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Abstract

Depositors in the 2023 bank runs belonged to close-knit communities. We show

that clustering of information within each community fuels runs. We let depositors

within a community observe nearly identical signals about their bank in an otherwise

standard global game of bank runs. Each depositor believes that fewer others would

run given a higher fundamental. Information clustering shrinks this negative covari-

ance between the fundamental and the proportion of runners from each depositor’s

perspective, making depositors more inclined to run—and more so where they cluster

into fewer communities. Yet, clustering is privately optimal. Our model implies that

geographic ring-fencing exacerbates run risk while branching mitigates it, and further

rationalizes ambiguity in regulators’ disclosures.
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1 Introduction

Depositors at the banks that suffered runs in 2023 belonged to close-knit communities,

which exposed them to clustered information sources. Silicon Valley Bank’s (SVB) depositors

in technology leaned heavily on their venture capitalists for first-hand financial information,

the Signature Bank’s depositors on firms in law, real estate, and also in cryptocurrency, and

the Silvergate Bank’s on cryptocurrency firms. During the Panic of 1930, small rural banks

were hit especially hard; their depositors—predominantly local agricultural workers—relied

on local newspapers, word of mouth, and farmers’ markets for information. Does information

clustering fuel bank runs?

We model information clustering in an otherwise standard global game of bank runs. A

bank’s depositors are partitioned into several communities. Signals are clustered within a

community, in that depositors in a community observe nearly identical signals about the

bank’s fundamental. We show that clustering makes depositors strictly more inclined to

run, and more so as depositors cluster into fewer, larger communities. Despite fueling costly

runs, clustering is privately optimal.

Underlying our results is a negative covariance between the fundamental and the pro-

portion of runners from a depositor’s perspective, in that she believes fewer other depositors

would run conditional on a higher fundamental. Clustering into fewer communities gradually

shrinks this negative covariance. As depositors in a community observe and act on virtually

the same signal, that signal screens off the true fundamental from inferring the proportion

of them who run: Their consensus reality obscures the underlying truth for forecasting their

behavior. Given fewer communities, a depositor’s signal screens off the fundamental from

the proportion of runners in her increasingly larger community.

The negative covariance results in fewer others running when the fundamental is higher,

which is precisely the state of the world where each runner inflicts greater damage to the

bank’s payoff and thus also to another depositor’s willingness to stay. By gradually atten-

uating of this negative covariance, clustering therefore monotonically lowers the depositor’s

expected willing to stay.

Our results imply that geographic ring-fencing strengthens information clustering and
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exacerbates runs, while bank branching information clustering across depositors and miti-

gates runs. Beyond banking, ambiguity in regulators’ disclosures amplifies the covariance

between the fundamental and the strategic states for market participants who face strategic

complementarity, steering them toward the socially efficient action.

1.1 Bank Runs with Information Clustering

We partition a continuum of depositors at a bank into K equal-sized communities. Each

depositor observes a signal about the bank’s fundamental θ, subject to an error common

to all depositors in her community and an infinitesimal idiosyncratic noise specific to that

depositor. The remaining setup is an otherwise standard global game of bank runs.1 Upon

observing her signal, every depositor may choose to run or stay. A depositor has a stronger

incentive to run if a larger proportion n of others do so (strategic complementarity) or if

the fundamental θ is lower (state monotonicity). We assume a general payoff function, only

requiring the strategic complementarity to strengthen with the fundamental.

1.2 Clustering Induces More Runs

A unique equilibrium exists, in which every depositor runs whenever her signal is below an

equilibrium threshold θ∗K . The community error and the idiosyncratic noise together generate

strategic uncertainty, which global games require for equilibrium uniqueness. Specifically, the

marginal depositor, whose signal is at the threshold θ∗K , is uncertain about the proportion

of runners in other communities because she does not know how their community errors

compare to her own. She is also uncertain about the proportion of others running in her own

community because she does not know how their idiosyncratic noises compare to her own.

The model nests a standard global game with no clustering as the limiting case of infinitely

many communities, in that limK→∞ θ∗K = θ∗∞, where θ∗∞ is the equilibrium threshold of the

standard global game. As the depositors cluster into fewer communities, the threshold θ∗K

strictly increases: Depositors become more inclined to run.

1Diamond and Dybvig (1983) pioneered the literature on bank runs. Carlsson and Van Damme (1993)
originated global games as an equilibrium selection theory. Morris and Shin (1998) started the applied
literature, introducing global games to currency attack. Goldstein and Pauzner (2005); Rochet and Vives
(2004) applied them to bank runs.
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Clustering induces more runs by decorrelating fundamental θ and the proportion n of

runners for the marginal depositor without affecting her perception about either of them.2

Consider two extreme cases—the standard case case of no clustering (K = ∞) and maxi-

mum clustering, where all depositors cluster into a single community (K = 1)—both from

the marginal depositor’s perspective. With no clustering, θ and n move in lockstep in oppo-

site directions: A higher fundamental implies that fewer others will observe a signal below

threshold θ∗∞ and run. With maximum clustering, all depositors act on virtually the same

signal, that signal alone is a sufficient statistic—and the true fundamental contains no in-

cremental information—for the marginal depositor to infer others’ actions and thus n. With

no clustering, the perfect negative covariance between θ and n results in the smallest pro-

portion n of runners when fundamental θ is the highest, which is precisely in the state of

the world where each runner inflicts the most damage to the bank’s payoff and thus also to

the depositor’s willingness to stay. Maximum clustering eliminates this negative covariance,

reducing the depositor’s willingness to stay relative to no clustering. Between these two

extreme cases, clustering of depositors into one fewer community increasingly decorrelates

θ and n for the marginal depositor, because her signal screens off θ from the proportion of

runners in her own, now larger, community. Figure 1 illustrates how clustering decorrelates

θ and n for the marginal depositor.

Through depositors’ greater propensity to run, clustering raises the social cost of runs in

all fundamental states, and strictly so ex ante. Despite so, clustering is privately optimal,

in that it is weakly dominant for a depositor to observe her community signal even if every

depositor could choose to observe an idiosyncratic signal instead. The community signal

dominates the idiosyncratic signal by almost certainly revealing the action of other depositors

choosing to observe virtually the same community signal.

2We will show that the marginal depositor’s belief about n is always Uniform(0, 1) for any number
K ∈ [1,∞] of communities, extending the classic Laplacian property. A depositor’s posterior belief about θ
given any signal does not depend on K either.
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Figure 1. An empirical distribution of (θ, nK) from the marginal depositor’s perspec-
tive, where σ = 1, and ε ∼ Uniform(−1

2 ,
1
2).
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1.3 Normative Implications

Our results imply that geographic ring-fencing exacerbates the risk of bank runs, whereas

inter-state branching mitigates it. Geographic ring-fencing segregates the balance sheets

of the bank’s various national subsidiaries. This segregation increases the risk of runs as

each national subsidiary has a more clustered depositor base than the conglomerate bank

as a whole, even if all national subsidiaries perfectly hedge their idiosyncratic asset risks

in financial markets through synthetic risk transfers using credit derivatives or loan sales

using securitization. Inter-state branching diversifies a bank’s depositor base, which reduces

information clustering across depositors and reduces the risk of runs.

1.4 Ambiguous Disclosure

Beyond bank runs, a different application of our model rationalizes ambiguity in regu-

lators’ disclosure. Starting with our model’s canonical version of no clustering, K = ∞,

we introduce a planner who chooses and commits ex-ante to a level of ambiguity in disclos-

ing fundamental θ. We map the ambiguity level to the signals’ noise level, in that a more

ambiguous disclosure leads to greater idiosyncratic interpretation errors across agents. The

model implies that some level of ambiguity is optimal. Ambiguity has two countervailing

effects on an agent’s incentive to take the efficient action: It augments the agent’s funda-

mental uncertainty, and amplifies the covariance between the fundamental and the strategic

states from the agent’s perspective. A positive level of ambiguity optimally trades off agents’

aversion to fundamental uncertainty against their desire for the covariance, and induces the

lowest threshold for them to take the efficient action. This result also extends to any number

K > 1 of communities.

