
J=5 (0.123) 2.076 (0.996) 9.999 (0.687) 14.904 (0.111) 6.323 (0.833) 21.280 (1.213) 21.796
Panel E: WEYS Panel J: ARW
Jw = 1% Jw = 5% Jw = 10% Jw = 1% Jw = 5% Jw = 10%
Al RB Al RB Al RB Al RB Al RB Al RB
. 0.508 s 1.056 0.702 0.383 0.778 0.840
=Uogaon 2P0 (s 8.832 Os02) 1027 g I (ghag  TLMT gy 18T
0.495 1.541 0.270 0.336 0.968 0.315
=2 om0 s 9.845 Os19) 131 gYgg M ey 13104 (R0 15837
. 0.438 s 0.960 -0.458 0.283 0.289 -0.548
=5 goss) 22 sam 02T (g 0T ghgm 3105 (Tyg  MAISS RS 1907

Notes: This table reports average market liquidity across stocks. Liquidity is measured as the price impact of a 1% supply
shock, as defined in Eq. (22). Al represents the market liquidity level with AT traders. RB denotes the average liquidity level of
the rational benchmark. Entries are multiplied by 100. For each (n, J, Jw) triple, we compute the average out-of-sample market
liquidity for each simulation, then take the average across simulations. Standard deviation across simulations is reported in
parenthesis.
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Table A11: Volatility, o(R)

Panel A: IBM Panel F: GIS
Jw=1% Jw =5% Jw = 10% Jw=1% Jw=5% Jw = 10%

Al RB AT RB AT RB AT RB AT RB Al RB
J=1 ((())16173?) -0.856 (0112333) -1.647 ((?fgg) -1.651 ((?f’;f) -1.379 (&fgf) -5.459 (39658;) -7.522
J=2 ((?07;% -0.852 (0130267) -2.001 (012535) -2.024 ((())385& -1.369 (0142387) -5.657 ((?éf’g) -8.413
J=5 ((?fg;) -0.840 (0211581) -2.209 (0127;57) -2.288 ((())35272) -1.359 (_&.'24;);) -5.724 (532"5) -8.807

Ju=1% e ]lgw ié(;: Jw =10% Ju=1% Pan.‘;i;ci: 51020 Jw =10%

AT RB AT RB AT RB AT RB AT RB AT RB
J=1 (gfggg) -1.238 (0162601) -2.810 (8526;) -2.845 (é)fgf) -0.771 (3527292) -2.568 ((};j??) -2.761
J=2 ('8'27:(?) -1.242 (026111;) -3.363 (35593) -3.499 (5)15% -0.769 (323:?10) -2.806 (031155) -3.387
J=5 ( 8 17 fg) -1.242 ( g;fg) -3.667 ( 02 '2858) -3.955 ( 8 141912) -0.764 ('02_ 32(?07) -2.890 ( 3 ffj) -3.770

Jw=1% o (Jjw A:]?‘%I Jw = 10% Jw=1% Pagzlf;‘;; Jw = 10%

Al RB Al RB Al RB Al RB Al RB Al RB
T R T S T TR T AR
J=2 (‘8'2955) -1.348 ('61_'21205) -5.231 (’f_gf;) -7.188 (_861411;) -0.551 ('01_'16??% -2.298 (’02"13% -2.962
J=5 (‘8 '19265) -1.343 ('35’033) -5.323 (07 ;f; -7.746 ('8 '043126) -0.544 ('01_'162910) -2.318 (’02_'16512) -3.208

Jw=1% el R) f153‘7};3 Jw = 10% Jw=1% Pan?LI::i:‘I%M Jw = 10%

Al RB Al RB Al RB Al RB Al RB Al RB
J=1 (0017 6587) -1.408 (0117;13) -4.682 (1220;3) -5.273 (35’1951) -0.806 ('3';24;1) -1.303 (8:33) -1.303
J=2 (’8'26;??) -1.401 (02358357) -5.132 (;f;;) -6.348 ('g'f’f;) -0.795 (_3'178027) -1.601 (55’% -1.601
J=5 (’8'1577& -1.395 (_02,?5% -5.311 (5’23175) -6.964 {8.()2337;) -0.779 ('3'1935;) -1.816 (’(())_'50;% -1.820

Ju=1% e ]?Jwvzlizfis Jw = 10% Jw=1% Pane}; ;jzf/iw Jw = 10%

Al RB Al RB Al RB Al RB Al RB Al RB
J=1 (31@21:) -0.889 (015758) -2.948 (02725‘77) -3.305 (é)f’g;’) -0.772 (&;fg) -2.312 (015555) -2.423
J=2 (é)f';f) -0.876 (52‘9’525) -3.243 (02315) -3.974 ((?15;;) -0.754 (53155) -2.603 (022)211) -2.940
J=5 ((())fgf) -0.868 (5§;§) -3.355 (Sff);) -4.332 (é)f;;) -0.743 (Oggs% -2.740 (521;15’) -3.249

Notes: This table reports average return volatility across stocks. Panel A shows the percentage deviation from baseline return
volatility with only the representative investor, i.e., ME(J = 0), for both the Al case and the rational benchmark (RB). Panel
B reports the difference between the rational benchmark and Al traders’ deviations from baseline. For each (n,J, Jw) triple,
we compute the average out-of-sample return volatility for each simulation, then take the average across simulations. Standard
deviations across simulations are reported in parentheses.
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