1.5 Contributions

In summary, (i) we uncover an inherent covariance between the fundamental and the

strategic states from each agent’s perspective in coordination games. This covariance is a

general property of all coordination games, yet never exploited in existing papers. This

covariance steers the agent’s choice toward an action that is consistent with a better funda-
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mental under general payoff functions. (ii) We propose common information as a mechanism

that shrinks this covariance. This mechanism fundamentally differs from the classic concept

of diversification and other mechanisms. (iii) We introduce a framework for studying com-

mon information in global games. The framework organically separates the commonality

and the accuracy of information. (iv) In this framework, our mechanism generates a unique

and clean result: Common information steers agents’ choices to an action that is consistent

with a lower fundamental. This result answers a basic question: What information structure

induces fewer agents to choose an inefficient action (running on a bunk, underinvesting in a

project, not rolling over a debt, attacking a currency, etc.)?

The rest of the paper proceeds as follows. Section 2 builds a model of information

clustering upon the classic global game of bank runs. Section 3 shows how clustering induces

more runs by decorrelating the fundamental and the mass of runners from the marginal

depositor’s perspective. Section 4 presents normative implications. Section 6 delineates our

contributions.

2 Bank Runs with Information Clustering

We model information clustering in an otherwise standard global game of bank runs.

Section 2.1 presents the model and Section 2.2 explains our modeling assumptions.

2.1 Clustering in a Global Game

Our model’s only departure from a standard global game is its signal structure. A bank’s

unit mass of depositors, each indexed by i ∈ [0, 1] and holding one unit of demand deposit,

are partitioned intoK equal-sized communities. Each depositor i in community k = 1, . . . , K

observes a private signal about the bank’s fundamental θ,

xK,i = θ + σεk + δνi,

where σεk is a common error that all depositors in community k are exposed to and δνi is an

idiosyncratic noise of depositor i. Fundamental θ follows a uniform distribution U(
¯
θ, θ̄). The
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community error εk has a cumulative distribution function (CDF) F (ε). The idiosyncratic

noises νi has a CDF G(ν). Both CDFs F and G are continuous and have support
[
−1

2
, 1
2

]
.

All random variables
(
θ, (εk)k=1,...,K , (νi)i∈[0,1]

)
are appropriately independent so that the

exact law of large numbers and Fubini’s theorem hold.3 We fix the magnitude σ > 0 of the

community bais and consider a vanishingly small idiosyncratic noise, δ → 0.

What remains is a standard global game. Upon observing her signal, each depositor

may choose to run or stay. Her willingness to stay v(θ, n) (the payoff differential between

staying and running) is strictly increasing in θ (state monotonicity), weakly decreasing in

the proportion n of runners (strategic complementarity), and for any n1 < n2,

v(θ, n1)− v(θ, n2) is weakly increasing and not constant in θ. (1)

Assumption 1. The range [
¯
θ, θ̄] of fundamentals is sufficiently wide so there exist θL ≥

¯
θ+σ

and θU ≤ θ̄ − σ such that v(θL, 0) < 0 and v(θU , 1) > 0.

Runs are socially costly, incurring a deadweight cost c(θ, n) that is increasing and weakly

convex in the proportion n of runners.

2.2 Discussion

Information clustering. A community is a social network with common professional,

residential, or cultural traits.4 The community error σεk captures the fact that depositors

in a community receive common information about their bank’s fundamental from clustered

sources or overlapping social connections. Such information also encompasses exogenous

communication to the depositors that explicitly allows them to coordinate their run decisions.

For example, many venture capitalists advised their clients to withdraw their deposits from

SVB in the early hours of its bank run. Information clustering assumes that each depositor

3“Appropriately independent” means essentially pairwise independent—for a continuum of random
variables—defined in Duffie and Sun (2007).

4In the old days, communities were largely shaped by geographic proximity due to limited communication
technology. Today, users cluster in private groups or echo chambers through messaging applications or online
platforms (Cookson, Engelberg, and Mullins, 2023; Cookson, Lu, Mullins, and Niessner, 2024b). Empirically,
Kelly and Ó Gráda (2000) identify a depositor community as then-recent Irish immigrants coming from the
same county of origin in Ireland, Iyer and Puri (2012) as depositors sharing the same introducer when
opening their bank accounts or the same neighborhood of residence in India.

7



is still free to make her own run decision upon receiving such information. It excludes the

case where a venture capitalist makes the run decisions on behalf of her clients.5

We restrict attention to communities of equal size to avoid any effect coming from het-

erogeneous run thresholds. It is known that such heterogeneity in global games reduces runs

by inducing a beneficial negative assortative matching between equilibrium run thresholds

and the perceived proportion of others running: A marginal depositor who has a higher run

threshold—and who thus is more vulnerable to runs—perceives fewer runners (Dai, Luo, and

Yang, 2024; Goldstein, Kopytov, Shen, and Xiang, 2024). With equal-sized communities, we

make sure that our results are not driven by heterogeneous run thresholds, as our deposi-

tors are homogeneous and thus will all have an identical run threshold. Instead, we vary the

number K of communities to show how clustering into fewer communities induces more runs.

When varying K, we also keep all other parameters constant to avoid contaminating effects.

For example, we fix the magnitude σ of each signal’s error. Appendix B shows that this

choice—rather than fixing the aggregate information of all signals—prevents the mechanical

effect of a depositor’s fundamental uncertainty on her run behavior.

Idiosyncratic noise. We assume a vanishingly small idiosyncratic noise δνi to avoid equi-

librium multiplicity, similar to how the standard noisy observations technology of global

games ensures equilibrium uniqueness as in Morris and Shin (2003). Without δνi, multiple

equilibria would arise for example with K = 1 community, because all depositors would

observe precisely the same signal. One can interpret the idiosyncratic noise as an individual

depositor’s cognitive noise in perceiving θ + σεk (Frydman and Nunnari, 2024).

Depositor’s willingness to stay. The strategic complementarity and state monotonicity

are standard in global games (Frankel, Morris, and Pauzner, 2003). The additional property

(1) that the strategic complementarity strengthens with the fundamental maps to the fact

that each additional runner inflicts greater damage to the bank’s payoff and thus also to

another depositor’s willingness to stay when the bank could otherwise generate a higher

5In our equilibrium, depositors in a community will endogenously make identical run choices almost
surely, aligned with the finding of Kelly and Ó Gráda (2000); Iyer and Puri (2012).
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payoff.6 A class of such willingness to stay is v(θ, n) =
∑

h Rh(θ)uh(n) − 1, where Rh(θ) is

the expected return of the bank’s asset h, uh(n) is the amount of funds invested in h after

fulfilling the early withdrawals by a given proportion n of runners, and 1 is a depositor’s

initial deposit that she receives back if she runs. Such a v(θ, n) can accommodate: i) a

downward jump at certain n to capture the forced liquidation of an indivisible asset when

the proportion n of runners crosses above a critical value; ii) a kink at certain n to reflect the

switch into the liquidation of a different type of asset, as an asset with a greater liquidation

cost would make v(θ, n) decline faster in n; or iii) a flat range in n where no costly liquidation

occurs.

Common distributional and parametric assumptions in global games. Global

games often focus on the limit where noises vanish. Our community error stays away from

the limit, σ > 0, so that a depositor is uncertain about fundamental θ, allowing us to exploit

the covariance between θ and n from a depositor’s perspective. Doing so requires us to

assume a uniform prior on θ, which global games with non-vanishing noises need for equi-

librium uniqueness (Morris and Shin, 2003).7 Assumption 1 is standard and necessary for

equilibrium uniqueness.8

Social cost of runs. Runs cause harm beyond the bank, its depositors, and other imme-

diate stakeholders. The social cost c(θ, n) of runs arises from (a) forced liquidations of the

bank’s investments to outside investors, who are less efficient than the bank in managing the

investments (Shleifer and Vishny, 1992; Kiyotaki and Moore, 1997), or who need to raise

costly capital in a frictional financial market;9 and (b) the loss of the bank’s franchise value

(Drechsler et al., 2023). The social cost is needed only for our Proposition 4.

6Here, the bank’s payoff may include its probability of project success (Diamond and Dybvig, 1983;
Goldstein and Pauzner, 2005), deposit franchise value (Drechsler, Savov, Schnabl, and Wang, 2023), lending-
relationship values (Chang, Cheng, and Hong, 2023), etc.

7Otherwise, the posterior 1
σf(

xi−θ
σ ) of θ depends on its prior’s parameters, on which additional conditions

are needed for uniqueness.
8Under Assumption 1, it is a dominant strategy for depositor i to run upon observing a low signal

xi ≤ θL − σ
2 , and to stay if xi ≥ θH + σ

2 . In the intermediate region xi ∈ (θL − σ
2 , θU + σ

2 ), Assumption 1
ensures that the depositor’s posterior about θ is sufficiently far away from and not truncated by its upper
and lower boundaries, θ and θ̄.

9Frictions include information asymmetry (Myers and Majluf, 1984) or agency costs (Jensen and Meckling,
1976).
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3 Clustering Induces More Runs

This section establishes our equilibrium results and delineates their driving mechanism.

(i) The model’s unique equilibrium is a switching equilibrium, where depositors run upon

observing a signal below a run threshold (Proposition 1). (ii) Our model nests a standard

global game of bank runs without information clustering (Proposition 2). (iii) Information

clustering raises the equilibrium run threshold, and more so as depositors cluster into fewer,

larger communities (Theorem 1). Clustering fuels runs by decorrelating the fundamental

and the run proportion for the marginal depositor. (iv) The social cost of runs rises with

a higher degree of clustering in all fundamental states of the world, and strictly so ex-ante

(Proposition 4). (v) Despite so, clustering is privately optimal: It is weakly dominant for a

depositor to observe her community signal even if every depositor could choose to observe

an idiosyncratic signal instead (Proposition 5).

3.1 Equilibrium

Proposition 1 (Unique equilibrium). A unique equilibrium surviving iterative strict dom-

inance exists. In equilibrium, every depositor i runs if and only if her signal is below a

threshold, xK,i < θ∗K, where θ∗K solves the indifference condition

E [v(θ, nK) |xK,i = θ∗K ] = 0, (2)

and nK =
∫
i∈[0,1] 1 (xK,i < θ∗K) di is the proportion of depositors observing a signal below θ∗K.

The indifference condition (2) says that the marginal depositor, whose signal is at the

threshold θ∗K , is indifferent between staying and running. We introduce the idiosyncratic

noise νi to avoid equilibrium multiplicity. Without νi, all depositors in a community would

observe an identical signal θ+σεk and may choose any arbitrary action simply based on the

self-fulfilling belief that others within the same community are choosing that action. The

indeterminacy of a depositor’s belief about the proportion of runners in her own community

may lead to multiple equilibria. Adding an idiosyncratic noise νi to θ+σεk pins down which

within-community belief will prevail in equilibrium, similar to how global games resolve the
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indeterminacy of beliefs by adding a private noise to the fundamental (Morris and Shin,

2003). Proposition 1 holds for communities of arbitrary sizes and any willingness to stay

v satisfying the usual state monotonicity and strategic complementarity (more precisely,

any v(θ, n) that strictly increases with θ and weakly decreases with n). All proofs are in

Appendix A.

As a benchmark, we consider the limiting case of K = ∞ communities, each comprising

only one depositor. In this case, the community noise εk effectively becomes idiosyncratic

and our model then intuitively approximates a standard global game without clustering,

where each depositor i observes signal

xi = θ + σεi, εi
iid∼ F.

(The other noise δνi is vanishingly small and can be removed without affecting the signal

structure.) This canonical global game has a unique equilibrium, whose run threshold θ∗∞

satisfies

E[v(θ, n∞) |xi = θ∗∞] = 0,

where n∞ =
∫
i∈[0,1] 1 (xi < θ∗∞) di. The next result formalizes this intuitive approximation.

Proposition 2 (Benchmark of no clustering). As the number of communities goes to infinity,

K → ∞, the equilibrium run threshold converges to the one without information clustering,

θ∗K → θ∗∞.

Proposition 2 shows that our setup nests the standard global game without clustering as

the limiting case of infinitely many small communities, K → ∞.10 This result allows us to

study the effect of information clustering on the equilibrium run threshold θ∗K by changing

the number K of communities, starting from K = ∞ (no clustering) to smaller K (greater

clustering).

10Proposition 2 holds for any payoff v satisfying strategic complementarity and state monotonicity.
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3.2 Clustering Makes Depositors More Inclined to Run

Our main result establishes that information clustering makes depositors more inclined

to run, and more so as depositors cluster into fewer communities.

Theorem 1 (Main result). The equilibrium run threshold θ∗K strictly and monotonically

increases as the number K of communities decreases.

We explain Theorem 1 in three steps. (A) Information clustering does not affect the

marginal depositor’s belief about either fundamental θ or the proportion nK of runners.

(B) Instead, clustering impacts her joint belief in (θ, nK) by decorrelating the two. (C) The

decorrelation lowers the depositor’s expected willingness to stay and raises her run threshold.

(A) The marginal depositor is uncertain about both fundamental θ and the proportion

nK of runners. Clustering does not affect the depositor’s posterior belief about fundamental

θ, which is always 1
σ
f
(
x−θ
σ

)
for a given signal realization x, regardless of the degree of

clustering, K ∈ [1,∞]. The next results shows that her belief about nK (strategic belief) is

always uniform regardless of K. We let D denote “distribution.”

Proposition 3 (Strategic belief is Laplacian). The marginal depositor’s belief about the

proportion nK of runners is uniform, D(nK | xK,i = θ∗K) = U(0, 1).

Proposition 3 generalizes the Laplacian property to clustered signals, and holds for any

payoff v satisfying strategic complementarity and state monotonicity. With a uniform prior

on θ and an infinitesimally small idiosyncratic noise, δ ≪ 1, each signal xK,i = θ+ σεk + δνi

is uninformative about its community error εk and idiosyncratic noise νi, thus also about its

rank rK,i =
∫
j∈[0,1] 1 (xK,j < xK,i) dj among all signals. Hence, the average of the threshold

types’ strategic beliefs coincides with the average rank distribution of all signals and therefore

is uniform on [0, 1](Laplacian).11 These strategic beliefs are symmetric and therefore must

all be Laplacian.

(B) Instead, clustering impacts the marginal depositor’s joint belief in (θ, nK) by decor-

relating the two. To see how, we first compare the case of no clustering, K = ∞, to the other

11Precisely,
∫
i∈[0,1]

P (nK ≤ n |xK,i = θ∗K) di =
∫
i∈[0,1]

P (rK,i ≤ n |xK,i = θ∗K) di =
∫
i∈[0,1]

P (rK,i ≤ n) di

= E
∫
i∈[0,1]

1 (rK,i ≤ n) di = En = n. One can show that the average strategic belief is Laplacian for

communities of any sizes, which extends the belief constraint in Sákovics and Steiner (2012) to arbitrarily
clustered signals.
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extreme case of maximum clustering where all depositors belong to the same community,

K = 1.

In the standard case of no clustering (K = ∞), θ and nK have the perfect Spearman

rank correlation of −1, in that know one is equivalent to knowing the other, and a higher θ

is equivalent to a smaller n∞. Precisely, given fundamental θ, the exact law of large number

implies that n∞—the proportion of depositors observing a signal less than the threshold

signal θ∗∞—is deterministic and equal to F
(

θ∗∞−θ
σ

)
. Here, fundamental θ is a sufficient

statistic for knowing nK ,

D(nK | xK,i, θ) = D(nK | θ) when K = ∞.

In the other extreme case of maximum clustering (K = 1), all depositors act on virtually

the same signal, that signal screens off the true fundamental θ from the proportion nK of

them who run:

D(nK | xK,i, θ) = D(nK | xK,i) when K = 1.

More precisely, each signal xK,i is the sum of θ + σεk and an idiosyncratic noise δνi. Thus,

θ + σεk is a sufficient statistic for signals (xK,i)i∈[0,1], about which the true fundamental θ

contains no incremental information,

D
(
(xK,i)i∈[0,1] | θ + σεk, θ

)
= D

(
(xK,i)i∈[0,1] | θ + σεk

)
when K = 1.

Upon an almost perfect observation of θ + σεk, with only an infinitesimally small error

δνi, depositor i cannot extract any additional information from the true fundamental θ for

learning the proportion nK of those signals that fall below certain threshold.

(C) The complete decorrelation between θ and nK from the perspective of the marginal

depositor lowers her expected willingness to stay and raises her run threshold. For illustration

only, we set v(θ, n) = R(θ)u(n)−1. If the opposite were true, θ∗1 ≤ θ∗∞, the marginal depositor
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with maximum clustering would strictly prefer to run,

0 = E [v(θ, n∞) |xi = θ∗∞]

> E [R(θ) | xi = θ∗∞]E [u(n∞) |xi = θ∗∞]− 1

≥ E [R(θ) | x1,i = θ∗1]E [u(n1) |x1,i = θ∗1]− 1 (if θ∗1 ≤ θ∗∞)

= E [v(θ, n1) |x1,i = θ∗1] .

The first inequality follows because with no clustering, the perfect negative covariance be-

tween θ and n∞ results in the smallest proportion n∞ of runners when fundamental θ is the

highest, which is precisely the state of the world where each runner inflicts the most damage

to the bank’s payoff and thus also to the depositor’s willingness to stay. Therefore, the de-

positor’s expected willingness to stay is higher than if the fundamental θ and the proportion

n∞ of runners were independent for her.12

Between these two extreme cases, the equilibrium run threshold θ∗K monotonically in-

creases with the number K of communities. An intermediate degree of clustering partially

decorrelates nK from θ for the marginal depositor, and increasingly so with fewer communi-

ties. To see how, we write the proportion nK of depositors running as the simple average of

the proportion nK,ℓ of those running in each of the K communities,

nK =
1

K

K∑
ℓ=1

nK,ℓ,

The marginal depositor’s signal screens off fundamental θ from the proportion nK,k of runners

in her own community,

D(nK,k | xK,i, θ) = D(nK,k | xK,i),

because all within-community depositors act upon virtually the same signal. With fewer

communities, the within-community proportion nK,k carries a larger weight 1/K in the over-

all proportion nK , and the marginal depositor’s signal increasingly screens off θ from nK .

Figure 1 jointly simulates (θ, nK) according to the marginal depositor’s belief and illustrates

12The second inequality follows because Rh(θ) is weakly increasing for all h and the strategic belief remains
Laplacian with any number K of communities.
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how clustering gradually decorrelates the two.

A higher degree of clustering shrinks the negative covariance between θ and nK and

thus lowers the marginal depositor’s expected willingness E [v(θ, nK) |xK,i = θ∗K ] to stay as

a function of θ∗K . Illustrating with v(θ, n) = R(θ)u(n)− 1,

E [R(θ)u(nK) |xK,i = θ∗K ]

= Cov [R(θ), u(nK) |xK,i = θ∗K ]︸ ︷︷ ︸
declines with clustering

+E [R(θ) | xK,i = θ∗K ]E [u(nK) |xK,i = θ∗K ]︸ ︷︷ ︸
unaffected by clustering (Proposition 3)

.

Through depositors’ greater propensity to run, clustering raises the social cost of runs in

all fundamental states of the world, and strictly so ex ante.

Proposition 4 (Social cost of runs). As the number K of communities decreases, (i) the

expected cost E [c(θ, nK) | θ] of runs conditional on any given fundamental θ weakly increases,

and (ii) the ex-ante cost E [c(θ, nK)] strictly increases.

Clustering monotonically raises the equilibrium run threshold θ∗K (Theorem 1), thereby

increasing—given any fundamental θ—each depositor’s probability P(xK,i < θ∗K | θ) of run-

ning and the expected mass E(nK | θ) of runners. Clustering also leads to a more volatile

nK =
∑K

ℓ=1 nK,ℓ/K given any θ, because depositors in each community either all run or

all stay, nK,ℓ = 0 or 1 almost surely. Together, clustering results in a higher expected cost

E[c(θ, nK) | θ] of runs in any fundamental state θ of the world.

How large is the impact of clustering? In a numerical example, moving from K = 2 to

K = 1 community is equivalent to a downward shift of 4.17% in the bank’s return in terms

of raising the ex-ante cost of runs (Appendix C).

3.3 Clustering is Privately Optimal

This section shows that clustering is privately optimal despite being socially inefficient.

Depositors are partitioned into K communities. To our global game, we add a period

0 where every depositor simultaneously chooses between observing in period 1 either xK,i
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defined in Section 2.1 or an idiosyncratic signal

x̃K,i = θ + σε̃i + δνi,

where ε̃i ∼ F and all random variables
(
θ, (εk)k=1,...,K , (ε̃i)i∈[0,1], (νi)i∈[0,1]

)
are appropriately

independent. All depositors’ choices become common knowledge at the end of period 0. In

period 1, each depositor chooses to run or stay upon observing a realization of her chosen

signal, with a willingness to stay v(θ, n).

The next result shows that it is weakly dominant for every depositor to choose her xK,i.

Proposition 5. The extended game has a unique equilibrium surviving iterative weak domi-

nance. On the equilibrium path, every depositor chooses to observe her xK,i, and runs if and

only if xK,i < θ∗K.

Proposition 5 holds for communities of any arbitrary sizes and any v satisfying the usual

strategic complementarity and state monotonicity. To model clustering as an endogenous

outcome, the extended game gives every depositor the alternative choice of an idiosynchratic

signal x̃K,i that is equally informative about the fundamental as xK,i. Choosing xK,i is to

cluster with all others in her community who choose their xK,j, while choosing idiosyncratic

signal x̃K,i is to not cluster with anyone else. If no depositor chooses to cluster, a standard

global game with no clustering follows. If all depositors choose to cluster, signals are clustered

in K communities. Between these two extreme outcomes, signals could be clustered in

arbitrary proportions µ1, . . . , µK , with the remainder unclustered. Proposition 5 shows that

it is optimal for every depositor to cluster regardless of others’ choices.

Signal xK,i dominates idiosyncratic signal x̃K,i because xK,i is more payoff relevant and

allows a depositor to make a more informed run decision. Specifically, xK,i almost surely

reveals the run decision of all others in her community who choose to cluster (as long as xK,i

is not at the threshold θ∗K). In contrast, x̃K,i contains no information about anyone’s run

decision conditional on fundamental θ.
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4 Normative Implications

Our results imply that geographic ring-fencing strengthens clustering and exacerbate runs

even if , while bank branching reduces information clustering across depositors and mitigates

runs.

4.1 Ring-fencing

Geographic ring-fencing segregates the balance sheets of a large bank’s various national

subsidiaries.13 Academic work and policy discussions exploit the premise that different

subsidiaries’ assets have significantly heterogeneous risk exposure and geographic ring-fencing

impedes asset diversification and risking sharing across subsidiaries. However, the presence

of a highly integrated and efficient financial market can mitigate or even eliminate this

heterogeneity, because the national subsidiaries—especially of a large conglomerate bank—

may hedge the local risks of their loan portfolios through synthetic risk transfers using credit

derivatives or loan sales using securitization. Our mechanism does not rely on heterogeneous

risk exposure across subsidiaries’ assets, and a frictionless financial market cannot remove

information clustering across individual depositors. Even if the subsidiaries’ assets perfectly

hedge away their local risks and therefore are exposed to a common risk factor, ring-fencing

undermines bank stability by raising the risk of runs as each national subsidiary has a more

clustered depositor base than the conglomerate bank as a whole.

Our model incorporates geographic ring-fencing as follows. Initially, a bank operates K1

and K2 branches in two countries, respectively. Each branch has a unit mass of depositors,

each holding one unit of demand deposit.14 The bank and its depositors are characterized by

our model with parameters (
¯
θ, θ̄, σ, δ, v,K1+K2), where a community maps to a branch where

depositors receive common information about the bank’s fundamental. Ring-fencing by both

13Examples of geographic ring-fencing rules include the Intermediate Holding Company rule for foreign
bank in the U.S. and U.K. Ring-fencing Regime. The incentive for host country regulators to ring-fence is
to ensure the maximum amount of funds remain in the host country to ensure local depositors, creditors,
and other stakeholders are paid first. Ring-fencing is different from China Walls implemented between key
affiliates within a bank conglomerate. China walls are internal information barriers (Lee, Nathan, and Wang,
2024), whereas ring-fencing imposes no such barrier.

14Aguirregabiria, Clark, and Wang (2016) find that the dispersion of deposit sizes across branches remained
low throughout their sample period of 1976–2006.
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countries segregates the balance sheets of the two national subsidiaries. Both subsidiaries

have the same fundamental θ, which represents the state of their identical asset portfolios

after their local risks are hedged away in financial markets. Therefore, ring-fencing entails

neither loss in asset diversification nor risk sharing between the two subsidiaries, and each

subsidiary m is described by the same parameters (
¯
θ, θ̄, σ, δ, v,Km) except the number it

operates Km branches. Corollary 1 shows that ring-fencing exacerbates runs in any state of

the world.

Corollary 1. Conditional on any fundamental θ, the total mass of runners on the two ring-

fenced subsidiaries first-order stochastically dominates that on the consolidated bank with no

ring-fencing, with the dominance being strict for θ ∈
(
θ∗K − σ

2
, max{θ∗K1

, θ∗K2
}+ σ

2

)
.15

Ring-fencing make depositors more inclined to run because each national subsidiary has

a higher degree of information clustering across depositors (Theorem 1).

4.2 Bank Branching

The U.S. banking system has historically been highly fragmented, with a large number

of small, local banks. It has also faced numerous bank runs over the years. Reviewing

banking panics during pre-Federal Reserve episodes, Calomiris and Gorton (1991) argue

that local banking exacerbates bank fragility. Further supporting their concern are the

approximately 5,000 failuresof primarily unit banks during the Great Depression, as well

as the more than 2,900 failures of mostly small thrifts during the savings-and-loan crisis

(1980-1995). Additionally, international evidence suggests that countries with extensive

bank branching experience significantly fewer bank panics (Grossman, 1994).

The key factor preventing the geographic expansion of U.S. banks were long-standing

restrictions on interstate branching. The restrictions ended with the passage of the Riegle-

Neal Interstate Banking and Branching Efficiency Act in 1994. The Act triggered a wave of

bank consolidation and the emergence of major national banks. Despite the consolidation,

15We follow the common definition of the first-order stochastic dominance, thatX stochastically dominates
Y if P(Y ≤ x) ≤ P(X ≤ x) for all x ∈ R (Mas-Colell, Whinston, and Green, 1995, p. 195 and Shaked and
Shanthikumar, 2007, p. 3). If the inequality holds strictly for all x, we say that the dominance is strict.
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a significant number of community banks continue to operate locally (Aguirregabiria et al.,

2016). Whether local banking harms bank stability remains a relevant question today.

The existing theoretical literature focus on how branching affects bank fragility through

the bank’s asset risk. However, the direction of this effect is ambiguous. Branching helps

diversify a bank’s idiosyncratic loan risk, while increasing systemic risk (Wagner, 2010).

Both predictions find empirical support through the staggered interstate deregulation, which

provides an exogenous source of variation for branch expansion.16

Our results contribute a funding-side mechanism through which branching enhances sta-

bility. Our model incorporates branching in the same way as it incorporates ring-fencing,

except that the two “national subsidiaries” become two banks in two different states that

are allowed to merge by the Riegle-Neal Act. The assumption that the two banks have the

same θ turns off any effect arising from asset diversification upon the merger. Corollary 1

implies that the merger unambiguously reduces bank fragility by declustering depositors and

making them less inclined to run in all states of the world—without any countervailing ef-

fect. Diversification of funding operates through a mechanism that is fundamentally different

from diversification of assets, resulting in its unambiguous benefit. Section 6 explains this

difference.

5 Ambiguous Disclosure

The covariance between the fundamental and the strategic states is universal to coordina-

tion games. To prove its generality, we develop another application that is beyond clustering

and bank runs. The application rationalizes ambiguity in regulators’ disclosures.

Regulators’ disclosures about the state of the economy are usually open to a wide range

of interpretations across different audiences, despite the public’s universal aversion to uncer-

tainty. One example is central banks’ use of “fragmented” communication channels: Individ-

ual officials often deliver their own economic assessments at various conferences and outlets,

leading distinct communities of market participants to receive differing messages. Existing

16Goetz, Laeven, and Levine (2016) find that geographic bank expansion diversifies exposure to idiosyn-
cratic local loan portfolio risk, while Chu, Deng, and Xia (2020) find that branching leads to increased
systemic risk measured as the change in conditional value at risk.
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literature rationalizes coarse disclosure, in that the disclosed information is not subject to

alternative interpretations yet may be consistent with multiple states.17 Relatively few stud-

ies consider ambiguity, and they show that ambiguity per se harms efficiency (Morris and

Shin, 2007; Goldstein, Ozdenoren, and Yuan, 2011, Proposition 9).

A comparative statics of our model implies that some level of ambiguity is optimal.

Ambiguity augments an agent’s fundamental uncertainty and amplifies its covariance with

her strategic uncertainty. An interior level of ambiguity optimally balances agents’ aversion

to fundamental uncertainty against their desire for uncertainty covariance, and induces the

lowest threshold for them to take the efficient action.

We start with our model’s canonical version of no clustering, K = ∞, and introduce a

planner who chooses and commits ex-ante to a level of ambiguity in disclosing fundamental θ.

We map the ambiguity level to the noise level σ, in that a more ambiguous disclosure allows

for greater idiosyncratic interpretation errors across agents. An agent chooses whether to

invest in the economy, and her willingness to invest is v(θ, n) = R(θ)u(n)− 1, where u > 0,

R > 0, and R is concave in θ and an agent is averse to fundamental uncertainty. For

tractability, we assume a quadratic R and a noise distribution F symmetric around 0. The

resulting model is a classic global game, in which the planner chooses the ambiguity level σ

to minimize the equilibrium threshold θ∗∞.

We decompose an agent’s expected payoff gain from taking the efficient action into her

17Crawford and Sobel (1982) initiated the cheap-talk literature, showing that the equilibrium degree of
revealed information is decreasing with the preference misalignment between the sender and the receiver.
Morris and Shin (2002) show that a more accurate public signal could induce a less efficient outcome in
a model of beauty contest. Kamenica and Gentzkow (2011) introduced Bayesian persuasion, allowing to
determine the optimal disclosure rule that a sender can commit to. Faria-E-Castro, Martinez, and Philippon
(2017) study the optimal disclosure accuracy that trades off the risks of bank runs and adverse selection in
financial crises (jointly with the optimal fiscal backstop). Goldstein and Leitner (2018) examine the optimal
disclosure rule in stress tests that maximizes risk sharing among banks.
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aversion to fundamental uncertainty and desire for uncertainty covariance,

E [v(θ, n)|xi = θ∗∞] = σR′(θ∗∞)

∫ 1

0

(
−F−1(p)

)
u(p) dp

+ σ2R
′′(θ∗∞)

2

∫ 1

0

(
F−1(p)

)2
u(p) dp

+R(θ∗∞)

∫ 1

0

u(p) dp− 1︸ ︷︷ ︸
unaffected by ambiguity

.

The first term captures the desire for uncertainty covariance. It is positive and increases

with a greater level of ambiguity σ. The second term captures the aversion to fundamental

uncertainty. It is negative and decreases with σ. An interior σ optimally trades off these

two countervailing effects. Proposition 6 formalizes this comparative statics and generalizes

the result to any number K of communities.

Proposition 6. If K > 1, the equilibrium threshold θ∗K first strictly decreases and then

strictly increases in σ. If K = 1, then θ∗K strictly increases with σ > 0.

With a finite number K of communities, depositors in a community are subject to a

common interpretation error σεk, where σ is the overall ambiguity level of the disclosure.

Maximum clustering (K = 1) differs from other cases because it fully decouples the two

uncertainties. There, the aversion to fundamental uncertainty dictates the entire effect of

ambiguity, which is then always negative.

The left panel of Figure 2 illustrates Proposition 6. The right panel illustrates the case

of a linear R, which assumes away the aversion to the fundamental uncertainty. Therein,

the desire for uncertainty covariance dictates the effect of ambiguity, which is then always

positive.

6 Contributions

This concluding section discusses how information clustering differs from related mecha-

nisms, and then our contributions to related literature.

21



Panel A. Quadratic R(θ)
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Panel B. Linear R(θ)
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Figure 2. The equilibrium threshold θ∗K as a function of the ambiguity level σ. In

the graph, εk ∼ Uniform
(
−1

2 ,
1
2

)
, v(θ, n) = R(θ)

(
1− n

B+1

)
− 1 with B = 0.5, R(θ) = 1 + θ (right

panel), and R(θ) = 0.5625 + 2θ − 0.25θ2 (left panel). These parameters are chosen so that θ∗ at
σ = 0 is the same in both panels.

6.1 Related Mechanisms

We find that the lack of funding diversification raises run risk through depositors receiving

clustered information. In general, that a lack of diversification increases risk is well know.

One might wonder if information clustering repackages a known mechanism of diversification.

Below, we discuss whether asset diversification or other mechanisms can generate our main

result: The downside risk rises while the upside risk falls—ubiquitously so in any relevant

state of the world and unambiguously so with no countervailing effect.

Asset diversification

Asset diversification reduces portfolio return risk by canceling out the idiosyncratic risk

across assets. Lack of asset diversification cannot generate our main result: (a) Lack of asset

diversification increases both the downside and the upside risks of the portfolio return, raising

the second moment—the volatility—of the return. Both risks move in lockstep because

diversification is a statistical property that cannot change an individual asset’s return, and

thus cannot change the first moment—the expectation—of the portfolio return. (b) While

diversification benefits a portfolio manager by smoothing her utility across future states

of the world, she may choose to forgo diversification if she possesses superior information

about which future state is more likely to occur. (c) Although diversification reduces the

22



volatility of a portfolio return, it raises the systemic risk of returns across portfolios.18 The

net benefit depends on how a social preference weighs the two types of risks. In contrast to

diversification, information clustering (a’) raises the first moment of the mass of runners (b’)

in all relevant fundamental states, and (c’) has no countervailing effect—all because each

depositor strategically becomes more inclined to run.

Sectoral liquidity shocks

Depositors may experience exogenous liquidity shocks that force them to withdraw early,

and these shocks are more likely to be correlated among depositors from the same sector or

location. In theory, exogenous and sectoral liquidity shocks function like undiversifiable risk

in asset returns, and thus have similar effects on the bank as the lack of asset diversification.

In practice, capital regulations require banks to hold sufficient short-term assets to meet

early withdrawals caused by such exogenous liquidity shocks at any given time.

Deposit concentration

Information clustering differs from the concentration of deposits among a few large depos-

itors. Corsetti, Dasgupta, Morris, and Shin (2004) show that the presence of a large trader

facilitates coordination and makes all small traders more inclined to attack a currency. If

applied to bank runs, their mechanism would imply that the presence of a large depositor

mitigates runs—rather than fueling runs—because a successful coordination means to stay

in the bank-run application but to attack in the currency-attack one.

6.2 Related literature

We make four contributions to the literature. (i) We uncover an inherent covariance

between the fundamental and the strategic states in coordination games. This covariance is

a general property of all coordination games, yet never exploited in existing papers. This

covariance steers the agent’s choice upward, to an action that is consistent with a higher

fundamental, under general payoff functions. (ii) We propose common information as a

mechanism that shrinks this covariance. (iii) We introduce a framework for studying common

18Acemoglu, Ozdaglar, and Tahbaz-Salehi (2015) illustrate how diversification raises systemic risk in credit
networks, and Goldstein et al. (2024) do so in a bank run setting.
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information in global games. The framework ensures equilibrium uniqueness and organically

separates the commonality and the accuracy of information. (iv) In this framework, our

mechanism generates a unique and clean result: Common information steers agents’ choices

toward an action that is consistent with a lower fundamental. This result answers a basic

question: What information structure induces fewer agents to choose an inefficient action

(running on a bunk, underinvesting in a project, not rolling over a debt, attacking a currency,

etc.)?

We discuss these contributions’ relevance to three strands of literature.

Public information in games with strategic complementarity or substitutability

The literature closest to our paper examines the effect of public information in games with

strategic complementarity or substitutability, such as beauty contests, investment spillovers,

and business cycles (Angeletos and Pavan, 2007, provide a unifying analysis; other examples

include Morris and Shin, 2002; Vives, 1990; Angeletos and Pavan, 2004; Hellwig, 2005; Morris

and Shin, 2007; Woodford, 2003; Myatt and Wallace, 2014). In these papers, every agent re-

ceives a public signal and an equally precise private signal about the fundamental. Angeletos

and Pavan (2007) show that agents’ forecast errors about the fundamental are symmetrically

correlated, and refer to the correlation as information commonality. A higher precision of

public signal raises the commonality of agents’ information, akin to how clustering raises the

scope of the common information in our model. (i) Constrained by tractability, this litera-

ture is limited to quadratic payoffs. In such a payoff function, the interaction term between

the fundamental and the actions of other agents does not depend and thus has no bearing

on the agent’s own action choice. As a result, the restrictive assumption of quadratic payoffs

suppresses the role of the inherent covariance between the two. (ii) Further, our mechanism

that common information shrinks this covariance cannot exist in this literature. (iii) The

precision of the public information also affects the accuracy of agents’ information, resulting

in a mixed net effect. In our framework, varying the number K of communities changes

the commonality but not the accuracy, leading to a clean result. In addition, K has a clear

applied interpretation as how widely information is clustered across agents. (iv) Angeletos

and Pavan (2007) and Myatt and Wallace (2014) show that a change in commonality (for
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given accuracy) affects only the second moment of agents’ equilibrium actions, similar to

how it raises the volatility of the proportion nK of runners in our model. In our model,

commonality also steers every agent’s equilibrium action strictly downward conditional on

any relevant fundamental. This effect on the first moment is absent in the literature, where

a change in commonality has no impact on the expectation of an agent’s equilibrium action

(Angeletos and Pavan, 2007, p.1136, E k = EK = Eκ; conditional on the fundamental,

E(k|θ) = κ(θ); Myatt and Wallace, 2014, Proposition 1, E(pℓ|θ) = θ). Our result shows

that a suboptimal information structure not only can make agents’ actions more dispersed

or volatile, it can also induce more agents to choose an inefficient action.

Endogenous information acquisition in quadratic-payoff coordination games

Another strand of literature considers endogenous information acquisition in quadratic-

payoff coordination games (Hellwig and Veldkamp, 2009; Myatt and Wallace, 2012, and

their follow-up papers). To this literature, (i), (ii), and (iv) remain to be our contributions.

Contribution (iii) is not applicable, as this literature is not concerned with the effect of

common information. Rather, it studies how agents endogenously cluster in their information

choices, giving rise to common information. Replacing (iii) is (iii’) our Proposition 5, which

extends their main result to global games and general payoffs.

Global games

Unlike the above coordination games with quadratic payoffs, a global game would have

multiple equilibria had there been common knowledge of its fundamental. Incorporating

common information to a generic global game is challenging because such information allows

agents to coordinate their choices and thus threatens equilibrium uniqueness. For example,

letting any community of agents observe a semi-public signal xk = θ + σεk that is common

within that community would result into a model similar to ours. However, such a model

may have multiple equilibria.19 Within the range of parameters where equilibrium is unique,

“[t]he comparative statics of the precision of public information reveal complex effects that

arises from the interplay between better fundamentals information and shifts in strategic

19Morris and Shin (2003, 2004); Hellwig (2002); Metz (2002); Dahleh, Tahbaz-Salehi, Tsitsiklis, and
Zoumpoulis (2016) derive conditions for equilibrium uniqueness and multiplicity in the presence of com-
mon information.
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uncertainty.” (Morris and Shin, 2002). In a global game of regime change with endogenous

acquisition of private information, Ahnert and Kakhbod (2017) obtains a unique switching

equilibrium under certain parametric conditions, and show that the precision of a public

signal (for a given realization of the public signal) shrinks the range of failure if the realization

is high and expands the failure range if the realization is low (Ahnert and Kakhbod, 2017,

Proposition 4). Still, “the effect of improving the quality of public information ex ante on

the probability of a financial crisis ex post is ambiguous.” (Ahnert and Kakhbod, 2017,

p.2149).20

An exception that overcomes these challenges is Goldstein et al. (2011), which obtains

a unique linear symmetric threshold equilibrium and generates a clean set of results on the

effect of information commonality in a model of currency attack. Goldstein et al. (2011) show

that the information commonality raises the volatilities of agents’ equilibrium actions. Here,

we derive a clear distinction of our main result: The expected size of the currency attack

remains constant with the information commonality in Goldstein et al. (2011), whereas the

expected proportion of runners strictly increases with the commonality in our model. In

Goldstein et al. (2011), each speculator observes two signals about about some fundamental

θ: an idiosyncratic one si = θ+ σsεi and another one spi = θ+ σpεp + σhηi that shares some

common noise component εp. The precision of the correlated signal is 1/(σ2
p + σ2

h), and the

commonality between the correlated signals of any two speculators is σ2
p/(σ

2
p + σ2

h). Each

speculator chooses whether to attack a currency. The central bank observes the size A of

the attack and a signal sb about θ, and decides whether to maintain its currency peg whose

net value is θ. In equilibrium, EA depends on the precisions 1/σ2
s and 1/(σ2

p + σ2
h) but not

on the commonality σ2
p/(σ

2
p + σ2

h) of the signals.21 Relative to Goldstein et al. (2011), our

model reveals a new effect of common information: (iv) The commonality impacts not only

20The main result of Ahnert and Kakhbod (2017) is that endogenous acquisition of private information
amplifies the impact of the realization (not the precision) of the public signal.

21Using the expression of T given in Goldstein et al. (2011, p.269, Definition 1),

EA = EΦ(T ) = E
∫ ∞

−∞

(∫ ∞

−∞
g(θ + σsε, θ + σpεp + σhη) φ(η) dη

)
φ(ε) dε

=

∫ ∞

−∞

∫ ∞

−∞

(∫ ∞

−∞
g(θ + σsε, θ + σpεp + σhη) φ(η) dη

)
φ(ε) dεφ(εp) dεp

=

∫ ∞

−∞

(∫ ∞

−∞
g
(
θ + σsε, θ +

√
σ2
p + σ2

h εph

)
φ(η) dη

)
φ(εph) dεph.
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the second moment but also the first moment of every agent’s equilibrium action by steering

the action strictly downward conditional on any relevant fundamental.

Bank runs

Our paper contributes to the theoretical literature motivated by the 2023 Regional Bank

Crisis. Drechsler et al. (2023); Haddad, Hartman-Glaser, and Muir (2023) study the impact

of rising interest rates on deposit franchise value and bank runs. Jiang, Matvos, Piskorski,

and Seru (2024) show how mark-to-market asset losses and large shares of uninsured deposits

could lead to a “solvency run.” Chang et al. (2023) propose a model where banks better at

risk taking attract more uninsured depositors. Our model can accommodate these channels

by mapping the fundamental to the bank’s deposit franchise value, mark-to-market asset

value, and lending relationship values, respectively.

Our results are also relevant to the empirical literature on the role of public signals in

triggering the 2023 bank runs. Cookson, Fox, Gil-Bazo, Imbet, and Schiller (2024a); Cipriani,

Eisenbach, and Kovner (2024) show that banks with higher social media attention or publicly

traded stock are associated with a higher likelihood of stress and experience significantly

higher deposit outflows.22 Our theory shows that greater information commonality across

depositors makes them more inclined to run, which explains these empirical findings.

The same property holds in a model variant in Goldstein et al. (2011, Appendix B).
22Cipriani et al. (2024) also show that the concentration of uninsured depositors predicts a bank run

even after controlling for the fraction of uninsured deposits in the total bank funding. Koont, Santos, and
Zingales (2024); Benmelech, Yang, and Zator (2023) show that digital banking can increase the speed of
deposit outflows during a run.
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Appendices

A Proofs

[omitted]
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B Constant Fundamental Uncertainty σ

This appendix shows that our main result is exclusively driven by the negative covariance

between fundamental θ and the proportion nK of runners.

We keep each depositor’s fundamental uncertainty σ constant while varying the number

K of communities. One concern is that fewer communities mechanically leads to less aggre-

gate information (xk,i)k=1,...,K about fundamental θ. We show that (1) if we were to keep

constant the aggregate uncertainty (instead of the individual uncertainty) about θ, then the

equilibrium run threshold would increase even faster with fewer communities, due to the

negative covariance (Corollary 2). (2) the aggregate uncertainty about θ is irrelevant for the

run threshold (Proposition 7 Part (i)), (3) the individual fundamental uncertainty σ matters

for run threshold θ∗K , and thus should be kept constant as K varies (Proposition 7 Part (ii)).

To show (1), we turn off any effect of uncertainties (individual or aggregate) about fun-

damental θ by assuming that v(θ, n) =
∑

hRh(θ)uh(n), where all Rh(θ) are linear in θ. With

linear Rh, neither uncertainty about θ per se is relevant for the expected willingness to stay,

because depositors are neutral to the uncertainty. Our model allows for such a v and all

our results holds in this special case. In particular, with fixed individual fundamental uncer-

tainty σ, θ∗K increases with fewer communities (Theorem 1). If we were to keep constant the

aggregate uncertainty about θ, we would need to let the individual fundamental uncertainty

σK increase in K. Corollary 2 shows that the equilibrium run threshold would increase even

faster with fewer communities.

Corollary 2. If the willingness to stay is v(θ, n) =
∑

h Rh(θ)uh(n) where Rh(θ) is linear for

all h, and the expected community error is 0, E εk = 0, and each depositor’s fundamental

uncertainty decreases when the number of communities declines from K+1 to K, σK+1 > σK,

then equilibrium threshold increases by more than if σK+1 had stayed constant,

θ∗K(σK)− θ∗K+1(σK+1) > θ∗K(σK+1)− θ∗K+1(σK+1).

Proof. Corollary 2 follows from Theorem 1 and Lemma 1.
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Lemma 1. If v(θ, n) =
∑

hRh(θ)uh(n) where Rh is linear for all h, and the expected com-

munity error is 0, E εk = 0, then equilibrium threshold θ∗K is strictly decreasing in σ for any

K ∈ [2,∞].

Proof. It follows from the definition ?? of πK that

πK(x, x)

=
∑
h

E[Rh(θ) |xK,i = x]E[uh(nK(x)) |xK,i = x] +
∑
h

Cov [Rh(θ), uh(nK(x)) |xK,i = x] .

The second term is strictly positive for any K ∈ [2,∞], and for every h,

Cov
[
Rh(θ), uh(nK)

∣∣∣xK,i = x
]

= Cov

[
Rh

(
x− σεk(i)

)
, uh

(∫ 1

0

1
{
εk(i) + νi < εk(j) + νj

}
dj

) ∣∣∣xK,i = x

]
= σCov

[
Rh

(
x− εk(i)

)
, uh

(∫ 1

0

1
{
εk(i) + νi < εk(j) + νj

}
dj

)]
.

Thus, the second term is strictly increasing in σ. The first term does not depend on σ,

because E[Rh(θ) | xK,i = x] = Rh(x) and E[uh(nK(x)) |xK,i = x] =
∫ 1

0
uh(n)dn. Taken

together, πK(x, x) is strictly increasing in σ. Since x 7→ πK(x, x) is strictly increasing in x

(??) and πK(θ
∗
K , θ

∗
K) = 0, θ∗K is strictly decreasing in σ.

Lemma 1 and thus Corollary 2 are driven exclusively by our mechanism: A decline of σ

shrinks the negative covariance between θ and nK , reducing the expected willingness to stay

and pushing up the equilibrium run threshold θ∗K .

To show (2) and (3), we turn off the effect of the negative covariance by assuming v(θ, n) =

R(θ)+u(n). With such an additive form, the expected willingness to stay E [v(θ, nK) |xK,i] =

E [R(θ) |xK,i]+E [u(nK) |xK,i] does not depend on the negative covariance between θ and nK .

Neither does the equilibrium run threshold. In this case, the run threshold is constant in K

if we fix the individual fundamental uncertainty σ, despite a varying aggregate uncertainty

as K changes (Proposition 7 Part (i)). In contrast, Part (ii) implies that the run threshold

generically changes with K if we fix the aggregate uncertainty instead of the individual
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uncertainty about θ.

Proposition 7. If the willingness to stay is v(θ, n) = R(θ) + u(n) where R(θ) is strictly

increasing in fundamental θ and u(n) is weakly decreasing in the proportion n of runners,

then the model has a unique equilibrium surviving iterated deletion of dominated strategies,

which is a switching equilibrium. (i) The equilibrium run threshold does not depend on the

number K of communities. (ii) The equilibrium run threshold is increasing in σ if R is

concave, decreasing if R is convex, and constant if R is linear.

Proof. The proof of Proposition 1 applies here, because it does not use the functional form of

v(θ, n). It implies that the unique equilibrium is a switching equilibrium, and the equilibrium

threshold θ∗K solves the indifference condition E [v(θ, nK) |xK,i = θ∗K ] = 0, which expands as

0 = E [R(θ) | xK,i = θ∗K ] + E [u(nK) |xK,i = θ∗K ] = E [R(θ) | xK,i = θ∗K ] +

∫ 1

0

u(n)dn,

The first term is a function, that does not depend on K, of θ∗K . Therefore, θ∗K does not

depend on K.

Proposition 7 shows that the aggregate uncertainty about the fundamental is irrelevant

for the equilibrium run threshold. It is the individual fundamental uncertainty that matters:

A change in the individual fundamental uncertainty σ would push up or down the run

threshold depending on depositors’ aversion to the fundamental uncertainty as captured by

the concavity R—an effect that Section 3 turns off by keeping σ constant.
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C Benchmarking the Impact of Deposit Clustering

How large is the impact of clustering in raising the real cost of liquidation? This section

benchmarks this impact against that of a reduction in the quality of the bank’s assets.

Proposition 8. An increase in the degree of deposit clustering from K to K−1 communities

raises the ex-ante social cost E c(θ, nK) of runs by weakly more than a downward shift of

θ∗K−1 − θ∗K in the fundamental’s prior distribution.

Proposition 8 states that clustering into one fewer community is equivalent to a reduction

of at least θ∗K−1 − θ∗K in the bank’s fundamental in terms of raising the expected liquidation

cost from runs. Clustering raises the equilibrium run threshold by θ∗K−1 − θ∗K , which has the

same impact on the mass of runners as lowering the fundamental by the same magnitude.

Having one fewer community also makes the mass of runners more volatile, further raising

the liquidation cost.

In a numerical example, moving from K = 2 to K = 1 community is equivalent to a

reduction of 4.17% in the project’s return. We let v(θ, n) = (1 + θ)
(
1− n

B+1

)
− 1, σ = 1,

ε ∼ Uniform
(
−1

2
, 1
2

)
, and define p(θ, θ∗K) =

1
2
+ θ∗K − θ.

The marginal depositor’s indifference condition is

1 = E[v(θ, n(θ∗K)) |xK,i = θ∗K ]

=
1

σ

∫ θ∗K+σ
2

θ∗K−σ
2

(1 + θ)E
[
1− nK

B + 1

∣∣∣∣ xK,i = θ∗K , θ

]
dθ

=
1

σ

∫ θ∗K+σ
2

θ∗K−σ
2

(1 + θ)

[
1− 1

(B + 1)K

(
1

2
+ (K − 1)p(θ, θ∗K)

)]
dθ.

Solving for θ∗K , we obtain θ∗K = (6−σ)
6(1+2B)

+ σ
6(1+2B)

1
K
. Figure C.1 plots the equilibrium run

threshold θ∗K as a function of the number K of communities.

To evaluate the liquidation cost, we first assume a linear cost c(θ, n) = c · n. With K

communities, the ex-ante cost of liquidation is E(cnK) = c
θ∗K−

¯
θ

θ̄−
¯
θ
. Thus, moving from K = 2

to K = 1 community is equivalent to a reduction of θ∗1 − θ∗2 = σ
24

= 4.17% in the project’s

expected return in terms of raising the ex-ante liquidation cost.
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Figure C.1. The equilibrium run threshold. In the graph, we consider a setting in which

v(θ, n) = (1 + θ)
(
1− n

B+1

)
− 1 with B = 0.5 and σ = 1, ε ∼ Uniform

(
−1

2 ,
1
2

)
.

Alternatively, we assume a quadratic liquidation cost c(θ, nK) = c ·n2
K . With K commu-

nities, the ex-ante cost of liquidation is E (cn2
K) = c

θ̄−
¯
θ

(
θ∗K −

¯
θ − σ

6
+ σ

6
1
K

)
. Thus, moving

from K = 2 communities to K = 1 community is equivalent to a reduction of θ∗1 − θ∗2 +
σ
6
1
2
=

σ
8
= 12.5% in the project’s expected return in terms of raising the ex-ante liquidation cost.
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